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Abstract

This paper analyzes the inefficiency of majority-rule voting in making siting deci-

sions for noxious facilities, such as waste treatment facilities, landfills, or nuclear waste

repositories. In particular, we demonstrate in a general context that a majority-rule

voting process leads localities to make decisions that impose aggregate costs that are

larger than aggregate benefits. We develop a robust model to establish the prevalence of

such inefficiencies and demonstrate the mechanisms that exacerbate or mitigate them.

The model illustrates how the spatial distribution of the population and the sever-

ity of disamenity costs can generate outcomes that make the entire locality worse off.

Based on these properties, we provide a feasible remedy. Analysis of U.S. census data

illustrates the magnitude of potential inefficiencies that arise with simple majority-

rule decisions. Such losses can be mitigated using our model, which easily captures

the aggregate disamenity cost and can consequently recommend the required voting

supermajority to ensure efficiency.
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1 Introduction

A challenging decision facing policy makers is the allocation of goods that generate external-

ities, given that market forces alone often lead to inefficient outcomes. Of particular interest

is the task of choosing locations for siting noxious facilities such as waste treatment facil-

ities, landfills, and nuclear waste repositories, or even environmentally-friendly operations

such as large solar arrays and wind farms. These facilities are often associated with the

“Not In My BackYard” (NIMBY) syndrome (O’Hare et al., 1983).1 While noxious facilities

can be important elements of society, individuals are often averse to having these facilities

in close proximity. In this paper, we explore the ability of communities to efficiently deter-

mine whether or not to host a facility in a particular location. Our analysis focuses on the

spatial landscape as a key driver in siting decisions due to a negative impact on housing

prices (Farber, 1998; McCluskey and Rausser, 2003; Grislain-Letremy and Katossky, 2014)

and evidence of aversion to such facilities based on odor, visual pollution, and air pollution

(Kaya and Erol, 2016). Consequentially, Pelekasi et al. (2012) found a lower likelihood of

accepting a facility among households that are in close proximity to the facility as they are

more concerned with visual impacts. Schively (2007) provides a discussion of the unique dif-

ficulties and potential solutions that arise in attempting to remedy NIMBY problems related

to siting noxious facilities.

Facility siting represents one type of problem encountered in the provision of public

goods, a topic that has received considerable attention. Samuelson (1954, 1955) demon-

strate the inability of decentralized markets to efficiently allocate public goods, based on

the misalignment of public benefits and private costs. Hardin (1968) also discusses this

disconnect between the decisions of individual agents and aggregate outcomes. While some

form of collective action is generally necessary to achieve an efficient outcome, such action

can be deficient. For example, Olson (1965) argues that collective action will not be rep-

1While the discussion is often framed in terms of siting facilities, the idea is equally applicable to allowing
particular activities at specific locations, such as changes in land use or resource extraction.
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resentative of the entire population, but will instead be dominated by minor interests due

to lower costs of coordination among smaller groups. Hardin (1995) similarly questions the

effectiveness of collective action, suggesting that groups that are formed based on a shared

identity alienate members outside of the group. Given these criticisms, a formal means of

aggregate decision-making, such as a democratic vote, is necessary.

In this paper, we analyze the inability of voting decisions to address the facility siting

problem. We illustrate how a siting process that relies on a majority-rule vote of the locality’s

population can lead to an outcome that makes the locality worse off overall. The question of

the efficacy of majority-rule dates back to de Borda (1781) and de Condorcet (1785), which

examine whether majority-rule decisions can accurately aggregate individual preferences.

Arrow (1951) proves that majority rule fails to satisfy a set of criteria that characterizes

a desired decision-making outcome, though May (1952) and Dasgupta and Maskin (2008)

suggest that majority-rule is associated with properties that make it preferable to other

aggregation rules. McKelvey (1979) and Schofield (1983) show that majority-rule decisions

over multidimensional alternatives will generally exhibit cycles, whereby voting choices can

be specified to reach nearly any decision in the choice space.2 More formally, these results

demonstrate the absence of the core (i.e. a set of outcomes that cannot be improved upon

by some group of voters).

A large literature in economics examines the specific problem of optimally siting noxious

facilities. When considering the market’s ability to site such facilities, one question relates to

which locality, defined by political boundaries, should host. Oates and Schwab (1988) show

that efficiency is reached when communities compete for private and environmental produc-

tion and make decisions using a simple-majority rule. These results, however, are driven

by the assumption of homogeneous costs in any given locality, which leads to full compen-

sation. Other studies (Mitchell and Carson, 1986; Kunreuther et al., 1987; Sullivan, 1990;

O’Sullivan, 1993) provide further evidence of markets as efficient siting mechanisms, but rely

2Saari (1997) extends this work to a more general framework.
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on two key assumptions: 1) political jurisdictions fully internalize the aggregate disamenities

of the facility, and 2) a locality will never accept a facility at a price that reduces aggregate

economic surplus in the jurisdiction as a whole. Ingberman (1995), examining square and

quarter-circle localities, shows that neither cost internalization nor full compensation result

from a simple majority approval process. In such cases, market solutions are likely to lead

to an aggregate excess of facilities as well as inefficient site choices.

