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Abstract

We estimate nonmarket values for natural views in an urban setting. These views

contain the aesthetics of natural areas commonly found in public parks and open space,

and o�er an aspect of property valuation that previous research is unable to disentangle

from proximity to parks and open space. We incorporate machine learning techniques on

google street view images to identify natural views in an urban setting. We �nd positive

capitalization rates associated with household views of park-like properties. Estimates

are robust to a variety of speci�cations, including models that are identi�ed o� of new

developments on neighboring properties and falsi�cation tests that help to rule out the

e�ect of a broader neighborhood environment. From a policy perspective, our results

inform as to the optimal size, location, and shape of open space. Furthermore, machine

learning methods used in the construction of our view variable provide a potentially

powerful tool for other nonmarket valuation studies.
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Introduction

Hedonic housing price analysis has emerged as a common tool for nonmarket valuation in

urban and environmental economics. Developed by Rosen (1974), the hedonic method es-

timates the value of location-speci�c amenities via their capitalization in housing markets

and thousands of papers have implemented hedonic methods to measure the value of non-

market amenities.1 A major empirical limitation of this tool is quantifying some of the more

unexplored amenities which may be important components of home valuation. For example,

researchers know very little about hte value of aesthetics both within and outside a home, as

well as noise, visual, and olfactory impacts of nearby land uses. These nonmarket amenities

are complicated by the presence of other amenities that may confound estimates. Further-

more, only more recently have the presence of geospatial data provided researchers with the

ability to observe and measure local amenities in a spatial context.2 More recent advances

in machine learning o�er economists another step forward in being able to properly measure

local amenities. More speci�cally, the combination of deep learning and image recognition

gives researchers the ability to account for nuanced characteristics of an amenity that may

not appear in a discrete set of attributes commonly available with local property records.

Similarly, these techniques may be able to categorize observations with more accuracy than

standard classi�cation thus reducing measurement error.

In order to advance an understanding of these di�cult-to-measure housing amenities, we

turn to a novel application in the environment and urban economics space. We ask what

is the value of views from a home that encompass greater concentrations of natural space?

1A large empirical literature includes applications to air quality (Smith and Huang, 1995), water quality
(Walsh et al., 2017), hazardous waste sites (Greenstone and Gallagher, 2008), sunsihne (Fleming et al.,
2018), and land use (Muehlenbachs et al., 2015). Hedonic estimation has also been used in the context of
non-environmental goods, such as school quality (Black, 1999), crime (Linden and Rocko�, 2008), and drug
pricing (Howard et al., 2015).

2See Bateman et al. (2002) for an overview of GIS in environmental economics.
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Answering this question provides two contributions. First, we provide evidence on the value

of residential development patterns that encompass natural views. This contribution will

speak to zoning and development regulations that may help increase the value of housing

to residents. Second, we provide a new methodology to valuing visual amenities that could

have applications to any amenity that is visual in context.

The nonmarket valuation literature has extensively examined open space as an environmental

amenity (McConnell and Walls, 2005). The positive capitalization e�ect of local green space

is well-documented. For example, Klaiber and Phaneuf (2010) estimate the e�ect of various

types of open space, including local parks, agricultural areas, and undeveloped space. They

�nd positive e�ects and signi�cant heterogeneity based on type of open space. Similarly,

Turner and Seo (2021) �nd signi�cant capitalization e�ects of both private and public green

space. Studies often identify physical attributes of the open space, including land-cover

designation, size, biodiversity measures, or recreational opportunities. In addition, analyses

also measure the magnitude of a household's consumption of such open space through several

di�erent channels, including distance to open space, the percent of nearby land that exists as

open space, or simply the presence of open space within some radius. Each of these metrics

implies a slightly di�erent consumption good. There is also considerable evidence for the

value of local amenities and neighborhood designs associated with new urbanism, (Tu and

Eppli, 2003; Matthews and Turnbull, 2007). These studies suggest the need for hedonic

analysis that can uncover the mechanisms behind heterogeneous values of open space.

An important attribute of open space that may provide considerable bene�ts to nearby house-

holds is that it serves as a visual amenity. De�ning the degree of visual amenity is a di�cult

task. Several studies (Paterson and Boyle, 2002; Walls et al., 2013) use a combination of

GIS digital elevation models and land-cover data to characterize a household's view. These

analyses provided considerably better measurement of the environmental attribute, relative
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to previous approaches. In this paper, we continue to improve upon hedonic analysis in this

manner by developing a machine learning approach to measuring the visual appeal of prop-

erties, which allows us to account for an important location attribute. In particular, we train

and utilize an image recognition algorithm to estimate the visual amenity that households

consume. We simultaneously estimate the e�ects of di�erent types of land use in an e�ort to

separately identify the value of the visual component and other proximity-based values. Our

primary contribution is a novel approach to quantifying the quality of a household's view.

Other work has incorporated advanced methods for identifying environmental goods to be

used in hedonic valuation. Franco and McDonald (2018) use remote sensing to measure ur-

ban greenness at an aggregate neighborhood level and �nds signi�cant capitalization e�ects.

Yang et al. (2021) develops a Green View Index and �nds a positive relationship between

street-level greenery and commercial o�ce rents. Other work has utilized image recognition

methods to explore the price e�ect of the appearance (Johnson et al., 2020) and architectural

(Lindenthal and Johnson, 2021) style of a home. This work thus uses advanced methods to

expand the set of structural home attributes. Our work expands the use of such methods

in hedonic analysis for valuation of environmental goods, focusing on the view amenity of

park-like spaces.

Our analysis rests on the notion that open space conveys value in several ways, including

recreational value, ecosystem services, and visual amenity value. Research in nonmarket

valuation of open space tends to focus primarily on the �rst two aspects. We believe that

proper characterization of visual amenity value is important for several reasons. First, the

omitted visual amenity of open space may generate a bias in attempts to estimate recre-

ation values. For example, proper measurement of the visual characteristics of open space

ensures unbiased estimation of recreation demand and correctly informs policies that alter

recreational opportunities. Second, estimates of these visual amenity values that are distinct

from recreational value play an important role in determining the optimal provision of open
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space. Given a �xed quantity of land dedicated to open space (rather than residential or

commercial development), the spatial allocation of that space could be con�gured to o�er an

area and services for recreation, or be allocated in a way to expand the perimeter and thus

maximize household exposure to a view amenity through the use of, for example, boulevards,

local squares, or small natural bu�ers. Determining the optimal balance between visual and

recreation amenities requires the relative values of such amenities and potential complemen-

tarities between public goods play an important role in accurately estimating nonmarket

values and in design of e�cient policy (Albouy, 2018).

We estimate a hedonic model using housing transactions in the Denver, CO metropolitan

area from 2008-2020. We use Google street view to obtain pictures facing away from each

of these houses, replicating the view of each household from its front door. For each of

these images, we use a convolutional neural network to score its natural view based on the

similarity to natural areas of urban parks. Primary results are from a cross-sectional analysis

that includes a set of spatial and temporal controls, along with structural housing attributes,

to control for the variety of factors that could e�ect housing prices. We also present a number

of alternative speci�cations that demonstrate the robustness of our empirical results. Finally,

we estimate a repeat sales model using a subset of observations. Due to the necessity to

match repeat housing sale transactions with multiple images that are close to the respective

sales dates, creation of the dataset substantially reduces the sample size. Still, estimates in

the repeat sales model show positive capitalization of the visual amenity and provide more

evidence for a causal relationship.

This paper is organized as follows. First, we review the literature on hedonic valuation of

open space, including analyses that consider visual amenities. We then introduce a method

to de�ne a visual amenity and discuss the few places such a technique has been used in

the economics literature. After reviewing the current state of the literature, we present our
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empirical model and describe our data. Then, we present our image recognition algorithm

in detail and its role in our hedonic analysis. Finally, we present results of a housing price

hedonic model that accounts for visual amenity values and conclude with a discussion of our

estimates.

