If the quantifiers are not showing correctly a PDF version is available here.
1. | x ( ~Fx v ~Gx ) | PR |
2. | Fa | PR |
3. |
| x( ~Fx v Gx ) |
AS |
4. |
| ~Fa v Ga |
3 E |
5. |
| ~Fa v ~Ga |
1 E |
6. |
| ~~Fa |
2DN |
7. |
| Ga |
4, 6 vE |
8. |
| ~Ga |
5, 6 vE |
9. | ~x(~Fx v Gx ) | 3-8 ~I |
1 | x( Fx Gx ) | PR |
2. | Fm v Fn | PR |
3. |
| ~xGx |
AS |
4. |
|x~Gx |
3 QN |
5. |
| Fm Gm |
1 E |
6. |
| ~Gm |
4 E |
7. |
| ~Fm |
5,6 MT |
8. |
| Fn |
2, 7 vE |
9. |
| Fn Gn |
1 E |
10. |
| Gn |
8,9 E |
11. |
| ~Gn |
4 E |
12. | xGx | 3-11 ~E |
1. | x( Gx y~Kxy ) | PR |
2. | x( Fx &yKxy ) | PR |
3. | Fa &yKay | 2 E |
4. | Ga y~Kay | 1E |
5. | yKay | 3 &E |
6. | ~~yKay | 5 DN |
7. | ~y~Kay | 6 QN |
8. | ~Ga | 4, 7 MT |
9. | Fa | 3 &E |
10. | Fa & ~Ga | 8, 9 &I |
11. | x( Fx & ~Gx ) | 10 I |
1. | x[( Fx Hx ) Gx ] | PR |
2. |
| x( ~Fx & ~Hx ) |
AS |
3. |
| ~Fx & ~Hx |
2 E |
4. |
| ( Fx & Hx ) v ( ~Fx & ~Hx ) |
3 vI |
5. |
| Fx Hx |
4 EQUIV |
6. |
| ( Fx Hx ) G x |
1 E |
7. |
| Gx |
5,6 E |
8. |
|x Gx |
7 I |
9. | x( ~Fx & ~Hx )xGx | 2-8 I |
1. | x( Ax y( By Cxy )) | PR |
2. | Am & Bn | PR |
3. | Am y( By Cmy ) | 1 E |
4. | Am | 2 &E |
5. | y( By Cmy ) | 3, 4 E |
6. | Bn Cmn | 5 E |
7. | Bn | 2 &E |
8. | Cmn | 6, 7 E |
1. | y( My Ay ) | PR |
2. | y( Cy & My ) | PR |
3. | Ca & Ma | 2 E |
4. | Ca | 3 &E |
5. | Ma | 3 &E |
6. | Ma Aa | 1 E |
7. | Aa | 5, 6 E |
8. | Ca & Aa | 4, 7 &I |
9. | y( Cy & Ay ) | 8 I |
1. | x( Ax v Bx ) | PR |
2. | x( Bx Ax ) | PR |
3. |
| ~xAx |
AS |
4. |
|x~Ax |
3 QN |
5. |
| ~Aa |
4 E |
6. |
| Aa v Ba |
1 E |
7. |
| Ba |
5, 6 vE |
8. |
| Ba Aa |
2 E |
9. |
| Aa |
7, 8 E |
10. | xAx | 3-9 ~E |
8. DERIVE:xy[( Fx Fy ) ( Fy v ~Fx )]
1. |
| Fx Fy |
AS |
2. |
| ~Fx v Fy |
1 IMP |
3. |
| Fy v ~Fx |
2 COM |
4. | ( Fx Fy ) ( Fy v ~Fx ) | 1-3 I |
5. |
| Fy v ~Fx |
AS |
6. |
| ~Fx v Fy |
5 COM |
7. |
| Fx Fy |
6 IMP |
8. | ( Fy v ~Fx ) ( Fx Fy ) | 5-7 I |
9. | ( Fx Fy ) ( Fy v ~Fx ) | 5, 8 I |
10. | y[( Fx Fy ) ( Fy v ~Fx )] | 9 I |
11. | xy[( Fx Fy ) ( Fy v ~Fx )] | 10 I |
1. | y( Jy ( Ky & Ly )) | PR |
2. | x~Kx | PR |
3. | ~Ka | 2 E |
4. | ~Ka v ~La | 3 vI |
5. | ~( Ka & La ) | 4 DeM |
6. | Ja ( Ka & La ) | 1 E |
7. | ~Ja | 5, 6 MT |
8. | z ~Jz | 7 I |
1. | xFx x( Bx & Cx ) | PR |
2. | x( Cx v Dx ) xAx | PR |
3. |
| Fx |
AS |
4. |
|xFx |
3 I |
5. |
|x( Bx & Cx ) |
1, 4 E |
6. |
| Ba & Ca |
5 E |
7. |
| Ca |
6 &E |
8. |
| Ca v Da |
7 vI |
9. |
|x( Cx v Dx ) |
8 I |
10. |
|xAx |
2, 9 E |
11. |
| Ax |
10 E |
12. | Fx Ax | 4-10 I |