The problem of optimally siting noxious facilities has also been addressed in the oper-

ational research literature, originally as a subset of facility location problems, which his-

torically focused on distance minimization in favor of proximity. Thus, it was necessary to

distinguish between desirable facilities, for which closeness is attractive versus undesirable

facilities, for which closeness is repelled. Furthermore, it was insightful to classify undesir-

able facilities as noxious when they threaten well-being and obnoxious when they diminish

enjoyment (Erkut and Neuman, 1989). Nevertheless, many facilities can be characterized as

semi-obnoxious as they exhibit a combination of desirable and undesirable features; conse-

quently, being too close or too far away are undesired (Berman and Wang, 2008; Coutinho-

Rodrigues et al., 2012). Comprehensive surveys of operational research studies can be found

in Erkut and Neuman (1989) and Church and Drezner (2022). Focusing on individuals’ per-

ception, Fernandez et al. (2000) develop a global location choice model to minimize residents’

opposition to host a proposed facility. Other studies consider the NIMBY problem in the

context of a broader siting decision. Eiselt and Marianov (2014) construct a minimization

problem that includes pollution, as well as transportation costs between the facility and its

consumers. Similarly, Demesouka et al. (2019), develop spatial multicriteria decision support

to identify potential sites to host undesirable facilities, emphasizing the tremendous influence

of the NIMBY syndrome.

Some solutions have been proposed to overcome inefficient siting without a centralized

decision. Perez-Castrillo and Wettstein (2002) develop a multibidding mechanism that allows

individuals to simultaneously bid different values for multiple potential projects. Kunreuther
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and Kleindorfer (1986) and Mueller (2017) discuss sealed-bid auction mechanisms in which

localities compete against one another to host the facility. While the focus of these analyses

is on competition among localities, extending these results to a household decision model

would require full elicitation of the true willingness to pay. In the situation where households

can precisely convey their willingness to pay, Minehart and Neeman (2002) combine a bidding

procedure with monetary transfers that act as both incentives and compensation to generate

an efficient siting outcome. More generally, Laurent-Lucchetti and Leroux (2009) point out

that solutions to the siting problem are consistent with Lindahl pricing, in which consumers

pay an amount equal to their marginal willingness to pay. Such an approach, though, may

be difficult to implement due to consumers’ incentives to under-report their valuation of a

public good (Loomis, 2011).

Our study, therefore, considers a vote among residents of a locality to accept or not accept

a proposed facility. Examples of such direct general include cases of siting hazardous waste

treatment facilities (Castle, 1993; Harris, 1994), nuclear waste storage (Kraft, 2007; Kim and

Kim, 2014), airports (The Economist, 2018), and energy plants (Stevenson, 2019; Tsolova,

2013). Also, due to the difficulty in eliciting true values and political constraints, we do not

analyze scenarios in which voters can be compensated at different individual values. The

previously cited examples primarily deliver compensation through a general increase in local

tax revenues. While there are potentially other considerations in an individual’s decision,

such as social norms (Ullman-Margalit, 1977) or the decision-making process (Aitken, 2010),

we focus on community compensation as the primary driver, as was demonstrated to be

effective in eliciting individuals’ trust and support (Sorensen et al., 1984; ter Mors et al.,

2012).

In this paper, we consider a cost-minimizing firm that seeks approval of a locality to host

a facility in exchange for a community compensation. We illustrate how a siting process

that relies on a vote of the locality’s population can lead to inefficient outcomes. The siting

inefficiency is driven by the binary nature of the voting process, in which the vote of an
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individual with a large loss is weighted equally with that of an individual who may receive

only minimal benefits. Thus the majority-rule mechanism is not aligned to properly com-

pensate the locality as a whole. We develop a robust model that captures the geographical

distribution of residents as well as the potential damages to which they may be subjected,

and consequently guide decision makers on how to remedy this problem using a superma-

jority vote. We outline properties of the siting decision and siting location that determine

when inefficient siting will prevail and offer a solution. Our analysis operates within a simple

voting framework to account for operational constraints.

The model directly links siting inefficiency to the spatial distribution of the population

and the rate of distance decay in the disamenity. Interestingly, we are able to find upper

bounds for the level of inefficiency for limiting cases. Our analysis establishes general criteria

for the spatial distribution of the population that will lead to inefficient siting decisions and

provides a solution to inefficient siting using a supermajority voting rule.

Following our model of voters and the firm, we demonstrate the potential magnitude of

inefficiency using population data from counties in New York and Pennsylvania to estimate

model parameters. Our results indicate potentially large inefficiency costs, but suggest simple

solutions via a modification to the voting mechanism.

The remainder of the paper is organized as follows. In Section 2 we develop a model of

facility siting that captures the geographical distribution of residents across the locality and

the potential damage that they will incur, and derive equilibrium voting outcomes. Section

3 details our main results related to the inefficiency of majority-rule decisions, followed by a

discussion of a potential supermajority solution in Section 4. Section 5 presents functional

equations for the model to examine specific mechanisms behind the siting problem. We then

use data from 118 counties to demonstrate the power of the suggested model to facilitate

collective siting decisions in Section 6. Finally, Section 7 concludes with a discussion of our

results.
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2 Model

A profit-maximizing firm desires to site a noxious facility within a locality. In order to

secure permission, the firm offers a payment to the locality and subsequently households

vote on whether or not to accept and host the facility at a specific location. The process

does not include bargaining on the part of the locality, a reasonable assumption when there is

potential competition with other localities. We also assume that the firm’s location decision

is not impacted by other amenities within the locality.

