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Lecture 34 

We now turn to our final quantum mechanical topic, molecular spectroscopy.  Molecular 

spectroscopy is intimately linked to quantum mechanics.  Before the mid 1920's when quantum 

mechanics was developed, people had begun to develop the science of molecular spectroscopy.  

However, its early use was purely qualitative, based solely on the observation that molecules and 

atoms, when exposed to light, absorbed and emitted it in patterns that were unique to each species.  

The interpretation of these spectra in terms of the physical parameters that describe the geometries 

and bonding of the molecules that produce them had to wait until the development of quantum 

mechanics.  The close interrelation between spectroscopy and quantum mechanics is shown by the 

fact that Robert Mulliken, who was the foremost practitioner and proponent of Molecular Orbital 

theory in its early years, was spurred on by an attempt to understand the details of molecular 

spectra.  It is further shown by the fact that Gerhard Herzberg, the foremost practitioner of 

molecular spectroscopy from the middle of the '30s to the 70's, used to keep a bound copy of 

Mulliken's papers by his desk.  In fact, I keep a bound copy of Mulliken's major papers, edited by 

Norman Ramsey, Herzberg's collaborator, by my desk. 

Molecular spectroscopy, which is the study of the interaction of light with atoms and 

molecules, is one of the richest probes into molecular structure.  Radiation from various regions 

of the electromagnetic spectrum yields different information about molecules.  For example, 

microwave radiation is used to investigate the rotation of molecules and yields moments of 

inertia and therefore bond lengths.  Infrared radiation is used to study the vibrations of 

molecules, which yields information about the stiffness or rigidity of chemical bonds.  Visible 

and ultraviolet radiation is used to investigate electronic states of molecules, and yields 
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information about ground and excited state vibrations, electronic energy levels, and bond strengths.  

We will do a fairly detailed treatment of rotational and vibrational spectroscopy and a somewhat 

briefer treatment of electronic spectroscopy.  In our treatment we will begin with the basic 

interpretation of molecular spectra, and finish with the quantum mechanical basis of these 

interpretations. 

The features of the electromagnetic spectrum that are of interest to us are summarized 

below.  The absorption of microwave radiation is due to transitions between rotational energy 

levels; the absorption of infrared radiation is due to transitions between vibrational levels, 

 
Region 

 
Frequency/Hz 

 
Wavelength/m 

 
Wave 

number/cm-1 

 
Energy/ 

J *molecule-1 

 
Molecular 

Process 
 

Microwave 
 

109-1011 
 

3x10-1-3x10-3 
 

0.033-3.3 
 

6.6x10-25-
6.6x10-23 

 
Rotation of 
polyatomic 
molecules 

 
Far Infrared 

 
1011-1013 

 
3x10-3-3x10-5 

 
3.3-330 

 
6.6x10-23-
6.6x10-21 

 
Rotation of 

small molecules 
 

Infrared 
 

1013-1014 
 

3x10-5-3x10-6 
 

330-4000 
 

6.6x10-21-
8.0x10-20 

 
Vibration of 

flexible bonds 
 

Visible and 
Ultraviolet 

 
1015-1016 

 
9 x 10-7-3x10-8 

 
11,000-3.3x105 

 
2.2x10-19-
6.6x10-18 

 
Electronic 
transitions 

 
accompanied by transitions between rotational levels; and the absorption of visible and ultraviolet 

radiation is due to transitions between electronic energy levels, accompanied by simultaneous 

transitions between vibrational and rotational levels.  The frequency of radiation absorbed is 

calculated from the energy difference between the upper and lower states in the transition, given 

by  

 u lE E E hν∆ = − =  

where Eu and El are the energies of the upper and lower states respectively. 
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For example, if we have an absorption with wavenumber, ν = 1.00 cm-1, we calculate ∆E 

as follows.  Remember that 1/ ( )cmν λ= .  Therefore ∆E is related to ν  by  

hcE h hcν ν
λ

∆ = = =  

and so 

 ∆E = hcν  = (6.626 x 10-34 Js)(3.00 x 1010 cm/s)(1.00cm-1) = 1.99 x 10-23 J. 

TO WHAT TYPE OF MOLECULAR PROCESS WILL THIS RADIATION CORRESPOND? 

We will begin with molecular rotation.  A rigid rotor is the simplest model of molecular 

rotation.  We discussed the quantum-mechanical properties of a rigid rotor before, but will review 

the pertinent results here.  The energy of rotation of a rigid rotor is all kinetic energy.  For a motion 

with circular symmetry, it is convenient to express this energy in terms of the angular variables L, 

angular momentum, and I, moment of inertia.  The moment of inertia for a diatomic molecule is 

given by  

 2
0I Rµ=  

where µ is the reduced mass of the molecule and R0 is the bond length of the molecule when it’s 

at the zero point energy.  The angular momentum L is given by  

 L Iω= , 

where ω is the angular frequency.  When the Schrödinger equation for this problem is solved, it is 

found that the angular momentum is quantized according to the equation 

2 2J = J(J +1)  

where J is the quantum number for the total angular momentum of a molecule, and that the angular 

momentum in the z direction is quantized according to the equation 
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 zJ M=  , 

where M is an integer  between J and –J, i.e.,  J M J− ≤ ≤ .  The energy of the rigid rotor, in the 

absence of an external field, depends on J only, is also quantized and is given by  

E =
2I

J(J +1) J = 0,1,2,...J


2

,  

Since there are 2J+1 values of M for each energy EJ, the energy states are 2J+1 fold degenerate. 

When microwave or far infrared radiation shines on a rotating molecule, the J value can 

either increase or decrease, and the energy of the light absorbed is given by 

u lE E E∆ = − . 