13. | x( Fx Ax ) | 12 I |
1. | xFx xGx | PR |
2. | x~Gx | PR |
3. | ~xGx | 2 QN |
4. | ~xFx | 1, 3 MT |
5. | x~Fx | 4 QN |
1. | x( Ax & ~Bx ) xCx | PR |
2. | ~x( Cx v Bx ) | PR |
3. | x~( Cx v Bx ) | 2 QN |
4. |
| xAx |
AS |
5. |
| Ax |
4 E |
6. |
| ~( Cx v Bx ) |
3 E |
7. |
| ~Cx & ~Bx |
6 DeM |
8. |
| ~Bx |
7 &E |
9. |
| Ax & ~Bx |
5, 8 &I |
10. |
|x( Ax & ~Bx ) |
9 I |
11. |
|xCx |
1, 10 E |
12. |
| ~Cx |
7 &E |
13. |
|x~Cx |
12 I |
14. |
| ~xCx |
13 QN |
15. | ~xAx | 4-14 ~I |
1. | xyRxy | PR |
2. | xy( Rxy zRxz ) | PR |
3. | x( zRxz yRyx ) | PR |
4. | yRay | 1 E |
5. | Rab | 4 E |
6. | y( Ray zRaz ) | 2 E |
7. | Rab zRaz | 6 E |
8. | zRaz | 5, 7 E |
9. | zRaz yRya | 3 E |
10. | yRya | 8,9 E |
11. | Rxa | 10 E |
12. | "y( Rxy "zRxz ) | 2 E |
13. | Rxa zRxz | 12 E |
14. | zRxz | 11, 13 E |
15. | Rxy | 14 E |
16. | yRxy | 15 I |
17. | xyRxy | 16 I |
1. | xAx x( Bx & Cx ) | PR |
2. | x( Cx Bx ) | PR |
3. |
| xAx |
AS |
4. |
|x( Bx & Cx ) |
1, 3 E |
5. |
| Ba & Ca |
4 E |
6. |
| Ca |
5 &E |
7. |
|xCx |
6 I |
8. | xAx xCx | 3-7 I |
9. |
| xCx |
AS |
10. |
| Cb |
9 E |
11. |
| Cb Bb |
2 E |
12. |
| Bb |
10, 11 E |
13. |
| Bb & Cb |
10, 12 &I |
14. |
|x( Bx & Cx ) |
13 I |
15. |
|xAx |
1, 14 E |
16. | xCx xAx | 9-15 I |
17. | xAx xCx | 8, 16 I |
1. | x~Ax vx~Bx | PR |
2. | xBx | PR |
3. | ~~xBx | 2 DN |
4. | ~x~Bx | 3 QN |
5. | x~Ax | 1, 4 vE |
6. | ~xAx | 5 QN |
16. DERIVE:x( Ax &y~Bxy ) ~x[ ~Ax vy( Bxy & Bxy )]
1. |
| x( Ax & y~Bxy ) |
AS |
2. |
|x( ~~Ax &y~Bxy ) |
1 DN |
3. |
|x( ~~Ax & ~yBxy ) |
2 QN |
4. |
|x~( ~Ax vyBxy ) |
3 DeM |
5. |
| ~x( ~Ax vyBxy ) |
4 QN |
6. |
| ~vx[ ~Ax vy(Bxy & Bxy )] |
5 IDEM |
7. | x( Ax &y~Bxy ) ~x[ ~Ax vy( Bxy & Bxy )] | 1-5 I |
8. |
| ~x[ ~Ax v y(Bxy & Bxy )] |
AS |
9. |
| ~x( ~Ax vyBxy ) |
8 IDEM |
10. |
|x~( ~Ax vyBxy ) |
9 QN |
11. |
|x( ~~Ax & ~yBxy ) |
10 DeM |
12. |
|x( ~~Ax &y~Bxy ) |
11 QN |
13. |
|x( Ax &y~Bxy ) |
12 DN |
14. | ~x[ ~Ax vy( Bxy & Bxy )] x( Ax &y~Bxy ) | 8-13 I |
15. | x( Ax &y~Bxy ) ~x[ ~Ax vy( Bxy & Bxy )] | 7, 14 I |
1. | ~x( Ax Cx ) | PR |
2. | x[( Ax & Bx ) Cx ] | PR |
3. | x~( Ax Cx ) | 1 QN |
4. | ~( Aa Ca ) | 3 E |
5. | ~( ~Aa v Ca ) | 4 IMP |
6. | ~~Aa & ~Ca | 5 DeM |
7. | ( Aa & Ba ) Ca | 2 E |
8. | Aa ( Ba Ca ) | 7 EXP |
9. | ~~Aa | 6 &E |
10. | Aa | 9 DN |
11. | Ba Ca | 8, 10 E |
12. | ~Ca | 6 &E |
13. | ~Ba | 11, 12 MT |
14. | x~Bx | 13 I |
15. | ~xBx | 14 QN |
1. | xyAxy xyBxy | PR |
2. | xy~Bxy | PR |
3. | x~yBxy | 2 QN |
4. | ~xyBxy | 3 QN |
5. | ~xyAxy | 1, 4 MT |
6. | x~yAxy | 5 QN |