There are n voters distributed throughout the locality, whose decision whether to approve

a proposed facility is determined by comparing their disamenity cost, which depends on

proximity to the facility, and the benefit that they receive from the firm’s payment. Define

the cost function c(d) as the disamenity cost experienced by a resident located at distance d

from the proposed facility location. Benefits from siting are in the form of a host fee P , paid

by the firm. The aggregate community compensation is paid to the locality’s government and

its benefits are equally shared among residents by providing them common benefits, such

as investments in school systems, habitat management, and local festivals, providing free

garbage collection services, and local employment (Simon, 1990; Cass et al., 2010). Hence,

each individual derives a benefit valued at p = P
n

. An individual at distance d votes in favor

of hosting the facility only if p ≥ c(d).3 Disamenity costs are nondecreasing in proximity to

the facility. We also assume that c(d) is weakly convex: c′ ≤ 0, c′′ ≥ 0, suggesting that the

costs increase at an increasing rate as one becomes closer to the facility.4

The firm, being a profit maximizer, seeks to minimize the required payment P . Since

the host fee compensates for distance-related costs, the minimum host fee depends on the

facility location and the distribution of the individual voters from the proposed location.

Employing a simple majority voting rule, approval by greater than 50% of individuals

3This assumes that an indifferent individual will accept the facility.
4Such a specification serves as the basis for much of the previously mentioned empirical literature that
estimates costs through the impact on housing values. In addition, Rossi-Hansberg et al. (2010) use non-
parametric techniques and find evidence that amenities are capitalized into housing prices in a convex
manner.
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is required. As the disamenity cost decreases with distance, a facility may be established

only if the median voter agrees to the proposed compensation, where the median voter is

the individual located at distance dm from the proposed facility. A host fee of P ∗ such that

each individual gets benefit P ∗

n
= c(dm) is the minimum fee that will lead to voter approval.

Since the cost function is nondecreasing in proximity, the firm seeks to minimize c(dm) by

choosing the location that maximizes dm.

3 Equilibrium Inefficiency

We first study the mechanism by which simple majority voting tends to lead to inefficiencies

in siting decisions. An inefficiency in this context refers to a decision that generates aggregate

costs that are greater than the host fee. Thus we focus on the potential for siting decisions

that create a net loss for the locality.

The equilibrium host fee ensures that those individuals who are at least median distance

from the facility will gain positive net benefits from siting and consequently vote in favor

of hosting the facility. Individuals that are located closer than median distance will gain

negative net benefits, as they receive the same uniform host fee but suffer costs c(d) > p

and will therefore vote against. To avoid an aggregate loss to the locality, compensation

must cover aggregate costs, or p ≥ c̄, where c̄ denotes mean disamenity cost. However,

as the firm seeks to minimize its host fee and offers p = c(dm), we demonstrate in the

following subsection that under plausible conditions a simple majority decision will lead to

an inefficient siting equilibrium, such that c(dm) < c̄.

3.1 Conditions for Inefficient Siting

Our analysis is general as it accounts for a variety of locality shapes and spatial distributions

of their population. We assume a monotonically decreasing and weakly convex disamenity

cost function. We claim that inefficient siting is prevalent as suggested in the following
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proposition:

Proposition 1. If the locality’s boundaries encompass a convex set of points and the popu-

lation is uniformly distributed within its space, a simple majority-rule vote will result in an

inefficient siting decision.

Proof. See Appendix A.1.

Proposition 1 establishes that inefficient siting will occur due to the shape of the locality

and the spatial distribution of the population. As the firm seeks to minimize host fees by

siting the facility in a location that minimizes exposure of the median voter, the distribution

of distance becomes negatively skewed so that mean costs are greater than median costs.

This result generalizes that of Ingberman (1995), which demonstrated inefficient siting for

square and quarter-circle localities with a uniformly distributed population.

Since a spatially uniform population distribution may not always be observed, we relax

this restriction and establish the following:

Proposition 2. If the locality’s boundaries encompass a convex set of points and the density

function of the population’s distance from the facility is concave, a simple majority-rule vote

will result in an inefficient siting decision.

Proof. See Appendix A.2.

The primary component of the siting process that leads to inefficient outcomes is the

distribution of the distance of voters from the facility. A negatively-skewed distance dis-

tribution and weakly convex cost function generate inefficient siting under simple majority

rule decisions. The preceding propositions capture prevalent cases of spatial distributions

that will create such a negatively-skewed distance distribution which, nevertheless, may be

featured by other spatial distributions and shapes.

The framework developed in Appendix A.1 can be utilized to examine the mechanism

that drives inefficient siting. Consider an established facility, located such that a relatively
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high concentration of “yes” voters reside just beyond the median distance. Compared to a

more even distribution of residents beyond the median, this will drive up mean disamenity

costs. Similarly, a high concentration of “no” voters in close proximity to the facility will

also increase mean costs. For these examples, as long as changes to spatial concentrations

take place exclusively on one side of the median distance line, they will have no impact

on the necessary host fee, therefore exacerbating the inefficiency. Cases in which inefficient

siting will not take place are also evident in our framework. For a given median distance,

a high concentration of “yes” voters at extremely far distances or a high concentration of

“no” voters just within median distance will work to alleviate siting inefficiency by reducing

mean disamenity costs.

In general, our results suggest that the potential for inefficient siting decisions is not

limited to exceptional circumstances. Rather, there are frequent combinations of geographic

shapes and spatial distributions for which inefficient siting will occur. This is also demon-

strated in Section 6 using observed population data, and a further discussion of these out-

comes is provided in Appendix A.3 using the framework developed for Proposition 1.

4 A Supermajority Solution to Efficient Siting

In order to correct the emergence of excess costs, we propose an efficient supermajority M ,

which is equal to some percent of the population that would agree to site a facility in a

particular location such that the aggregate host fee is equal to the aggregate disamenity

costs. The efficient supermajority M should generate a pivotal voter who experiences mean

costs. If d∗ as the distance at which mean costs are incurred so that c(d∗) = c̄, then the

required supermajority is M = 1−F (d∗), where F (d) is the cumulative distribution function

of population distance d to the proposed facility location.