Open Space Hedonic Analyses

While there exists an extensive hedonic literature that attempts to value open space, we limit

our discussion here to focus on studies that suggest the value of visual amenities. To begin

with, empirical evidence indicates that type of open space matters. Neumann et al. (2001)

and Liu et al. (2013) �nd positive housing price premiums associated with proximity to

National Wildlife Refuges, a form of open space with a natural aesthetic. These studies also

�nd that e�ects are highly localized around wildlife refuges, potentially driven by houses with

a view of the refuges. These results suggests that the corresponding visual amenity could

be an important component. Shultz and King (2001) also report positive amenity values

associated with natural areas and wildlife habitat, but �nd that housing prices decrease with

proximity to city/county parks that may be used primarily for recreation. While this could

be the result of aversion to congested areas, the visual di�erence in the type of open space

may also be a contributing factor.

Several studies have attempted to directly value a view amenity. Weicher and Zerbst (1973)

estimate a hedonic housing price model that includes indicator variables for homes that are

adjacent to a municipal park, distinguishing between homes that face a park, back into a

park, or face a park with heavy recreational use. They �nd positive e�ects associated with

facing a park that does not have heavy recreational use and insigni�cant or negative e�ects
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in other cases of close proximity.

While Weicher and Zerbst (1973) de�ne the visual amenity as a discrete variable, other stud-

ies use GIS software to de�ne a magnitude of visual amenity. Paterson and Boyle (2002)

employ a digital elevation model to determine the scope and distance of visibility from a

household's location. This is combined with land cover data to measure the percent of a

household's view de�ned by di�erent land use categories. The study �nds that visible de-

veloped land generates a negative price impact, but other visual measures are insigni�cant.

However, the inclusion of visual measures does have substantial e�ects on other model es-

timates. Walls et al. (2013) take a similar approach and using ArcGIS Viewshed tool to

characterize a household's view of di�erent land covers. They �nd negative price e�ects of

forest views, but positive price e�ects of farmland and grassy area views. Finally, Taglia�erro

et al. (2016) also leverage GIS tools to construct a view measure. These authors use spatial

data and the FRAGSTATS software (McGarigal et al. (2002)) to identify discrete objects

that characterize a household's view. Results suggest that natural elements of a view have

signi�cant value.

Machine Learning for Image Classi�cation

The methods in Paterson and Boyle (2002) and Walls et al. (2013) classify land cover into

a speci�c category, such as residential, forest, or grassland. A view amenity is then de�ned

based on the amount of each category in a household's viewshed. Similarly, Taglia�erro

et al. (2016) rely on the identi�cation of well-de�ned discrete attributes of a view. We take

a di�erent approach, relying on a machine learning image classi�cation algorithm. This

approach has two advantages. First, we are able to avoid potentially restrictive land-use
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categories and instead determine the elements of a visual amenity in the process of estimating

an image classi�cation model. This allows us to measure considerably more variation in

land-use patterns. For example, areas classi�ed as residential may vary substantially in

other attributes. Second, by separately measuring view and land-use type we can directly

estimate the capitalization e�ect of the view amenity.

We de�ne the view amenity in our model based on its similarity to an ideal natural view.

We discuss the required data and details of our technique later in the paper, but here we

brie�y outline our approach to measuring the view amenity. First, we use Google Street

View to capture images that replicate the view from each household in our dataset: i.e.

looking outwards from the property. We then use Street View images of parks that include

natural amenities (trees, shrubs, grass) to de�ne a park view. Using these park images, we

estimate the parameters of an arti�cial neural network3 to build a predictive model that can

score any image based on its similarity to the park-like view. The model then allows us to

predict the score of each household's view amenity on a 0− 1 scale.

The use of image classi�cation to de�ne environmental attributes is absent in the economics

literature. Several studies, however, use machine learning image classi�cation methods in

the context of empirical economics. Glaeser et al. (2015) demonstrate the use of support

vector regression to address a lack of economic statistics. Using data from Google Street

View data, the authors predict median income in a census block group based on images of

the neighborhood. The model not only �ts the data well, but is able to predict out of sample

median income in a separate city with a high degree of accuracy. Additional analysis shows

that predicted income is strongly correlated with housing prices, indirectly linking image

data to housing prices. In Naik et al. (2014), the authors employ a model that predicts the

3This method closely resembles a multivariate discrete choice model in which we de�ne a park category in
addition to several other image classi�cations. The pixel data of the digitized image serves as the input
data used to predict a categorical outcome. We use the Inception V3 algorithm and transfer learning to
minimize the sample size requirements of the training dataset.
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perceived safety of a city from Street View images. The study gathers data on perceived

safety based on location images via crowd-sourcing, which can then be used to estimate

a support vector regression. Results show a strong positive correlation between a city's

median family income and perceived safety. Similarly, Naik et al. (2017) use crowd-sourced

data to determine the perceived safety of a location and estimate a predictive model that

�nds positive correlation between perceived safety and education levels in a neighborhood.

In general, the previously discussed line of research establishes a connection between visual

data and economic outcomes but stops short estimating an economic value, such as a capital-

ization value or willingness to pay. Our study uses an arti�cial neural network to construct

a meaningful economic variable, view amenity, that is di�cult to quantify but likely plays a

key role in economic transactions. We then use standard non-market valuation techniques to

estimate the value of the view. Taking a similar approach in a di�erent context, Guo et al.

(2019) train a neural network to score individual faces on how attractive and aggressive

they appear. This score is used as a covariate in predicting salaries among college foot-

ball coaches. Machine learning techniques have been applied extensively and successfully in

image classi�cation exercises, but have so far had a limited role in empirical economics.

Empirical Model

We estimate a hedonic housing price function with the objective of identifying the marginal

price of the visual amenity associated with open space. To accomplish this, we build a

standard hedonic housing price model for the price of house i in subdivision j sold in year t.

We use the natural log of nominal transaction prices. The hedonic price function includes a

vector of housing attributesXi, subdivision �xed e�ects γj, and tautm the interaction of a year
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t dummies with Census block group m dummies (Census block groups are geographically

larger units than subdivisions) to capture time trends that can vary across space.4 The

primary variables of interest are in the vector of park-related variables, Parki. The hedonic

function is

lnPijt = β0 + βXXi + τtm + γj + βPParki + εijt, (1)

where εijt is a random i.i.d. error. The vector of housing attributes includes the number

of bedrooms, gross living square feet, lot size, and dummies for the year the home was

built. Our empirical work includes di�erent speci�cations of the park amenity vector Parki

to separately identify various park-related amenity values. We use four variables. First,

Proxi measures the inverse distance from the house to the nearest city/county designated

park. This captures the most conventional approach in the hedonic literature, treating

open-space consumption as distance-related. Next, the variable Park_Adji is a dummy

variable equal to 1 if the house is facing a designated park. This captures a slightly di�erent

type of consumption than Proxi in the form of a view amenity (though not necessarily

a high view score from our image classi�cation). For homes that are adjacent to a park

on a di�erent side of the parcel, Proxi controls for the amenity e�ect. We also include

Parkway_Adji, a dummy variable equal to 1 if the house is on a designated parkway, open

space that may provide a view amenity but considerably less recreation opportunity than

established parks. Finally, the variable V iew_Parki denotes the visual amenity measured

from our image classi�cation algorithm. This measure represents the quality of the view

that household i has when looking out its front door. As additional controls, we also include

image classi�cation scores for residential and commercial property in Equation 1, to more

�nely de�ne a household's view.