7. | xy~Axy | 6 QN |
19. DERIVE:x( Bx y( Ay & Cyx ))
1. | x( Ax &y( By Cxy )) | PR |
2. | Aa &y( By Cay ) | 1E |
3. | Aa | 2 &E |
4. | y( By Cay ) | 2 &E |
5. |
| Bx |
AS |
6. |
| Bx Cax |
4 E |
7. |
| Cax |
5, 6 E |
8. |
| Aa & Cax |
3, 7 &I |
9. |
|y( Ay & Cyx ) |
8 I |
10. | Bx y( Ay & Cyx ) | 5-10 I |
11. | x( Bx y( Ay & Cyx )) | 10 I |
1. | x[ Ax &y( By Cxy )) | PR |
2. | xAx Bj | PR |
3. | Aa &y( By Cay ) | 1 E |
4. | Aa | 3 &E |
5. | y( By Cay ) | 3 &E |
6. | Bj Caj | 5 E |
7. | xAx | 4 I |
8. | Bj | 2, 7 E |
9. | Caj | 6, 8 E |
10. | xCxj | 9 I |
1. | x(xRxy z ~Wz ) | PR |
2. | yz( Ryz & Hz ) | PR |
3. | x( ~Hx Wx ) | PR |
4. | z( Raz & Hz ) | 2 E |
5. | Rab & Hb | 4 E |
6. | Rab | 5 &E |
7. | yRay | 6 I |
8. | yRay z~Wz | 1E |
9. | z~Wz | 7, 8 E |
10. | ~Wc | 9 E |
11. | ~Hc Wc | 3E |
12. | ~~Hc | 10, 11 MT |
13. | Hc | 11 DN |
14. | ~Wc & Hc | 10, 13 &I |
15. | z( ~Wz & Hz ) | 14 I |
22. DERIVE: [xAx (yBy zCz )] xyz[( Ax & By ) Cz ]
1. |
|
AS | ||
2. |
|
AS | ||
3. |
|
2 &E | ||
4. |
|
3 I | ||
5. |
|
1, 4 E | ||
6. |
|
2 &E | ||
7. |
|
6 I | ||
8. |
|
5, 7 E | ||
9. |
|
8 E | ||
10. |
|
2-9 I | ||
11. |
|
10 I | ||
12. |
|
11 I | ||
13. |
|
12 I | ||
14. | [xAx (yBy "zCz )] "x"y"z[( Ax & By ) Cz ] | 1-13 I |
23. DERIVE:w( Qw & Bw ) y( Lyy ~Ay )
1. | zQz w( Lww ~Hw ) | PR |
2. | xBx y( Ay Hy ) | PR |
3. |
| w( Qw & Bw ) |
AS |
4. |
| Qa & Ba |
3 E |
5. |
| Qa |
4 &E |
6. |
|zQz |
5 I |
7. |
|w( Lww ~Hw ) |
1, 6 E |
8. |
| Ba |
4 &E |
9. |
|xBx |
8 I |
10. |
|y( Ay Hy ) |
2, 9 E |
11. |
| Lyy ~Hy |
7 E |
12. |
| Ay Hy |
10 E |
13. |
| ~Hy ~Ay |
12 TRANS |
14. |
| Lyy ~Ay |
11, 13 HS |
15. |
|y( Lyy ~Ay ) |
14 I |
16. | w( Qw & Bw ) y( Lyy ~Ay ) | 3-15 I |
24. DERIVE:zw[( Az & Hw ) Czw ]
1. | xy[( Ax & By ) Cxy ] | PR |
2. | y[ Ey &w( Hw Cyw )] | PR |
3. | xyz[( Cxy & Cyz ) Cxz ] | PR |
4. | w( Ew Bw ) | PR |
5. |
| Ax & Hw |
AS |
6. |
| Ax |
5 &E |
7. |
| Hw |
5 &E |
8. |
| Ea &w( Hw Caw ) |
2 E |
9. |
|w( Hw Caw ) |
8 &E |
10. |
| Hw Caw |
9 E |
11. |
| Ea |
8 &E |
12. |
| Ea Ba |
4 E |
13. |
| Ba |
11, 12 E |
14. |
|y[( Ax & By ) Cxy ] |
1 E |
15. |
| ( Ax & Ba ) Cxa |
14 "E |
16. |
| Ax & Ba |
6, 13 &I |
17. |
| Cxa |
15, 16 E |
18. |
| Caw |
7, 10 E |
19. |
| Cxa & Caw |
17, 18 &I |
20. |
|yz[( Cxy & Cyz ) Cxz ] |
3 E |
21. |
|z[( Cxa & Caz ) Cxz ] |
20 E |
22. |
| ( Cxy & Cyw ) Cxw |
21 E |
23. |
| Cxw |
19, 22 E |
24. | ( Ax & Hw ) Cxw | 5-23 I |
25. | w[( Ax & Hw ) Cxw ] | 24 I |
26.. | zw[( Az & Hw ) Czw ] | 25 I |