The supermajority M may be useful as a measure of the inefficiency that could result

from a simple majority decision or as a measure of the inefficiency in a simple majority vote
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that has already taken place. More importantly, however, M provides a potential solution.

Such a change to the voting rule would ensure an outcome that compensates the locality as

a whole appropriately. Any change in the voting process that takes place before the firm

chooses the facility’s potential location, however, will alter the firm’s decision. As the voter

at the (1−M)th distance percentile which replaces the median voter as the pivotal decision-

maker depends on the proposed facility location, the firm will take this into consideration

when deciding on the optimal location based on the necessary host fee. Hence, simultaneous

strategic behavior on the part of the firm and locality results in an efficient equilibrium:

Proposition 3. If the locality operates a voting process for siting a noxious facility that

relies on the efficient supermajority, rather than a simple majority, then i) the facility will

be located at the point that minimizes disamenity costs to the locality and ii) siting of the

facility will be accepted by the vote only if the aggregate host fee is greater than aggregate

disamenity costs.

Proof. The locality’s objective, to ensure that inefficient siting does not take place, is ob-

tained by enacting a supermajority M such that the (1 − M)th distance percentile voter

endures mean costs. Since the distance distribution is measured from a single point, the

firm, which seeks to minimize the required host fee, will choose the point that maximizes the

distance of the voter who suffers mean cost and subsequently the locality will determine M∗

based on that distribution. The pivotal voter at the (1 −M∗)th distance percentile deter-

mines the necessary host fee for the facility to be sited. Therefore, distance of the voter who

suffers mean costs is maximized, which leads to minimum aggregate disamenity costs.

Anticipating enactment of an efficient supermajority will lead the firm to choose a location

and offer a host fee that will make the locality no worse off. The simple majority M = 0.5

creates an incentive for a firm to locate at a point where the pivotal voter is further away

than the voter who suffers mean costs. The supermajority, however, not only ensures that

the host fee is sufficient to compensate for aggregate costs, but also aligns the incentives of
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the firm and the locality so that the host fee and costs are simultaneously minimized.

5 Functional Model

We develop a generic parametric model that can capture many potential forms of the pop-

ulation distribution throughout the locality regardless of its shape. Since the impact on

residents is based on their distance from the facility, and any bivariate distribution of co-

ordinates in two-dimensional space can be transformed to a univariate distribution of the

Euclidean distance between each point and the proposed location of the facility, we focus

on this measure of distance that allows us to retain generality in terms of the shape of the

locality and the explicit distribution of its population across space.

To model the distribution of a voter’s distance from a facility we use the Beta distribution,

denoted as Beta(α, β). Since this distribution has support [0,1], we normalize distance so

that the maximum distance is equal to 1. The Beta distribution is very flexible, as parameter

combinations can generate probability density functions that are increasing, decreasing, or

non-monotonic, along with different degrees of convexity. The density function of distance

d is expressed as

f(d;α, β) =
1

B(1;α, β)
dα−1(1− d)β−1; 0 ≤ d ≤ 1; α > 0, β > 0 (1)

and the cumulative distribution function is

F (d;α, β) =
B(d;α, β)

B(1;α, β)
, (2)

where B(x;α, β) is the incomplete Beta function.

Equilibrium siting in a square locality with a uniform spatial distribution, as in Ingberman

(1995), generates a density function of distance from the facility that is negatively skewed and

can be approximated using a Beta distribution with α ≈ 2.67 and β ≈ 2.29. Different shapes
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and spatial distributions will lead to distance distributions characterized by concentrations

of households at different distances that can be approximated with a Beta distribution.

Using Beta(3,2) as a reference, an increase in the first parameter models a population that is

concentrated further from the facility, whereas an increase in the second parameter models a

population that is more highly concentrated around a particular distance. Overall, the Beta

distribution offers a robust way to capture the scalar variable of interest.

In addition to the population distribution, we define the disamenity cost function as5

c(d) = dγ(1− d)δ; γ ≤ 0, δ ≥ 1. (3)

The special case in which γ = 0 and δ = 1 results in a linear cost function in which

marginal costs are constant. The cost function becomes convex as γ decreases below 0

and as δ increases above 1.6 When γ decreases, the convexity manifests as a very sharp

decrease in costs at close proximity, implying a disamenity that causes considerable damages

concentrated near the facility. As δ increases, the cost function flattens out at farther

distances. This reflects the case in which costs approach 0 within the locality and, beyond

this point, the site causes very little damage. In general, the structure of Equation (3) is

quite flexible and capable of capturing a wide variety of possible cost patterns.

Using Equations (1) and (3), mean disamenity costs c̄ are calculated as7

c̄ =

∫ 1

0

c(x)f(x;α, β)dx =
B(1;α + γ, β + δ)

B(1;α, β)
. (4)

Median disamenity costs, cm, are found directly using median distance from the proposed

facility. Since the cost function is a monotonic transformation of distance, the individual

that is median distance from the facility will suffer median costs and thus be the pivotal

5For simplicity and without loss of generality, we omit any parameter that might scale the cost function.
6Section A of the online supplementary materials provides plots of various parameterizations of the cost
function.

7See Section B of the online supplementary materials for details.
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voter. Median distance, dm, in the Beta distribution is implicitly defined as

0.5 =
B(dm;α, β)

B(1;α, β)
, (5)

Median costs are then calculated as

cm = c(dm) = dγm(1− dm)δ (6)

As the firm seeks to minimize the host fee it will select a location where the median cost

is the lowest. The distribution of the population from such a location is negatively skewed as

was previously discussed, hence, in such cases α ≥ β. Mean distance in the Beta distribution

is defined as α
α+β

, while median distance can be approximated by α−1/3
α+β−2/3 . This implies that

the mean distance is smaller than the median distance, leading to inefficiencies.

