If the quantifiers are not showing correctly a PDF version is available here.
| 1. | PR | |
| 2. | Fa | PR |
| 3. |
| |
AS |
| 4. |
| ~Fa v Ga |
3 |
| 5. |
| ~Fa v ~Ga |
1 |
| 6. |
| ~~Fa |
2DN |
| 7. |
| Ga |
4, 6 vE |
| 8. |
| ~Ga |
5, 6 vE |
| 9. | ~ |
3-8 ~I |
| 1 | PR | |
| 2. | Fm v Fn | PR |
| 3. |
| ~ |
AS |
| 4. |
| |
3 QN |
| 5. |
| Fm |
1 |
| 6. |
| ~Gm |
4 |
| 7. |
| ~Fm |
5,6 MT |
| 8. |
| Fn |
2, 7 vE |
| 9. |
| Fn |
1 |
| 10. |
| Gn |
8,9 |
| 11. |
| ~Gn |
4 |
| 12. | 3-11 ~E |
| 1. | PR | |
| 2. | PR | |
| 3. | Fa & |
2 |
| 4. | Ga |
1 |
| 5. | 3 &E | |
| 6. | ~~ |
5 DN |
| 7. | ~ |
6 QN |
| 8. | ~Ga | 4, 7 MT |
| 9. | Fa | 3 &E |
| 10. | Fa & ~Ga | 8, 9 &I |
| 11. | 10 |
| 1. | PR | |
| 2. |
| |
AS |
| 3. |
| ~Fx & ~Hx |
2 |
| 4. |
| ( Fx & Hx ) v ( ~Fx & ~Hx ) |
3 vI |
| 5. |
| Fx |
4 EQUIV |
| 6. |
| ( Fx |
1 |
| 7. |
| Gx |
5,6 |
| 8. |
| |
7 |
| 9. | 2-8 |
| 1. | PR | |
| 2. | Am & Bn | PR |
| 3. | Am |
1 |
| 4. | Am | 2 &E |
| 5. | 3, 4 |
|
| 6. | Bn |
5 |
| 7. | Bn | 2 &E |
| 8. | Cmn | 6, 7 |
| 1. | PR | |
| 2. | PR | |
| 3. | Ca & Ma | 2 |
| 4. | Ca | 3 &E |
| 5. | Ma | 3 &E |
| 6. | Ma |
1 |
| 7. | Aa | 5, 6 |
| 8. | Ca & Aa | 4, 7 &I |
| 9. | 8 |
| 1. | PR | |
| 2. | PR | |
| 3. |
| ~ |
AS |
| 4. |
| |
3 QN |
| 5. |
| ~Aa |
4 |
| 6. |
| Aa v Ba |
1 |
| 7. |
| Ba |
5, 6 vE |
| 8. |
| Ba |
2 |
| 9. |
| Aa |
7, 8 |
| 10. | 3-9 ~E |
8. DERIVE:
x
y[( Fx
Fy )
( Fy v ~Fx )]
| 1. |
| Fx |
AS |
| 2. |
| ~Fx v Fy |
1 IMP |
| 3. |
| Fy v ~Fx |
2 COM |
| 4. | ( Fx |
1-3 |
| 5. |
| Fy v ~Fx |
AS |
| 6. |
| ~Fx v Fy |
5 COM |
| 7. |
| Fx |
6 IMP |
| 8. | ( Fy v ~Fx ) |
5-7 |
| 9. | ( Fx |
5, 8 |
| 10. | 9 |
|
| 11. | 10 |
| 1. | PR | |
| 2. | PR | |
| 3. | ~Ka | 2 |
| 4. | ~Ka v ~La | 3 vI |
| 5. | ~( Ka & La ) | 4 DeM |
| 6. | Ja |
1 |
| 7. | ~Ja | 5, 6 MT |
| 8. | 7 |
| 1. | PR | |
| 2. | PR | |
| 3. |
| Fx |
AS |
| 4. |
| |
3 |
| 5. |
| |
1, 4 |
| 6. |
| Ba & Ca |
5 |
| 7. |
| Ca |
6 &E |
| 8. |