All speci�cations include spatial �xed e�ects at the subdivision level. Beyond any location-

speci�c unobservables, one may be concerned about unobservable attributes that are related

4Abbott and Klaiber (2011) demonstrate the importance of �xed e�ects at a �ne spatial level.
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speci�cally to a household's view. For example, the V iew_Parki variable could be picking

up e�ects associated with wealthy properties that typically have a high aesthetic quality.

Therefore, a set of speci�cations includes the assessed value of the home across the street.

By directly measuring and including the value of that property, we eliminate any potential

confounding e�ect on V iew_Parki coe�cient estimate.

Section expands on the details of computing V iew_Park, but a brief summary of the

variable is necessary here. We de�ne a high-quality view as a view that is similar to a

forested/landscaped park. Therefore, a high-quality view includes the view of a designated

city/county park but may also the view of undeveloped open space, well-manicured private

land, or any other land that looks similar to a park. In addition, a household with a

view of a designated park may have a lower V iew_Park value if that view is of a parking

lot, recreational areas, or other elements of a park that do not provide a natural view. Our

objective thus is to capture a purely visual amenity. De�nitions for V iew_Parki include both

continuous and discrete designations. One speci�cation de�nes V iew_Parki as the predicted

park-view amenity score. Since the view score is a somewhat indeterminate measure, we also

estimate a dummy variable speci�cation in which V iew_Park_Indi is assigned a value 1 if

the household's view score is above a particular threshold. Several speci�cations de�ne this

threshold as a percentile in the observed distribution of V iew_Park, while one speci�cation

de�nes the dummy variable equal to 1 if the park score is the highest score among several

categories. This approach �ts better with the interpretation of the arti�cial neural network

as a classi�cation model. We discuss construction and interpretation of this variable in more

detail following a discussion of our data.

Given a set of park-related variables, including or excluding speci�c variables in the Parki

matrix allows us to identify the means by which open space generates value. These variables

are distinct in important ways. Proximity to an established park, Proxi, indicates value in
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the form of recreational opportunity. Controlling for proximity, the e�ect of facing a park

suggests value derived from the visual amenity of an established park. Of course, both of

these variables will include recreational use value, making it di�cult to fully disentangle

any visual amenity e�ects. Similarly, the use of parkways gets closer to picking up solely a

view amenity due to the diminished recreational opportunity. While both Park_Adji and

Parkway_Adji e�ects partially signify value related to a view amenity, the quality of this

amenity is certainly not uniform. Therefore, we turn to our view score to measure a view

amenity that is independent of any other potential values inherent in open space. This view

score may distinguish a well-kept boulevard from a nominally designated parkway or the

greenspace of a park from formal recreational areas. Moreover, it identi�es visual amenities

that exist in undesignated open space, such as private residential frontage and undeveloped

natural areas.

We also estimate speci�cations to test for other price impacts. We include the variable

Own_Parki as an additional regressor to capture the visual amenity of a household's own

property that may be capitalized into its price. This also provides a means of controlling for

any potential unobservables at the the neighborhood level that may be related to its average

view amenity, rather than the view speci�c to a household.

Finally, in addition to the cross-section model, we estimate a repeat sales model by taking

the di�erence of Equation 1 across multiple sales. This speci�cation reinforces a causal

mechanism by di�erencing out unobserved property �xed e�ects.
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Data

The �rst data component of our analysis is housing transaction data. This includes 121,045

observations of housing sale transactions in Denver, Colorado, from 2011-2017. Summary

statistics for housing data are shown in the top panel of Table 1. In addition to the previously

mentioned structural housing variables and transaction prices, we observe the exact address

of each home. This allows us to obtain images of the home and the view across the street, via

Google Street View, and to accurately measure distance to the nearest designated park. Next,

the exact location of city/county designated parks is obtained from the Denver Department

of Parks and Recreation. Figure 1 shows the location of designated parks in the study

area. Using GIS software, we overlay housing transaction locations and park locations to

measure the distance from the edge of each housing parcel to the edge of the nearest park.

Geographic boundary �les for parkways are available from the Denver Department of Parks

and Recreation so we can similarly determine which houses are located on parkways. To

determine which houses are facing an established park, we use a parcel and structure map of

all homes in our study area from the Denver Open Data Catalog so we can identify homes

that border an established park and are aligned such that the front of its structure faces the

park.

The �nal data component is the park-view score for each housing observation. We use Google

Street View to obtain pictures of the view from each property in our sample. Pictures are

concentrated in years 2014-2016 (71%), with 20% prior to that and 9% in 2017. Across years,

pictures are concentrated during May-October (95%). Using the Google Street View API

combined with parcel and structure maps, we determine the proper angle so that the Street

View image mimics that of looking out from the front of a house. These pictures de�ne the

view across the street for each household. We generate a similar dataset of pictures of each

property itself. In the next section, we describe in detail the process of using these images
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to calculate V iew_Parki and Own_Parki, as well as scores for other categories.

Image Classi�cation

To create the variables V iew_Parki and Own_Parki, we rely on an image recognition

program developed as part of the Google Brain project and re-train it to detect an array of

visual property-type attributes. Our objective is to score each property in our dataset based

on its visual amenity. We de�ne this visual amenity as similarity to the natural view of a

designated park. This technique involves two steps: 1) Train the model on a subset of data

to learn what image inputs de�ne a park-like view, and 2) Apply the model to the sample

of household view images to classify view types for each housing observation in our dataset.

Classi�cation in the second step involves predicting a view score for di�erent view categories.

Training

We use Google's Inception V3 algorithm, a deep convolutional neural network. The Inception

V3 classi�er, part of the TensorFlow open-source software library, is trained speci�cally for

image recognition on the Imagenet dataset.5 However, our analysis is focused on identifying

views that look like parks, which is outside of the classi�cation domain of the model. There-

fore, we re-train (i.e. re-estimate) the �nal layer of the neural network, e�ectively teaching

the algorithm to distinguish park-like images from other urban land uses.6Thus, we continue

to use the baseline parameterization of the model to classify images, but estimate the �nal

5Imagenet is an online database of classi�ed images that has been used extensively for training and testing
visual object recognition programs.
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layer for speci�c context.

To train the algorithm to properly classify view types, we obtain pictures of parks, residential,

commercial and other categories in the Denver area from Google Street View. The park

images are manually chosen from among properties that are across from designated city

parks. We use images that include naturally green areas (grass, trees, shrubbery) and remove

images that include parking lots, fences, maintenance infrastructure, telephone/utility poles,

and recreation infrastructure. These images serve as input data to estimate parameters of

the algorithm. The online supplementary materials provide examples of images classi�ed as

parks for training purposes. We also train the model on other types of views to avoid false

positives. Examples are provided in the supplementary materials.7

Each Street View image is broken down into a 2048-dimensional vector that captures the pixel

representation of each image. Pixel data serves as the input data for the image classi�cation

algorithm. The deep convolutional neural network (Inception v3) �ts approximately 25

million parameters to classify each image. To save computational cost, we use transfer

learning by starting with an Inception-v3 model that is pre-trained on an Imagenet dataset

containing 1.4 million images and 1000 image categories. We then re-train only the last

bottleneck layer of the network according to our land-use categories. The use of transfer

learning means we only have to estimate 8,116 parameters of the approximately 25 million

parameters in the Inception v3 algorithm. Table 2 shows the percentage of each type of

image (in-sample) that is properly classi�ed by the trained model. Results suggest a high

degree of accuracy.