5.1 The Efficient Supermajority

The required voting supermajority that will ensure a host fee that fully compensates for

aggregate disamenity costs is dependent on the parameters of the model. While a closed-

form expression that defines the supermajority as a function of model parameters does not

generally exist, there are special cases that illustrate more general conclusions. We first

present the case of linear costs to examine the role of population concentration. We then

present specific distance distributions to examine the role of convex costs and the interaction

of the the cost function and population distribution.

5.1.1 Linear Disamenity Costs

Linear disamenity costs are defined by γ = 0 and δ = 1 so that the cost function reduces

to c(d) = 1 − d. In this case, the voter who is located at mean distance from the proposed

location, d̄ = α/(α + β), suffers mean costs8. The parameters α and β allow for many

8See section C of the online supplementary materials.
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potential scenarios of the distance distribution.

We first focus on distributions that are concentrated further and further away from the

proposed site, which are portrayed with α ∈ [2,∞], β = 1. The parameter subset [α, β] =

[2, 1] denotes a positively-sloped straight line density function for distance, f(d) = 2d. Mean

distance is d̄= 2/3 so that the efficient supermajority is 5/9. Therefore, if the locality requires

a 5/9 supermajority to allow the facility to operate, the host fee that satisfies the pivotal

voter will be equal to the total costs generated by the facility. As the population becomes

more concentrated away from the proposed facility (i.e., as α increases), a larger density of

voters are located in places with relatively lower costs, which drives down the firm's required

host fee. The supermajority is based on the value of α, and is contained within the following

bounds9:

M =

[
5

9
,
e− 1

e

]
for α ∈ [2,∞]. (7)

The required supermajority increases with α but is bounded within a relatively small range

of 0.555− 0.632.

Next, we investigate populations that are centralized around particular areas that are

not the farthest from a polluting facility. For example, populations often concentrate around

central business districts or community centers within a locality. Using the parameter com-

binations α ∈ (3,∞), β = 3, we derive the bounds for an efficient supermajority10:

M =

(
1

2
,
e3 − 8.5

e3

)
for α ∈ (3,∞). (8)

The upper limit of 0.577 is even smaller than the previous case where the population is

concentrated at the farthest possible distances. The case of a symmetric distribution α = 3,

β = 3 that leads to M = 0.5 can be ruled out based on convexity of the locality.

An alternative perspective of the changes in the required host fee can be offered through

the population distribution. As the population concentrates at an area relatively closer to

9See section D of the online supplementary materials for full derivation.
10See section D of the online supplementary materials for full derivation.
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the facility, the median distance decreases and a higher host fee is required to secure a

majority vote. It should be noted that the mean decreases as well, though at a slower rate

than that of the median (and the two converge as a symmetric distribution is approached),

so that median costs increase more rapidly. This implies an increase in the host fee relative

to mean costs, mitigating the magnitude of the inefficiency in a simple majority decision.

5.1.2 Nonlinear Disamenity Costs

We have so far established that the population distribution leads to a siting outcome in

which mean distance from the proposed facility is less than median distance. A decreasing

cost function implies that mean disamenity costs are greater than median disamenity costs,

generating a net loss. The analysis in the previous section demonstrated the effect of different

population distributions on the efficient supermajority when the disamenity cost function

is linear. With a nonlinear cost function, however, the interaction between the population

distribution and the cost function becomes increasingly complex. For some cost functions, a

population concentration further from the potential facility can mitigate the problem (i.e.,

reduce the effecient supermajority).

In order to explore the effect of population distribution within the locality under convex

disamenity costs we use two specific parameterizations of the distance distribution: Beta(3,2)

and Beta(6,3).11 Both of these distributions lead to an inefficient siting outcome in the case

of linear disamenity costs. Tables 1 and 2 show the efficient supermajority for the two density

functions of the population distance from the facility location for various disamenity cost

functions.12 The density functions are plotted alongside the tables.

The top left corner of Tables 1 and 2 replicates the case of linear costs. As δ increases

or γ decreases, the necessary supermajority quickly increases, requiring a large portion of

the population to support siting the facility in order to obtain efficiency. Convexity in the

11In the following section, we show that these parameterizations represent plausible values for observed
populations.

12We use a bisection algorithm to numerically solve for the efficient supermajority.
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2

0.00 0.25 0.50 0.75 1.00
Distance

f(d)

δ

1 2 4 6 8

γ

0 0.525 0.604 0.713 0.781 0.828

-0.2 0.561 0.63 0.731 0.795 0.839

-0.4 0.595 0.656 0.749 0.81 0.851

-0.6 0.627 0.682 0.768 0.824 0.862

-0.8 0.658 0.707 0.786 0.838 0.873

-1 0.688 0.732 0.805 0.852 0.885

The table on the right presents the efficient supermajority for various parameterizations of the
the cost function when distance to the facility follows a Beta(3,2) distribution. This distance
distribution is shown in the left panel. The cost function becomes more convex when γ decreases
and/or δ increases.

Table 1: Efficient Supermajority: α = 3, β = 2

cost function epitomizes the general siting problem. Costs are disproportionately incurred

by those relatively close to the facility, generating a majority that is willing to host for a low

host fee.

A convex function can reflect scenarios in which costs reach 0 within the locality. House-

holds who are far enough away from the facility do not incur any disamenity cost. If 50% of

the population are beyond this distance, the median cost becomes zero. Thus, any proposed

facility vote can be successfully passed via a simple majority as long the distance-related

disamenity is localized enough. A supermajority is necessary to capture support from those

households that incur non-zero costs, as well as additional households to generate sufficient

community compensation.