| Ca v Da |
7 vI |
| 9. |
| |
8 |
| 10. |
| |
2, 9 |
| 11. |
| Ax |
10 |
| 12. | Fx |
4-10 |
| 13. | 12 |
| 1. | PR | |
| 2. | PR | |
| 3. | ~ |
2 QN |
| 4. | ~ |
1, 3 MT |
| 5. | 4 QN |
| 1. | PR | |
| 2. | ~ |
PR |
| 3. | 2 QN | |
| 4. |
| |
AS |
| 5. |
| Ax |
4 |
| 6. |
| ~( Cx v Bx ) |
3 |
| 7. |
| ~Cx & ~Bx |
6 DeM |
| 8. |
| ~Bx |
7 &E |
| 9. |
| Ax & ~Bx |
5, 8 &I |
| 10. |
| |
9 |
| 11. |
| |
1, 10 |
| 12. |
| ~Cx |
7 &E |
| 13. |
| |
12 |
| 14. |
| ~ |
13 QN |
| 15. | ~ |
4-14 ~I |
| 1. | PR | |
| 2. | PR | |
| 3. | PR | |
| 4. | 1 |
|
| 5. | Rab | 4 |
| 6. | 2 |
|
| 7. | Rab |
6 |
| 8. | 5, 7 |
|
| 9. | 3 |
|
| 10. | 8,9 |
|
| 11. | Rxa | 10 |
| 12. | "y(
Rxy |
2 |
| 13. | Rxa |
12 |
| 14. | 11, 13 |
|
| 15. | Rxy | 14 |
| 16. | 15 |
|
| 17. | 16 |
| 1. | PR | |
| 2. | PR | |
| 3. |
| |
AS |
| 4. |
| |
1, 3 |
| 5. |
| Ba & Ca |
4 |
| 6. |
| Ca |
5 &E |
| 7. |
| |
6 |
| 8. | 3-7 |
|
| 9. |
| |
AS |
| 10. |
| Cb |
9 |
| 11. |
| Cb |
2 |
| 12. |
| Bb |
10, 11 |
| 13. |
| Bb & Cb |
10, 12 &I |
| 14. |
| |
13 |
| 15. |
| |
1, 14 |
| 16. | 9-15 |
|
| 17. | 8, 16 |
| 1. | PR | |
| 2. | PR | |
| 3. | ~~ |
2 DN |
| 4. | ~ |
3 QN |
| 5. | 1, 4 vE | |
| 6. | ~ |
5 QN |
16. DERIVE:
x(
Ax &
y~Bxy )
~
x[ ~Ax v
y(
Bxy & Bxy )]
| 1. |
| |
AS |
| 2. |
| |
1 DN |
| 3. |
| |
2 QN |
| 4. |
| |
3 DeM |
| 5. |
| ~ |
4 QN |
| 6. |
| ~vx[ ~Ax v |
5 IDEM |
| 7. | 1-5 |
|
| 8. |
| ~ |
AS |
| 9. |
| ~ |
8 IDEM |
| 10. |
| |
9 QN |
| 11. |
| |
10 DeM |
| 12. |
| |
11 QN |
| 13. |
| |
12 DN |
| 14. | ~ |
8-13 |
| 15. | 7, 14 |
| 1. | ~ |
PR |
| 2. | PR | |
| 3. | 1 QN | |
| 4. | ~( Aa |
3 |
| 5. | ~( ~Aa v Ca ) | 4 IMP |
| 6. | ~~Aa & ~Ca | 5 DeM |
| 7. | ( Aa & Ba ) |
2 |
| 8. | Aa |
7 EXP |
| 9. | ~~Aa | 6 &E |
| 10. | Aa | 9 DN |
| 11. | Ba |
8, 10 |
| 12. | ~Ca | 6 &E |
| 13. | ~Ba | 11, 12 MT |
| 14. | 13 |
|
| 15. | ~ |
14 QN |
| 1. | PR | |
| 2. | PR | |
| 3. | 2 QN | |
| 4. | ~ |
3 QN |
| 5. | ~ |
1, 4 MT |
| 6. | 5 QN | |