6The advantage of using a pre-trained algorithm and estimating the �nal layer is that 1) less data and less
variation in the data is required for identi�cation and 2) the computational burden is reduced considerably.
For more on implementation of this algorithm: https://www.tensor�ow.org

7See Figures S.1 and S.2 of the supplementary materials.
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Prediction

We next use the classi�cation algorithm to estimate how similar is each household's view to

the park, residential, commercial, and other categories. The image classi�cation algorithm

is trained to classify images based on how much the image resembles each of the categories.

Classi�cation assigns a score for each category to an image. We use the park category

score as a measure of the visual amenity. We obtain images of the view from each house in

our dataset and an image of the house itself so that we can then calculate V iew_Park and

Own_Park. V iew_Park measures how similar the view across the street from the property

is to a park, while Own_Park measures how similar the property itself is to a park. The

supplementary materials show example observations of view images along with the predicted

V iew_Park8 Figure 2 displays two histograms of predicted park scores. Panel 2a shows the

full distribution of predicted park view scores. Note the high concentrations of predictions

at very low end. In Panel 2b, we show only the distribution of predicted scores above 0.05

to better illustrate variation in predictions.

An important component of this analysis is controlling for the amenity value of proximity,

presumably a recreation-based value, while estimating the amenity of a view. For econo-

metric identi�cation, we need 1) properties that have high park scores but are not in close

proximity to parks and parkways and 2) properties that have low park scores and are in close

proximity to parks and parkways. The correlation between between parks scores and our

proximity measure is 0.004. Similarly, the Spearman rank correlation is −0.019. Spearman

rank correlations of V iew_Park with Park_Adj and Parkway_Adj are 0.11 and 0.12, re-

spectively. These low correlations indicate variation in the data due to view amenities that

are due to properties other than designated parks. In addition, proximity to an established

park does not ensure a high-quality view amenity. We are therefore con�dent that our con-

8See Figure S.3 of the supplementary materials.
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structed view scores have the necessary variation to properly identify the value of a view

amenity.

In Table 3 we report the mean and standard deviation of our park view score for deciles of the

proximity distribution. Mean and standard deviation of predicted park score are calculated

for all observations that are bounded below and above by proximity values. Park scores are

relatively consistent throughout the proximity distribution. Similarly, Table 4 shows mean

park view score for di�erent values of distance-based park measures. We compare conditional

means for observations within close proximity (95th percentile), those adjacent and nonad-

jacent to parks, and those adjacent and nonadjacent to parkways. Summary measures are

slightly di�erent, re�ecting di�erential access to views, but our approach preserves enough

random variation for identi�cation. It is evident that park view score is relatively inde-

pendent of our distance-based measure. Finally, Figure 3 shows histograms of V iew_Park

across park and parkway adjacency to illustrate a fuller picture of variation in independent

variables. These histograms illustrate that observations that are adjacent to parks or park-

ways tend to have higher concentrations of park view scores at the lower-middle end (i.e.

�good� views around 0.2) and at the extreme upper end (i.e. �great� views close to 1.0).

Overall, these statistics demonstrate a joint distribution of variables that supports empirical

identi�cation.

Image Analysis

Before using the predicted image classi�cation scores as a hedonic covariate, we explore the

fundamentals of these scores in more depth. We use a second image recognition algorithm,

Google's TensorFlow object detection model, that identi�es particular objects of each photo.

Since we are primarily interested in separately classifying park, residential, and commercial
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images, we identify trees and buildings.9 This algorithm is already trained to recognize such

objects. The supplementary materials show examples of two images, one with a high park

score relative to its residential score and one with a high park score relative to its commercial

score, in which this algorithm isolates trees and buildings. The �gure illustrates the use of

image segmentation to produce bounding boxes that isolate individual objects and measure

their relative size.10

We calculate the area of the image that includes trees and buildings, respectively, as a per-

cent of the total area and examine the correlation with park scores. Table 5 shows estimates

from regressing predicted scores from our image classi�cation algorithm on individual ob-

jects of the image. The dependent variable in these two models is the park score di�erential,

de�ned as V iew_Park − V iew_Res or V iew_Park − V iew_Com, where V iew_Res and

V iew_Com are predicted scores for residential and commercial classi�cation, respectively.

Regressions also include controls for portions of the image in which trees overlap build-

ings, or vice versa. For the park-residential di�erential, results demonstrate a positive and

signi�cant e�ect of tree coverage and negative and signi�cant e�ect of buildings. The park-

commercial di�erential regression shows nearly identical results. Both cases provided strong

corroboration that our park score prediction is driven by park-like views.

We also estimate a spline function to �t a more �exible relationship between parks score and

tree coverage, while controlling for buildings and the overlap of objects in the image. Figure 4

shows estimated spline functions for V iew_Park−V iew_Res or V iew_Park−V iew_Com.

The park-residential di�erential in the �rst panel appears to be driven by tree concentrations.

At lower values of the tree coverage, we do not see a strong positive relationship, likely due to

typical residential properties with trees on the property. This result suggests that our image

9Wan and Lindenthal (2023) provide a more general approach to examining the workings of similar image
classi�cation algorithms.

10See Figure S.4 of the supplementary materials.
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classi�cation is not overly sensitive to the existence of a tree. In the second panel of Figure

4, we again see a positive and signi�cant e�ect of tree coverage in distinguishing between

park and commercial views. This relationship appears to hold across the entire distribution.

Results

We �rst present estimates from regressions that exclude park-view image scores. These

baseline results replicate the conventional approach to measuring amenity values associated

with natural areas. All regressions include the full set of housing attributes in Table 1,

subdivision �xed e�ects and block-group time trends, with standard errors clustered at the

subdivision level. Table 6 shows estimates and standard errors for speci�cations that include

proximity to the nearest park (Prox), adjacency to a park (Park_Adj), and adjacency to

a parkway (Parkway_Adj). Columns 1 and 2 indicate that park proximity and adjacency

are both statistically insigni�cant, while column 3 implies adjacency to a parkway leads to

a 9% decrease. The full speci�cation in column 4 shows similar results. The negative e�ect

of parkway adjacency is likely due to tra�c externalities such as noise, air pollution, and

safety concerns. The lack of a price premium on the other park variables is consistent with

the existence of some positive bene�ts of parks, coupled with potentially negative e�ect of

activity near parks. There exists a large literature that �nds negative housing price impacts

of parks.11

In Table 7, the predicted park view score V iew_Park is included in each speci�cation to

directly capture the view amenity. To ensure the relevance of views, we restrict our sample

to include only homes for which the corresponding Street View image was captured within 1

year of the sale date. The estimated coe�cients on proximity, park adjacency, and parkway

11See, for example, Smith et al. (2002) and Anderson and West (2006).
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adjacency are consistent with earlier results. The coe�cient on V iew_Park is positive and

signi�cant. The score variable is measured on a 0 to 1 scale, so this coe�cient can be

interpreted as a price premium for the highest-quality park-like view relative to no park-like

view. The impact of an increase in score from 0 to 1 is approximately an 4.6% increase in

price. This corresponds to a change in view from a typical commercial or residential property

to that of a park-like natural area. Given a median home value in our sample of 330, 000,

this e�ect translates to a price increase of $15, 180. Alternatively, a one standard deviation

increase in score corresponds to a roughly 1.1% housing price increase. In addition to a

positive and signi�cant capitalization e�ect, inclusion of the view score has no signi�cant

impact on the estimated e�ect of other park-related variables, suggesting that the view score

is indeed capturing a pure view amenity. We also note that there is a slight increase in the

magnitude of the negative coe�cient on Park_Adj relative to the baseline model. Without

explicitly controlling for V iew_Park, its positive capitalization e�ect of V iew_Park is

partially captured in Park_Adj, confounding the e�ect of the view amenity. Table A.1

presents coe�cient estimates for structural housing attributes for our main speci�cations.