5.2 Implementation

Our model provides a useful tool for policy-makers to determine the optimal supermajor-

ity. Using available census data, the locality can estimate the parameters α and β of its

population distribution based on observed distances13. Next, given the specifics of the pro-

posed facility, its potential disamenity is expressed through parameters γ and δ. It is only

13See section E of the online supplementary materials for details of estimation.
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The table on the right presents the efficient supermajority for various parameterizations of the
the cost function when distance to the facility follows a Beta(6,3) distribution. This distance
distribution is shown in the left panel. The cost function becomes more convex when γ decreases
and/or δ increases.

Table 2: Efficient Supermajority: α = 6, β = 3

required that the locality determines the curvature of the disamenity cost function, since

any scalar transformation of costs will have no effect. Therefore, the locality must determine

how quickly costs decrease with distance to the facility based on the specific impacts of the

facility (noise, air pollution, appearance, etc...).

Given the set of parameters (α, β, γ, δ), the locality can apply the following three steps:

1. Evaluate the average cost, c̄, using Equation (4).

2. Identify the location (distance) of the pivotal voter, d∗, using Equation (3).

3. Determine the required supermajority, M , using Equation (2). Alternatively, M can

be approximated as M = (1− (d∗)α)β (Kumaraswamy, 1980).

The analysis conducted in this work relates to siting a single facility, as is frequently

practiced and studied. Nevertheless, sometimes, there are scenarios that due to various

constraints the firm may seek to site multiple facilities, while still attempting to minimize

the fee. The robust model that was suggested above can be also be employed in such cases

and foster efficiency. For example, consider two facilities, one with cost parameters γ and δ,

and the other with γ′ and δ′. Similarly, two potential locations to site these facilities, with

population distribution parameters α and β for one, and α′ and β′ for the other. Equation

(4) may be applied twice, once with parameters α, β, γ, and δ to determine the average cost
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imposed by the first facility, c̄1, and then with parameters α′, β′, γ′, and δ′ to determine the

average coat imposed by the second facility, c̄2. Consequently, the total average cost imposed

by the two facilities is the sum, c̄1+ c̄2. Next, through a two-dimensional search over the grid

the curve that contains the residents who experience cost equal to the mean can be identified

and consequently the voters who reside beyond establish the required supermajority.

This approach can also be extended to scenarios where additional costs are imposed by

other elements such as the transportation routes to the facility. In such cases, the additional

costs can be captured by a separate cost function. Another extension involves a case where

voters are compensated via a spatially-dependent public good, where the benefit to siting

also depends on a voter’s location. This scenario can be analyzed in an identical manner

to the case of multiple facilities, treating the public good as a facility with a negative cost

function.

6 Empirical Analysis

In order to verify the applicability of the proposed model, we analyze data from 118 counties

across New York and Pennsylvania. Summary statistics for counties and census blocks,

respectively, are presented in Table 3. For each county, we create a hypothetical location for

a facility. This location is chosen as the point within the county that maximizes the median

distance of households from the facility, simulating the firm’s optimal decision when majority

vote is practiced. Using publicly available U.S. Census data, a household’s location within

the county is approximated by the geographic center of its census block. This approximation

is highly accurate since blocks are geographically small and contain small populations relative

to the whole county. We assume that each household represents a single vote.

To identify the firm’s optimal location, we search over a constructed grid of locations in

each county. The grid in each county consists of geographic points evenly spaced throughout

the county at distances of approximately 100 meters in both east-west and north-south
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Counties mean std. dev. 10th perc. median 90th perc.

# of blocks 4,302 3,300 1,623 3,369 8,719

population 157,984 228,817 30,531 80,993 349,955

size (sq. km) 1,928 993 917 1,722 3,022

Blocks

population 36.725 74.857 0.000 15.000 92.000

size (sq. km) 0.448 2.100 0.004 0.029 1.119

Table 3: Summary statistics

directions.14 For each point, we calculate distance to each block centroid and choose the point

with the largest median population-weighted distance. Given a location for the hypothetical

facility, we use maximum likelihood estimation separately for each county to estimate α and

β parameters.

Of the 118 fitted distributions, only 2 are positively skewed. As discussed earlier, how-

ever, such a result is expected in certain circumstances. Focusing on the 116 cases (98.3%)

which are prone to inefficiencies due to the negative skewness of their population distance

distributions, we assess their parameters and then the robustness of the supermajority rule.

Table B.1 in Appendix B summarizes the 116 sets of estimated parameters and the skewness

of each population distribution. The inequality α > β, which is necessary for skewness, is

statistically significant for all 116 counties.

Next, using the parameters of the population spatial distribution we determine the effi-

cient supermajorities necessary to ensure a solution in which the host fee is equal to total

costs imposed on the county in the case of linear disamenity costs. The required super-

majorities range from 50.15% to 58.93% across the 116 counties, with a median optimal

supermajority of 52.45% and 10th and 90th percentiles of 51.27% and 54.45%, respectively.

This remarkably narrow range suggests the possibility that a uniform supermajority, which

14The distance between points in the generated grid varies across counties since the grid is defined by a
fixed number of points (250,000) within the county’s borders. The 10th and 90th percentiles for distance
between grid points are 37.38 and 139.61 meters, respectively, with a maximum of 364.77 meters in the
largest county.
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is perhaps more politically appealing, could be applied to all localities with only modest

aggregate deviations. Note that the 90th percentile proposed increase to M = 54.45% is the

equivalent of an additional 11,205 voters in that particular county. Depending on the type

of facility, this could imply considerable excess costs on the locality. We use bootstrapping

methods (with 10,000 random draws) to calculate confidence intervals for efficient superma-

jorities in each county following Krinsky and Robb (1986). All 95% confidence intervals are

within a range of less than 0.0063.

