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A: Disamenity Cost Function
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(a) δ ∈ [0,−1]; γ = 1
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(b) δ = 0; γ ∈ [1, 5]

Figure A.1: Disamenity Cost Function.

B: Derivation of Mean Costs

Normalizing the maximum distance in a locality to 1, mean costs are found by integrating

costs (as a function of distance) over the density function of distance,

c̄ =

∫ 1

0

xγ(1− x)δxα−1(1− x)β−1 1

B(1;α, β)
dx (B.1)

=
1

B(1;α, β)

∫ 1

0

xα+γ−1(1− x)β+δ−1 dx. (B.2)

The final integral is simply the definition of the beta function, B(1;α + γ, β + δ), so that

c̄ =
B(1;α + γ, β + δ)

B(1;α, β)
. (B.3)
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C: Mean-Cost Voter

With a linear disamenity cost function, the voter at the mean distance will suffer mean costs.

c(d̄) = 1− d̄ (C.1)

= 1−
∫ 1

0

df(d;α, β)dd (C.2)

=

∫ 1

0

f(d;α, β)dd−
∫ 1

0

df(d;α, β)dd (C.3)

=

∫ 1

0

(1− d)f(d;α, β)dd (C.4)

=

∫ 1

0

c(d)f(d;α, β)dd (C.5)

= c̄ (C.6)
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D: Efficient Supermajority With Linear Costs

Mean distance from the Beta distribution is d̄ = α
α+β

. To find the efficient supermajority

for the specified parameter values, we evaluate the cumulative distribution function at this

average distance,

F (d̄;α, β) =
B(d̄;α, β)

B(α, β)
=

∫ d̄
0
tα−1(1− t)β−1 dt∫ 1

0
tα−1(1− t)β−1 dt

= xα, (D.1)

and calculate an efficient supermajority M = 1− F (d̄;α, β).

D.1 α ∈ [2,∞], β = 1

For β = 1, Equation (D.1) reduces to d̄α and the solution for the efficient supermajority is

M = 1−
(

α
α+1

)α
. For α = 2, M = 5

9
. To calculate M for cases of populations concentrated

away from the facility, we take the limit of M as α goes to infinity and β = 1:

lim
α→∞

(
α

1 + α

)α
= lim

α→∞

1(
1 + 1

α

)α =
1

e
. (D.2)

Therefore,

lim
α→∞

M = 1− 1

e
≈ 0.6321. (D.3)

D.2 α ∈ (3,∞], β = 3

For β = 3, Equation (D.1) can be evaluated at mean costs d̄ = α
α+3

as

M = 1− 1

2

(
α

α + 3

)α(
18 + 39α + 17α2

(α + 3)2

)
. (D.4)
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For α = 3, M = 0.5. We then take the limit of this expression as α approaches infinity.

Define the variable L such that

lnL = lim
α→∞

ln

(
α

α + 3

)α
= lim

α→∞
α ln

(
α

α + 3

)
= lim

α→∞

3 ln
(

1
1+ 3

α

)
3
α

. (D.5)

Define the variable t = 3
α

, with limα→∞ t = 0, and substitute into the above equation so that

we are now interested in

lim
t→0

3 (− ln(1 + t))

t
= lim

t→0

−3

1 + t
= −3. (D.6)

Furthermore,

lim
α→∞

(
18 + 39α + 17α2

(α + 3)2

)
= 17. (D.7)

Hence,

lim
α→∞

M = 1−
(

1

2

)(
e−3
)

(17) = 0.5768. (D.8)
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E: Estimating Beta Distribution Parameters

Given a set of observed voter distances d = {d1, ...dn}, the log-likelihood function for the

Beta distribution parameters (α, β) is

(α− 1)
n∑
i=1

ln(di) + (β − 1)
n∑
i=1

ln(1− di)− n lnB(α, β), (E.1)

where B(α, β) is the beta function,

B(α, β) =

∫ 1

0

tα−1(1− t)β−1dt (E.2)

There is no closed-form solution that maximizes Equation (E.1), so numerical methods

are required. However, most software packages are equipped with functions to estimate

parameters from observed data (see the fitdistr function from the MASS package in R;

UNIVARIATE procedure in SAS ; or the bayesmh command in STATA). Parameteres α and β

can alternatively be estimated using method of moments estimation, though such estimates

are less efficient than maximum likelihood estimates. Method of moment estimates for the

Beta distribution are

α̂ = d̄

(
d̄

s2
d

− 1

)
(E.3)

β̂ = (1− d̄)

(
d̄

s2
d

− 1

)
, (E.4)

where d̄ is sample mean of d and s2
d is the sample variance of d.
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