We utilize several other spatial controls to ensure that the e�ect of V iew_Park is captur-

ing the park-view amenity. The image classi�cation algorithm used in this study focuses

on identifying park-like views, but also includes commercial, residential, and other as ad-

ditional categories. The other category primarily captures views that are dominated by

road intersections, but also includes the view of parking lots or capital infrastructure. Of

course, every household has a view so that the predicted V iew_Park score measures the

degree of park-like view, rather than other potential categories. We therefore estimate our

model with the inclusion of view scores for commercial and residential properties covariates,

as well as V iew_Park. In Table 8, we re-estimate the four previous speci�cations and in-

clude the predicted score for commercial and residential views, V iew_Res and V iew_Com,

additional categories from our image classi�cation algorithm. Furthermore, to address the
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potential confounding e�ect associated with proximity to wealthy households, we also include

the natural log of the total assessed value of the property across the street from a house,

Across_V alue. In these speci�cations, the coe�cient on V iew_Park is larger than previ-

ous estimates, suggesting a housing price e�ect of roughly 6%. Residential and commercial

views are marginally statistically signi�cant. The positive coe�cients should be interpreted

in the context of V iew_Other (primarily road intersections) as an omitted measure. Results

are nearly identical when assessed land value is used in place of total assessed value.

In Table 9, we show estimates in which our park view variable is de�ned as a dummy variable

equal to 1 if the view score is above a particular threshold. The threshold is determined

by quantiles of the observed distribution of V iew_Park. We estimate several di�erent

speci�cations where the dummy is equal to 1 if the park view score is greater than the qth

quantile. In the �nal speci�cation, the dummy is equal to 1 if the park view score is the

largest among all view categories. The rows of Table 9 correspond to speci�cations with

di�erent q thresholds. All regressions include controls for proximity, park adjacency, and

parkway adjacency, but we report only coe�cients on the park score. A general pattern

emerges in these estimates, where the estimated e�ect of a park view increases when the

de�nition of such a park view becomes more stringent. We see a positive and signi�cant

price impacts of a park-like view only when it is the dominant view type, indicating a price

increase ranging from 3.0% to 3.5% for having a park-like view.

Our results provide strong evidence for the capitalization of a view amenity in housing

prices.12 While the continuous magnitude of the view score variable is somewhat di�cult

to interpret, the monetary value of having a park-like view, relative to a purely residential

or commercial view, is several percentage points of a home's value. Moreover, location-

12We also estimated regressions that include interaction e�ects among proximity and view variables. Es-
timates are consistent with earlier results but interaction coe�cients add little to the overall analysis.
Results are available upon request.
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based measures that may coarsely include access to a view fail to capture the amenity value

of a natural view. We conduct a back-of-the-envelope calculation to determine the total

capitalized value of the view amenity in the study area. We take the average observed view

amenity and housing value in our sample and extrapolate to the total number of homes in

entire City and County of Denver. We are therefore assuming that our observed transactions

are a random sample of the locality.

The average home has a V iew_Park score of 0.0884 and the 2010 census reports 622,900

owner-occupied homes in the city. We use a coe�cient estimate of .0463, from the spec-

i�cation in which park view score is treated as a continuous variable. With an average

housing price of $444, 657, an average capitalization value of $1,819 leads to an aggregate

value of $1.13 billion. Using 95% con�dence intervals on the coe�cient estimate, the total

capitalization value is between $1.84 - $3.02 billion.

The average home has a V iew_Park score of 0.1073 and the 2010 census reports 622,900

owner-occupied homes in the city. We use a coe�cient estimate of .0818, from the spec-

i�cation in which park view score is treated as a continuous variable. With an average

housing price of $444, 657, an average capitalization value of $3,902 leads to an aggregate

value of $2.43 billion. Using 95% con�dence intervals on the coe�cient estimate, the total

capitalization value is between $0.688 - $1.58 billion.

Repeat Sales Model

To better control for location unobservables and demonstrate a causal relationship between

the view amenity and housing prices, we estimate a repeat sales model using homes that were
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sold twice during the study period. This empirical speci�cation estimates a �rst-di�erenced

speci�cation of Equation 1 for a home sold in period t and in period k,

lnPijt − lnPijk = βX(Xit −Xik) + (τt − τk) + βP (Parkit − Parkik) + εi. (2)

The cross-section analysis uses housing transaction during the 2008-2018 time period. To

create the dataset, additional data from 2019-2020 is required to match the available Google

Street View images.13 The reported variables in this additional data also require us to reduce

to set of X variables to only include changes in the number of Bedrooms, Bathrooms (full

and half), and Stories. Thus we lose total square-footage and lot area. While changes in

square-footage will be mostly captured with the available variables, lot area is unlikely to

change over time.

We estimate two di�erent speci�cations that address time e�ects di�erently. The �rst is a

direct application of Equation 2 that includes a tk �xed e�ect to capture the combination of

sale years. We also estimate a version of Equation 2 that de�ates Pijt using Federal Housing

Finance Agency annual housing price indices for Denver and does not include any time �xed

e�ects. Given the relatively small size of the repeat sales dataset, this approach helps to

avoid the considerable loss of estimation power.

Table 10 displays estimates for the two approaches to time e�ects, as well as with and

without commercial and residential view scores. Results continue to indicate a positive

e�ect of the visual amenity. The coe�cient on V iew_Park remains statistically signi�cant

and similar in magnitude to cross-sectional estimates. Column 4 in Table 10 shows a much

larger estimated e�ect of 7.5%. Across speci�cations, standard errors are considerably larger

but statistical signi�cance remains. Generally, the results of the repeat-sales analysis provide

13Google Street View images in the study area are heavily concentrated during 2013-2016 and 2019-2020.
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strong evidence for a positive capitalization e�ect caused by the view amenity.

Robustness

We estimate a number of additional speci�cations to address the sensitivity of our empirical

results. While the repeat sales model provides evidence of a causal e�ect, the required

reduction in observations due to �nding multiple sales is substantial. In most cases, this

makes meaningful robustness checks di�cult. We therefore continue to emphasize the results

of the cross-sectional model as well-grounded estimates. We brie�y discuss the impact of

the relative timing of pictures and sales in the repeat sales model, but focus our robustness

checks on the cross-sectional model.

Timing of Picture

We consider variations in the sample due to the relative timing of pictures and sales. Recall

that our main results restrict the sample to homes whose sale took place within 52 weeks

of the date its corresponding Street View image was taken. Table A.2 shows summary

statistics for the number of weeks between the sale and image capture for each year. There

does not appear to be any pattern over time. Still we estimate regressions with variation

in this restriction as a sensitivity analysis. For cross-sectional models, we implement three

variations: images taken within 26 weeks of sale, images taken within 78 weeks of sale, and

images take 78 weeks before sale. For the repeat sales model, we estimate the regression with

observations for which corresponding Street View images are taken within 78 weeks prior to
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the sale.14

Results of variation in timing restrictions for the cross-sectional model are shown in Table

A.3. Results are relatively similar to our main empirical results. When the time frame is

reduced to 26 weeks, the estimated coe�cient decreases and has a p-value slightly over 0.1.

Given the size of standard errors on this estimate and those from earlier models, we do not at-

tempt to attribute the small coe�cient to anything other than sampling variation. The other

speci�cations suggest a signi�cant coe�cient that is close in magnitude to earlier estimates.

Table A.4 presents results from the repeat sales models with a image timing restriction of 78

weeks prior to sale. Models include the same two time �xed-e�ects speci�cations reported in

the main results. Coe�cient estimates double in magnitude, but large standard errors (the

sample includes on 268 observations) suggest that we should not interpret these estimates

as statistically di�erent from previous speci�cations.