The degree of convexity in the cost function affects mean costs and thus the efficient

supermajority. For each combination of county population distribution parameters and

possible parameters of convex cost function (as previously discussed), we calculate mean

costs in order to find the required supermajority that will ensure efficiency, as illustrated

in Figure 1. The degree of convexity here refers only to variation in the γ parameter. For

disamenities that are highly convex in distance, it is clear that the necessary supermajority

is a substantial portion of the population. This suggests that considerably large costs could

arise in majority-rule decisions.

It is also evident that convex costs and population distributions have a complex rela-

tionship in generating siting inefficiencies, as there is not a consistent ranking (in terms of

required supermajority) of counties across different cost functions. While the efficient super-

majority increases with independent increases in convexity and skewed population distance

distributions, the impact of convexity is not independent of the distance distribution, and

vice versa.

Finally, we use population distribution parameters to calculate the relative under-compensation

for each county if a simple majority would have been used, c̄/cm, illustrated in Figure 2.

While some counties in the study sample may experience only minor under-compensation,

particularly with linear costs, other counties see under-compensation as high as 1.26 with

linear costs (90th percentile equal to 1.10) and over 2 with highly convex costs. This implies

the potential for considerable aggregate losses in majority-rule settings.
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Figure 1: Efficient supermajorities with convex costs.

7 Conclusion

This paper has outlined a comprehensive framework for investigating the inefficiency of

majority-rule decision related to siting noxious facilities and demonstrated its prevalence.

While there are certainly other factors that help determine the location of a noxious facility,

the inefficiency driven by skewed costs among voters spread across the spatial landscape

could have a considerable effect on siting outcomes.

Through a robust model that can accurately capture the population distribution within

a locality as well as the costs they incur from a proposed facility, we have shown that a

supermajority rule is required to overcome the inherent inefficiency in simple majority rule
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Figure 2: Excess costs with majority rule siting.

decisions. Although, the exact value of this supermajority varies with the spatial distribution

of the population and with the relationship between costs and proximity to the facility. In

general, the necessary supermajority increases as populations concentrate farther away from

the facility, as well as when the disamenity cost function becomes (more) convex in distance.

Both of these effects relate directly to the fundamental driver of the inefficiency: an individual

decision based entirely on whether the outcome is positive or negative, combined with an

evaluation of efficiency that depends on the magnitude of the outcome.

As discussed in the paper, the interaction of two factors, population distribution across

the locality and the disamenity imposed by the facility, emerges to a complex aggregate cost

function. However, our model incorporates these factors into a simple function that is easy

to work with and consequently enables us to perform a general analysis of the siting problem

and obtain important insight. Moreover, our model also provides simple guidance for policy-

makers to ensure efficient siting decisions. Using available census data, the locality can
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capture the distance distribution of its residents. Next, given the specifics of the proposed

facility, its cost parameters, γ and δ, can be incorporated to complete the aggregate cost

function. As in Tables 1 and 2, the efficient supermajority is easily identified based on these

cost function parameters.
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Appendix A Propositions 1 and 2

A.1 Proof of Proposition 1

First we claim that the facility is located on a border, by showing that moving away from

the border is not optimal for the firm. Consider a facility located on the border and a

circle with radius dm around it. The length of dm is determined such that the intersection

of the circle and the locality includes 50% of the area of the locality. The median voter is

located along the perimeter of this circle. Given a convex-shaped locality, moving the facility

away from the border location generates an identical circle with radius dm around its new

location, which will encompass greater than 50% of the population. This implies that the

median voter would be located closer than dm, which would increase the required host fee.

Therefore, the firm’s optimal decision is to locate on the border.

The median distance arc with radius dm away from the facility divides the locality such

that half of the population is within distance dm from the facility and the other half is beyond.

Denote the set of all points beyond the median arc as B and the set of all points within the

median arc as A. Let f(x, y) denote the bivariate distribution of geographic coordinates x

and y of household locations. Then define the function α(z) that gives the density function

of population at distance z from the median arc within A. This function is a line integral of

f(x, y) over an arc concentric to the median arc,

α(z) =

∫
L

f(x, y)d`, (A.1)

where L is the arc with radius dm − z stretching across the locality’s borders. Similarly, we

define the function β(z) that gives the density function of population at distance z from the

median arc within B.

Next, we establish that the median arc will intersect the locality’s borders at a point

at which the width of the locality is increasing as distance from the facility increases. By
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contradiction, suppose that the median arc is at a point at which the width of the locality is

decreasing as distance from the facility increases. Since we have restricted the locality to a

convex set, the point of maximum width must be located in A or at the median arc. Convexity

also implies that β(z) is decreasing and concave, while α(z) is concave and increases from

x = 0 over some interval, since these functions simplify to the length of the arc L at z with

a spatially uniform population distribution. Note that a(z) = b(z) at z = 0. If the point

of maximum width is not located at the median arc there exists some distance, z = z1, at

which α(z) is at its maximum. Therefore, the integral of β(z) must be strictly less than the

integral of α(z) from z = 0 to z = z1. However, the integral of α(z) = 0.5 must be equal

to the integral of β(z) = 0.5 over the entire locality, since these areas are defined by the

median arc. Based on the concavity and monotonicity properties of α(z) and β(z), combined

with the equality of integrals over the entire distance, the maximum distance in B, i.e. the

point at which β(z) = 0, must be greater than the maximum distance dm in A. This, of

course, cannot hold, as the firm would then optimally locate in B. Therefore, the firm will

always locate at a point so that the median arc intersects the locality’s border at a point of

increasing width away from the facility.