| 7. | |
6 QN |
19. DERIVE:
x(
Bx ![]()
y(
Ay & Cyx ))
| 1. | PR | |
| 2. | Aa & |
1 |
| 3. | Aa | 2 &E |
| 4. | 2 &E | |
| 5. |
| Bx |
AS |
| 6. |
| Bx |
4 |
| 7. |
| Cax |
5, 6 |
| 8. |
| Aa & Cax |
3, 7 &I |
| 9. |
| |
8 |
| 10. | Bx |
5-10 |
| 11. | 10 |
| 1. | PR | |
| 2. | PR | |
| 3. | Aa & |
1 |
| 4. | Aa | 3 &E |
| 5. | 3 &E | |
| 6. | Bj |
5 |
| 7. | 4 |
|
| 8. | Bj | 2, 7 |
| 9. | Caj | 6, 8 |
| 10. | 9 |
| 1. | PR | |
| 2. | PR | |
| 3. | PR | |
| 4. | 2 |
|
| 5. | Rab & Hb | 4 |
| 6. | Rab | 5 &E |
| 7. | 6 |
|
| 8. | 1 |
|
| 9. | 7, 8 |
|
| 10. | ~Wc | 9 |
| 11. | ~Hc |
3 |
| 12. | ~~Hc | 10, 11 MT |
| 13. | Hc | 11 DN |
| 14. | ~Wc & Hc | 10, 13 &I |
| 15. | 14 |
22. DERIVE: [
xAx
(
yBy ![]()
zCz
)] ![]()
x
y
z[(
Ax & By )
Cz ]
| 1. |
|
AS | ||
| 2. |
|
AS | ||
| 3. |
|
2 &E | ||
| 4. |
|
3 |
||
| 5. |
|
1, 4 |
||
| 6. |
|
2 &E | ||
| 7. |
|
6 |
||
| 8. |
|
5, 7 |
||
| 9. |
|
8 |
||
| 10. |
|
2-9 |
||
| 11. |
|
10 |
||
| 12. |
|
11 |
||
| 13. |
|
12 |
||
| 14. | [ |
1-13 |
23. DERIVE:
w(
Qw & Bw ) ![]()
y(
Lyy
~Ay )
| 1. | PR | |
| 2. | PR | |
| 3. |
| |
AS |
| 4. |
| Qa & Ba |
3 |
| 5. |
| Qa |
4 &E |
| 6. |
| |
5 |
| 7. |
| |
1, 6 |
| 8. |
| Ba |
4 &E |
| 9. |
| |
8 |
| 10. |
| |
2, 9 |
| 11. |
| Lyy |
7 |
| 12. |
| Ay |
10 |
| 13. |
| ~Hy |
12 TRANS |
| 14. |
| Lyy |
11, 13 HS |
| 15. |
| |
14 |
| 16. | 3-15 |
24. DERIVE:
z
w[( Az & Hw )
Czw ]
| 1. | PR | |
| 2. | PR | |
| 3. | PR | |
| 4. | PR | |
| 5. |
| Ax & Hw |
AS |
| 6. |
| Ax |
5 &E |
| 7. |
| Hw |
5 &E |
| 8. |
| Ea & |
2 |
| 9. |
| |
8 &E |
| 10. |
| Hw |
9 |
| 11. |
| Ea |
8 &E |
| 12. |
| Ea |
4 |
| 13. |
| Ba |
11, 12 |
| 14. |
| |
1 |
| 15. |
| ( Ax & Ba ) |
14 "E |
| 16. |
| Ax & Ba |
6, 13 &I |
| 17. |
| Cxa |
15, 16 |
| 18. |
| Caw |
7, 10 |
| 19. |
| Cxa & Caw |
17, 18 &I |
| 20. |
| |
3 |
| 21. |
| |
20 |
| 22. |
| ( Cxy & Cyw ) |
21 |
| 23. |
| Cxw |
19, 22 |
| 24. | ( Ax & Hw ) |
5-23 |
| 25. | 24 |
|
| 26.. | 25 |