Additional Robustness Checks

The following robustness checks are applied only to the cross-sectional model. First, we

design a falsi�cation test to rule out the possibility that our hedonic results are driven

by neighborhood e�ects. For each observation, we choose a random home in the same

neighborhood and use that home's park score to re-assign the score of the base observation.

We then re-estimate the hedonic regression. By choosing a home that is out of view but in the

same neighborhood, this regression will pick up potential neighborhood e�ects rather than a

home's speci�c view. We de�ne neighborhoods by looking at areas around a home bounded

14In both models, considering only 52 weeks prior to sale reduces the sample size considerably due to the
timing for Google Street View images in this area. Similarly, in the repeat sales model, restricting the
dataset to observations within 26 weeks of the sale reduces the sample to just over 100 properties. Picture
dates in our sample are concentrated in June through October. Home sales in the spring, which are
potentially important for observing consumers' home preferences, are lost in our analysis when the time
between pictures and sales is overly restrictive.
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by rings of distance d1 and d2 meters from the home. Speci�cations include neighborhoods

de�ned by homes within 50− 100 meters, 50− 150 meters, 100− 150 meters, and 150− 200

meters.

Coe�cient estimates on the V iew_Park variable are reported in Table A.5. When the

falsi�ed observation is de�ned by close proximity (50-100 meters), results are insigni�cant

with small magnitudes. If previous results were driven by the overall impression of a local

area (�ner than subdivisions, which are controlled for with �xed e�ects), these regressions

should return similar coe�cients to baseline models. Thus our falsi�cation text supports our

initial �ndings.

Next, we recognize that the presence of view amenities may not be exogenously determined.

Neighborhoods may have zoning restrictions or historical architectural trends that lend them-

selves to high V iew_Park scores. Much of this is controlled for through the inclusion of

�xed e�ects at a �ne geographic scale in all speci�cations. We strengthen this by including

a variable that measures a home's own view score: i.e. the view of the home. We use the

same image classi�cation algorithm discussed earlier, matching Street View images to the

home in the image. Thus we control for the appearance of the home itself, in addition to

its view. This will capture any unobserved attributes that may be correlated with general

views in an area, ensuring that our model is estimating the impact of an individual's home

view. Table A.6 reports estimates when V iew_Own is included in the model. Estimates

on V iew_Own are statistically insigni�cant. Importantly, the coe�cient on V iew_Park

remains positive and statistically signi�cant. Estimates on this view score are close to those

of our main speci�cation and indicate considerable capitalization of the views.

In Table A.7, we provide coe�cient estimates for several additional robustness checks for

variations on the model in Equation 1. In Column 1 we use only transactions after 2012,
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removing potential e�ects of the 2008 housing market crisis and its short-term aftermath.

Estimates are qualitatively similar. The V iew_Park coe�cient retains statistical signi�-

cance but is smaller in magnitude. Results in Column 2 use month-of-year �xed e�ects to

control for potential seasonality.15 Only �xed e�ects for January, February, and December

(unreported) are statistical signi�cant, but the V iew_Park coe�cient is similar to earlier

results. We also estimate a speci�cation that interacts the V iew_Park variable with an

indicator variable for whether the transaction took place during the spring-summer months

(March-September). Again, results associated with view variables are essentially unchanged.

The coe�cient on the interaction term is 0.0023, relative to a baseline coe�cient of 0.0451,

and is statistically insigni�cant. Next, we limit the sample to only single-story structures to

focus on homes that only have a view from the ground level. The coe�cient on V iew_Park

is slightly smaller but not statistically di�erent from previous estimates. Columns 5 and

6 include additional spatial amenities that could be driving variation in housing prices.16

Controlling for proximity to golf courses, historical sites, and points of interest, we �nd no

change in the V iew_Park coe�cient. We also do not �nd statistically signi�cant e�ects on

any of the spatial variables, likely due to the inclusion of subdivision �xed e�ects. Column 6

includes proximity to open space as measured by undeveloped parcels. This �nal speci�ca-

tion addresses potential concerns about the correlation between V iew_Park and proximity

to local open space. We do not �nd a statistically signi�cant coe�cient on the open space

variable, and the V iew_Park coe�cient is not a�ected.17

Finally, we consider the predictive strength of our image classi�cation. Recall that the

algorithm assigns a score to each potential image category: parks, residential, commercial,

and other. While the park score is meant to indicate a quality of view, it may also partially

re�ect the level of uncertainty in the prediction. Our earlier results address this with a set of

15Fixed e�ects refer to the date of the housing sale transaction, not the date of the picture.
16Denver Open Data Catalog: https://denvergov.org/opendata
17We were only able to access usable data for 2018 so the open space measure is imperfectly measured.
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speci�cations in which we use an indicator variable equal to 1 when V iew_Park is greater

than some threshold. We examine this further by focusing on predictions with a relatively

high degree of certainty. For each observation we calculate the Her�ndahl-Hirschman Index

(HHI)18 as the sum of the squared category scores. Since the four category scores are

restricted to sum to 1, the HHI is bounded between 0.25 and 1. High index values indicate

the existence of a single category with a high score, while low index values are driven by

scores that are roughly equal across categories. Therefore, we estimate our model using

only those observations with a relatively large index value. The columns of Table A.8 show

results for subsets of observations in which the HHI is greater than the �rst, second, and third

quartiles of the HHI distribution, respectively. Estimates are similar to our main results,

suggesting a slightly larger capitalization of view, though statistical signi�cance decreases

with the reduction in sample size.

Conclusion

While a valuable view amenity creates potential for welfare gains through spatial allocation

of open space that maximizes total view to the area, there are tradeo�s to such alloca-

tion. For example, while the perimeter of an open space parcel is important for the view

amenity, total size or depth of open space may generate larger values linked to recreational

opportunities or ecosystem services. Functional aspects, such as parking lots and facilities

may increase recreational value but diminish quality of the view. Our results suggest, how-

ever, an important additional component of open space, namely the quality and quantity of

households' view of such space, that should be considered in valuation. Finally, the potential

complementarity of view amenities may be an important factor in nonmarket valuation when

18The Her�ndahl-Hirschman Index is typically used to measure market concentration, but more generally
measures the dispersion of a set of numbers whose sum is �xed.
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considering other environmental goods.

In this analysis, we provide evidence for the amenity capitalization of a household's view.

Using machine learning techniques, we develop a new approach to quantitatively measuring

view. This allows us to identify the view amenity separately from any amenity value that

works through proximity. This second channel, proximity to open space, has dominated the

literature on valuation of open space. Instead, our results indicate signi�cant e�ect of view

and suggest that value is created through properties other than publicly designated parks.

These results are robust to a number of di�erent speci�cations. A causal e�ect is further

supported by a repeat sales model. From a policy perspective, such identi�cation could

indicate the optimal size and location of open space for welfare maximization. In addition to

illustrating an important component of the nonmarket valuation of open space, our approach

to de�ning a new variable is widely applicable in hedonic analysis.
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Table 1: Summary Statistics

Mean Std. Deviation 0.05 Perc. Median 0.95 Perc.