Median distance from the facility will be greater than mean distance when mean distance

from the median arc in A is greater than in B,

∫ AMax

0

(α(z)− β(z)) zdz > 0. (A.2)

Define the cumulative distribution functions15 Ψ(z) and Ω(z) that give the portion of the

15Density here is measured relative to the entire population of the locality, so that neither α(·) nor β(·) are
proper density functions in the context of probability theory. The same is true for the cumulative functions
Ψ(·) and Ω(·).
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population in A and B, respectively, that live within distance z of the median arc,

Ψ(z) =

∫ z

0

α(t)dt,

Ω(z) =

∫ z

0

β(t)dt.

Differentiating by parts, Equation A.2 can be simplified as

∫ Amax

0

(α(z)− β(z)) zdz > 0 (A.3)

= (Ψ(z)− Ω(z)) z|Amax
0 −

∫ Amax

0

(Ψ(z)− Ω(z)) dz > 0 (A.4)

= −
∫ Amax

0

(Ψ(z)− Ω(z)) dz > 0 (A.5)

The final simplification of Equation (A.5) comes from function endpoints, Ψ(Amax) = Ω(Amax) =

0.5 and Ψ(0) = Ω(0) = 0.

We established earlier that β(z) is a concave function and can be increasing over its

entire domain or only on some interval. The domain of β(z) is such that z ≤ AMax. This

restriction follows from the firm’s decision to maximize median distance. The function α(z)

is concave and decreasing. Therefore, β(z) is greater than α(z) over some interval from z = 0

to z = z1. The first panel of Figure A.1 illustrates the functions α(z) and β(z). In Equation

(A.5), recall that Ψ(z) = Ω(z) at z = 0 and at z = Amax. Combined with properties of α(z)

and β(z), it is clear that Ψ(z) first-order stochastically dominates Ω(z). This last point, seen

in the second panel of Figure A.1, implies that the integral in Equation (A.5) is negative so

that the inequality in Equation (A.2) holds.

Hence, mean distance from the proposed facility, d̄, must be less than dm and if the

disamenity cost function c(d) is monotonically decreasing and weakly convex then c(d̄) >

c(dm).
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In (a), the function α(z) denotes the density of distance from the median arc (located at
distance dm) for households within distance dm of the proposed facility (“no” voters, set
A). The function β(z) denotes the density of distance from the median arc for households
beyond distance dm of the proposed facility (“yes” voters, set B). In (b), the cumulative
distributions of distance from the median arc for households in A and B are expressed
as Ψ(z) and Ω(z), respectively. Note that these are modified density and cumulative
functions, respectively, in which values indicate density or probability of distances within
a particlar subset (A or B), but relative to the entire locality. Therefore, each density
function has area under the curve equal to 0.5 and the cumulative function reaches its
maximum at 0.5.

Figure A.1: Population distribution for spatially uniform distribution.
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A.2 Proof of Proposition 2

The density function of distance to the facility is the continuous piecewise function equal to

α(z) ∀z ∈ A and equal to β(z) ∀z ∈ B, defined above. If this function is concave then α(z)

and β(z) are also concave functions. Therefore, the proof in A.1 applies.

A.3 Discussion of Alternative Cases

The uniform spatial distribution in Proposition 1 restricts the distance distribution to be

entirely dependent on the shape of the locality. Convexity in the shape of the locality is

enough to ensure inefficient siting. Without restrictions on the spatial distribution of the

population and on the shape of the locality, the functional properties of α(z) and β(z)

discussed above cease to hold. Still, distributions under which Equation A.2 holds can be

seen by analyzing Ψ(z) and Ω(z). The only condition for an inefficiency is that the area

under the curve Ψ(z) is less than the area under the curve Ω(z).

Whether inefficient siting will arise in equilibrium can be seen as a matter of the relative

concentrations of population on either side of the median distance. There are two general

mechanisms that will prevent this inefficiency from arising in the siting decision. The first

is a large concavity in Ψ(z), as seen in the first panel of Figure A.2. In this situation, there

is a concentration of population at distances very close to the median and within A. At

the same time, such a concentrated population density must not exist near the median arc

in B. Alternatively, the second panel of Figure A.2 illustrates a large convexity in Ω(z)

that prevents an inefficiency from occurring. This corresponds to a high concentration of

individuals at far distances. Such a concentration increases mean distance. Note that in both

situations, we are considering changes in the spatial distribution of the population that do

not impact median distance, so that these population concentrations put downward pressure

on aggregate costs.
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The functions Ψ(z) and Ω(z) show the cumulative distributions of distance from the
median arc for households in A and B, respectively. Note that these are modified density
and cumulative functions, respectively, in which values indicate density or probability of
distances within a particlar subset (A or B), but relative to the entire locality. Therefore,
each density function has area under the curve equal to 0.5 and the cumulative function
reaches its maximum at 0.5.

Figure A.2: Distance distributions that do not lead to inefficient siting.

Appendix B Estimated α and β Parameters

min max mean sd median 25% 75%

α 1.65 18.54 4.44 2.64 2.32 3.69 7.59

β 0.89 9.56 2.50 1.28 1.28 2.24 4.01

skew -1.18 -0.01 -0.36 0.18 -0.58 -0.34 -0.16

This tables presents summary statistics of parameter estimates
for 116 county population distributions. We omit 2 counties
that have positively skewed distributions relative to the opti-
mal facility location. The measure skew is directly calculated
for each county using the α and β estimates.

Table B.1: Parameter estimates summary
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