Housing

Sale Price 574530 1937142 119000 330000 905000

# of Bedrooms 2.50 0.88 1 2 4

# of Bathrooms 2.16 0.94 1 2 4

Square Feet (1000s) 1.45 0.68 0.68 1.25 2.87

Lot Area (1000s) 4.63 3.03 0.423 4.69 9.52

# of Stories 1.44 0.60 1 1 3

Year Built 1965 37.71 1898 1964 2015

Year of Sale 2015 1.63 2011 2015 2017

Park Measures

Park Proximity 0.0283 0.1457 0.0009 0.0033 0.0386

Park Adjacency 0.0201 0.1405 0 0 0

Parkway Adjacency 0.0485 0.2149 0 0 0

View Scores

park 0.0884 0.1808 0 0.0101 0.5075

residential 0.5533 0.3290 0.0138 0.5972 0.9787

commercial 0.1288 0.2556 0 0.0047 0.8500

Table 2: In-Sample Prediction Accuracy (proportion of true class)

Ground Truth

parks residential commercial other

P
re
d
ic
ti
o
n

parks 0.8200 0.0370 0.0000 0.0455

residential 0.1667 0.9352 0.0000 0.0455

commercial 0.0133 0.0093 0.9714 0.0000

other 0.0000 0.0185 0.0286 0.9091
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Table 3: Park Summary Conditional on Proximity

Proximity Quantile

(upper bound)
Park Score Mean Park Score S.D.

0.1 0.0994 0.2031

0.2 0.1041 0.2021

0.3 0.0934 0.1934

0.4 0.0909 0.1889

0.5 0.0788 0.1693

0.6 0.0775 0.1700

0.7 0.0957 0.1561

0.8 0.0733 0.1618

0.9 0.0991 0.1997

1.0 0.0657 0.1427

Table 4: Park Score Conditional Means

Distance-Based Measure =1 =0

Proximity (> 95th percentile) 0.075 0.089

Park Adjacency 0.084 0.089

Parkway Adjacency 0.159 0.085
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Table 5: Elements of Park Score Prediction

V iew_Park − V iew_Res V iew_Park − V iew_Com

Tree Area 0.0494*** 0.2732***

(8.10) (65.05)

Building Area -0.0366*** -0.7151***

(3.30) (-92.87)

N 179,667 179,667

Dependent variable is the di�erence in image classi�cation scores. t-statistics, using standard errors clus-
tered at the subdivision level, are shown in parentheses.
*** indicates statistical signi�cance at the 1% level.

Table 6: Baseline Estimates

Dependent Variable = ln(pricei)

(1) (2) (3) (4)

Proxi 0.0178 -0.0076

(0.07) (0.03)

Prox2
i 0.0249 0.0499

(0.11) (0.19)

Park_Adj 0.0073 0.0048

(0.49) (0.29)

Parkway_Adj -0.0893*** -0.0894***

(-6.24) (-6.25)

N 29,247 29,247 29,247 29,247

R2 0.85 0.85 0.85 0.85

All speci�cations include �xed e�ects for subdivision, year built, and year of sale, structural
housing attributes, and block group time trends. t-statistics, using standard errors clustered at
the subdivision level, are shown in parentheses.
*** indicates statistical signi�cance at the 1% level.
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Table 7: Estimates of Park View Score

Dependent Variable = ln(pricei)

(1) (2) (3) (4)

Proxi -0.117 -0.0271

(-0.48) (-0.10)

Prox2
i 0.1574 0.0717

(0.66) (0.27)

Park_Adj -0.0116 -0.0174

(-0.75) (-1.01)

Parkway_Adj -0.0999 -0.1009

(-6.94) (-7.01)

V iew_Park 0.0376 0.0387 0.0434 0.0463

(4.22) (4.25) (4.88) (4.98)

N 29,247 29,247 29,247 29,247

R2 0.85 0.85 0.85 0.85

All speci�cations include �xed e�ects for subdivision, year built, and year of sale, struc-
tural housing attributes, and block group time trends. t-statistics, using standard errors
clustered at the subdivision level, are shown in parentheses.
*** indicates statistical signi�cance at the 1% level.
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Table 8: Estimates of Park View Score with Additional Spatial
Controls

Dependent Variable = ln(pricei)

(1) (2) (3) (4)

Proxi -0.2004 0.0315

(0.44) (0.06)

Prox2
i 0.2381 0.0157

(0.54) (0.03)

Park_Adj -0.0346 -0.0434

(1.16) (1.21)

Parkway_Adj -0.1018*** -0.104***

(-3.56) (-3.66)

V iew_Park 0.0477*** 0.0516*** 0.0531*** 0.0591***

(2.87) (2.97) (3.16) (3.40)

V iew_Res 0.017** 0.0171** 0.0163** 0.0161*

(1.73) (1.74) (1.68) (1.64)

V iew_Com 0.0331* 0.0332* 0.0348* 0.0346*

(1.55) (1.56) (1.63) (1.63)

Acr_V al -0.0026* -0.0026* -0.0025* -0.0025*

(-1.53) (-1.63) (-1.56) (-1.56)

N 28,989 28,989 28,989 28,989

R2 0.85 0.85 0.85 0.85

All speci�cations include �xed e�ects for subdivision, year built, and year of sale, structural housing
attributes, and block group time trends. t-statistics, using standard errors clustered at the subdivision
level, are shown in parentheses.
***, **, and * indicate statistical signi�cance at the 1%, 5%, and 10% level, respectively.
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Table 9: View as Discrete Variable: Park
View Coe�cient

Dependent Variable = I(ln(pricei) > q)

quantile threshold Coe�cient t-statistic

0.4 0.0101* (1.63)

0.5 0.0139** (1.88)

0.6 0.0136** (1.72)

0.7 0.0176*** (2.26)

0.8 0.0105 (1.22)

0.9 0.0348*** (3.08)

max 0.0316*** (2.84)

Each regression de�nes a park view as having V iew_Park value above
the speci�ed quantile. All speci�cations include �xed e�ects for subdi-
vision, year built, and year of sale, structural housing attributes, and
block group time trends. Standard errors are clustered at the subdivi-
sion level.
***, **, and * indicate statistical signi�cance at the 1%, 5%, and 10%
level, respectively.

Table 10: Repeat Sales Model

Year Fixed E�ects Index-De�ated Prices

(1) (2) (3) (4)

V iew_Park 0.0485** 0.0429* 0.0483** 0.0749***

(1.78) (1.34) (1.83) (2.39)

V iew_Res -0.0669*** -0.0192

(-2.40) (-1.10)

V iew_Com 0.0227 0.0683*

(0.47) (1.52)

N 660 660 660 660

R2 0.78 0.79 0.13 0.13

All speci�cations include structural housing attributes. t-statistics, using standard errors clustered
at the subdivision level, are shown in parentheses.
***, **, and * indicate statistical signi�cance at the 1%, 5%, and 10% level, respectively.
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Appendix A Appendix Tables

Table A.1: Hedonic Function Estimates

Dependent Variable = ln(pricei)

(1) (2) (3) (4) (5)

Intercept 11.71*** 11.70*** 11.70*** 11.65*** 11.65***

(86.19) (85.67) (85.93) (84.45) (84.01)

Prox -0.117 -0.0271

(-0.25) (-0.05)

Prox2 0.1574 0.0717

(0.35) (0.14)

Park_Adj -0.0116 -0.0174

(-0.38) (-0.50)

Parkway_Adj -0.0999*** -0.1009***

(-3.57) (-3.63)

V iew_Park 0.0376*** 0.0387*** 0.0434*** 0.0463***

(2.58) (2.52) (2.95) (3.04)

#ofBedrooms 0.0321*** 0.0324*** 0.0323*** 0.0323*** 0.0323***

(5.79) (5.82) (5.84) (5.85) (5.83)

#ofBathrooms 0.0902*** 0.0901*** 0.0902*** 0.0899*** 0.0899***

(14.26) (14.21) (14.20) (14.15) (14.14)

SquareFeet 0.224*** 0.220*** 0.220*** 0.220*** 0.00022***

(11.20) (11.15) (11.15) (11.20) (11.20)

LotArea 0.031*** 0.031*** 0.031*** 0.031*** 0.031***

(7.75) (7.75) (7.75) (7.75) (7.75)

StoriesNbr -0.0264** -0.0265** -0.0265** -0.0266** -0.0267**

(-1.83) (-1.84) (-1.84) (-1.85) (-1.86)

N 29,247 29,247 29,247 29,247 29,247

R2 0.85 0.85 0.85 0.85 0.85

All speci�cations include �xed e�ects for subdivision, year built, and year of sale, in addition to block group time trends.
t-statistics, using standard errors clustered at the subdivision level, are shown in parentheses.
***, **, and * indicate statistical signi�cance at the 1%, 5%, and 10% level, respectively.
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Table A.2: Weeks Between Sale and Im-
age Capture

SaleYear Min Mean SD Max

2008 1.0 21.9 16.8 51.6

2009 3.1 35.8 13.4 51.7

2010 26.4 43.9 4.8 51.9

2011 0 15.8 11.6 51.6

2012 0 30.1 13.4 51.9

2013 13.1 38.6 9.0 51.9

2014 0 19.4 13.9 51.9

2015 0 28.9 15.9 51.9

2016 0 20.8 14.1 51.9

2017 9.0 34.9 10.1 51.9

Summary statistics, by year-of-sale, for the number of weeks be-
tween date of image and housing sale.

Table A.3: Picture-to-Sale Time Variation: Cross-Sectional Model

26-week window 78-week window 78 weeks before

Proxi 0.0929 -0.1379 -0.1026

(0.16) (-0.31) (0.15)

Prox2
i -0.0327 0.1794 0.1659

(-0.06) (0.42) (0.25)

Park_Adj -0.0759** 0.0094 -0.0008

(-1.75) (0.32) (-0.02)

Parkway_Adj -0.0773*** -0.0988*** -0.0963***

(-2.12)) (-3.71) (-3.26)

V iew_Park 0.0243* 0.042*** 0.032**

(1.51) (2.88) (1.79)

N 14,530 43,454 20,183

R2 0.90 0.81 0.88

This table replicates baseline estimates with a stricter timing restriction between sale and time of picture. All
speci�cations include �xed e�ects for subdivision, year built, and year of sale, structural housing attributes,
and block group time trends. t-statistics, using standard errors clustered at the subdivision level, are shown
in parentheses.
***, **, and * indicate statistical signi�cance at the 1%, 5%, and 10% level, respectively.

41



Table A.4: Repeat Sales Model

Year Fixed E�ects Index-De�ated Prices

(1) (2) (3) (4)

V iew_Park 0.0959** 0.0525 0.1069** 0.1121**

(1.97) (0.87) (2.26) (2.02)

V iew_Res -0.081* 0.0221

(-1.45) (0.76)

V iew_Com -0.0759 0.015

(-0.79) (0.23)

N 268 268 268 268

R2 0.78 0.78 0.06 0.06

This table replicates estimates from the repeated cross-section with a stricter timing re-
striction between sale and time of picture. t-statistics, using standard errors clustered at the
subdivision level, are shown in parentheses.
***, **, and * indicate statistical signi�cance at the 1%, 5%, and 10% level, respectively.

Table A.5: Falsi�cation Test:
Park Score Coe�cient

Dependent Variable = ln(pricei)

Radius Coe�cient t-statistics

50-100 0.0133 (0.67)

50-150 -0.0167 (-0.68)

100-150 -0.0186 (-0.79)

100-200 -0.0125 (-0.66)

The falsi�cation tests assigns to a home the
Park_V iew score of a random home within the spec-
i�ed radius.
All speci�cations include �xed e�ects for subdivision,
year built, and year of sale, structural housing at-
tributes, and block group time trends. Standard er-
rors are clustered at the subdivision level.
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Table A.6: Inclusion of Own Park View Score

Dependent Variable = ln(pricei)

(1) (2) (3) (4)

Proxi -0.0848 -0.0026

(-0.18) (-0.01)

Prox2
i 0.1263 0.0479

(0.28) (0.10)

Park_Adj -0.0098 -0.0159

(-0.32) (-0.45)

Parkway_Adj -0.098 -0.0988

(-3.54) (-3.58)

V iew_Park 0.0357*** 0.0367*** 0.0416*** 0.0441***

(2.43) (2.37) (2.81) (2.86)

V iew_Own 0.0071 0.0071 0.0102 0.0098

(0.40) (0.40) (0.58) (0.56)

N 29,247 29,247 29,247 29,247

R2 0.85 0.85 0.85 0.85

All speci�cations include �xed e�ects for subdivision, year built, and year of sale, structural housing
attributes, and block group time trends. t-statistics, using standard errors clustered at the subdivision
level, are shown in parentheses.
***, **, and * indicate statistical signi�cance at the 1%, 5%, and 10% level, respectively.

Table A.7: Robustness Checks

Dependent Variable = ln(pricei)

Post-

2012

Month

FEs

Month

Interaction

1-Story

Homes

Other

Amenities

Open

Space

Prox 0.0870 -0.0003 -0.0269 0.3722 -0.0020 -0.0116

(0.15) (0.01) (-0.05) (0.48) (0.01) (-0.02)

Prox2 -0.0095 0.0523 0.0715 -0.2723 0.0465 0.0561

(-0.02) (0.11) (0.14) (-0.36) (0.09) (0.11)

Park_Adj -0.0162 -0.0200 -0.0174 -0.0195 -0.0179 -0.0157

(-.45) (-0.57) (-0.50) (-0.37) (-0.51) (-0.45)

Parkway_Adj -0.0982*** -0.1042*** -0.1009*** -0.1161*** -0.1018*** -0.0985***

(-3.61) (-3.79) (-3.63) (-4.36) (-3.66) (-3.58)

V iew_Park 0.0266** 0.0444*** 0.0451*** 0.0331** 0.0455*** 0.0444***

(2.25) (2.92) (2.13) (1.88) (2.99) (2.88)

N 27,290 29,247 29,247 17,872 29,247 29,247

R2 0.86 0.85 0.85 0.88 0.85 0.85

Robust checks for transactions after 2012 (Column 1); inclusion of month �xed e�ects (Column 2); inclusion of a month-of-year interaction (Column
3); sample restricted to 1-story homes (Column 4); inclusion of other spatial amenities (Column 5); inclusion of undeveloped parcels (Column 6).
All speci�cations include �xed e�ects for subdivision, year built, and year of sale, structural housing attributes, and block group time trends. t-
statistics, using standard errors clustered at the subdivision level, are shown in parentheses.
***, **, and * indicate statistical signi�cance at the 1%, 5%, and 10% level, respectively.
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Table A.8: Sample Restrictions using Her�ndahl-Hirschman index

Dependent Variable = ln(pricei)

(HH > Q1) (HH > Q2) (HH > Q3)

-2.95 -2.80 -2.30 2.55 2.22 1.54 Prox 0.3238 0.2947 0.8351

(0.73) (0.60) (1.05)

Prox2 -0.2871 -0.2375 -0.8551

(-0.67) (-0.49) (-1.08)

Park_Adj -0.0353 -0.0438 -0.0245

(-0.83) (-0.92) (-0.46)

Parkway_Adj -0.0958*** -0.0959*** -0.1053**

(-2.95) (-2.80) (-2.30)

V iew_Park 0.0441*** 0.0516** 0.0511*

(2.55) (2.22) (1.54)

N 21,935 14,624 7,313

R2 0.85 0.85 0.88

Each column restricts the sample to homes with a HHI above the speci�ed quartile. All speci�cations include �xed
e�ects for subdivision, year built, and year of sale, structural housing attributes, and block group time trends. Standard
errors, clustered at the subdivision level, are shown in parentheses.
***, **, and * indicate statistical signi�cance at the 1%, 5%, and 10% level, respectively.
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Figure 4: Linear spline for predicted park score di�erential
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