An important characteristic of all molecular spectra is that the choice of upper and lower 

states is not completely free but is in fact extremely limited.  The rules that govern the choices 

of upper and lower states are called selection rules. These selection rules are determined by time 

dependent perturbation theory.  For the pure rotational transitions of a diatomic rigid rotor 

the selection rule is ∆J = ±1.  In other words, when a diatomic rigid rotor absorbs light, its 

rotational quantum number can increase by 1 or decrease by 1.  These are the only possible 

transitions that occur.  (The reason that I specify diatomic rigid rotors is that the selection rules 

depend in part on symmetry, and molecules with other symmetries have different selection rules.) 

In addition, for pure rotational transitions the molecule must have a permanent dipole 

moment.  Thus molecules like H2 and I2 will have no pure rotational spectra, while HI or CO, 

which have permanent dipole moments, will exhibit rotational spectra.  For molecules that do have 

permanent dipole moments, the larger the dipole moment, the more strongly the molecule will 

absorb light. 
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The consequence of this selection rule is that the rotational absorption spectrum of a 

rigid rotor is a series of evenly spaced lines in the microwave or far infrared region.  To see 

this we begin with the energy eigenvalues, 

E =
2I

J(J +1) J = 0,1,2,...J


2

,  

According to our selection rule, for absorption ∆J = +1.  The energy change for this transition is 

∆E = E - E =
2I

(J +1)(J + 2)-
2I

J(J +1)J J

2

+1

2


  

=
2I

(J +1) J = 0,1,2,....
2
 ,  

The wavenumber change for this absorption is given by 

ν
π

= E
hc

= h
4 cI

(J +1) J = 0,1,2∆
2 ,  

It is typical in spectroscopy to write the energy in the form 

E = hcBJ(J +1)J  

where B , the rotational constant of the molecule, has units of wavenumbers and is given by  

B = h
8 cIπ 2  

In this form the wavenumber of the rotational absorptions is given by 

ν = 2B(J +1) J = 0,1,2,...,  

Thus for the lowest energy rotational transition, J = 0 to J = 1, the absorption occurs at a 

wavenumber of 2B .  The second transition, J = 1 to J = 2, occurs at a wavenumber of 4 B .  The 

third transition occurs at a wavenumber of 6 B  and so on.  Thus the rotational spectrum consists 

of a series of equally spaced lines separated by 2 B . [Illustrate]  Let’s check on our assertion 
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that the rotational spectrum is in the microwave region, by calculating the value of B  for the 

rotation of HI. 

B = h
8 cIπ 2  

The moment of intertia I is given by µR0
2, where µ is the reduced mass in kg and R0 is the bond 

length in meters.  For HI, the reduced mass is given by  

µHI
H I

H I

= m m
m + m

= 1AMUx127AMU
1AMU +127AMU

x1.66x kg
AMU

= 1.65x kg10 1027 27− −  

and the bond length is 160.4 pm, so the moment of inertia is 

 I = µR0
2 = 1.65 x 10-27 kg (160.4 x 10-12 m)2 = 4.25 x 10-47 kg m2, 

and  B = 6.6262x Js
(8 )(3.00x cm / s)(4.25x10 kg m )

= 6.58cm-47 2
10

10

34

2 10
1

−
−

π
 

Our first rotational transition will occur at a wavenumber of 2 B  = 13.16 cm-1, which is in the far 

infrared region, as predicted. 

A more typical application is to determine the value of B  from the spacing of a 

rotational spectrum, and use this to determine the moment of inertia and therefore the bond 

length.  For example, the microwave spectrum of 39K127I consists of a series of lines whose spacing 

is almost constant at 3634 MHz.  Calculate the bond length of 39K127I.  The rotational spacing for 

KI is given in Hz, a unit of frequency.  Our equation for the rotational wavenumber is 

 ν = 2B(J +1)  

The relation between wavenumbers and frequency is  

ν ν= c  

where c is the speed of light in cm/s.  Thus our rotational absorption frequency becomes 
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 ( )2 1cB Jν = + ,  

and our rotational spacing becomes 2cBν∆ = .  Thus   

B =
2c

= 3634x s
2x3.00x

= 6.05x cmν 10
10

10
6 1

10
2 1

−
− −  

From this we can use our formula for B  to calculate the moment of intertia for KI,  

I = h
8 cB

= 6.6262x
(8 )(3.00x )(.06057)

= 4.618x kgm .
π π2

34

2 10
45 210

10
10

−
−  

The reduced mass of 39K127I is  

µ KI = 39AMUx127AMU
39AMU +127AMU

x1.67x kg
AMU

= 4.983x kg.10 1027 26− −  

Thus R0 = (I/µ)1/2 = 3.04 x 10-10 M. 
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Lecture 35-37 

The simplest model of a vibrating molecule is the harmonic oscillator.  The harmonic oscillator 

assumes that the potential energy function for the vibration is given by 21
2V kx= , where k, the 

vibrational force constant, is a measure of  the stiffness of the bond.  The energy eigenvalues for 

the harmonic oscillator are quantized and are given by  

,v
1E = (v+ )h v = 0,1,2,...
2

ν  

where ν
π µ

= 1
2

k .
F
HG

I
KJ

1 2/

 

Transitions between vibrational levels are subject to the selection rules ∆v = ±1 and that 

the dipole moment must change during a vibration.  Once again for diatomic molecules this means 

that homonuclear diatomics will have no vibrational absorption spectrum.  The implication of this 

selection rule together with the formula for the energy eigenvalues of the harmonic oscillator is 

that the pure vibrational absorption spectrum of a diatomic molecule is a single absorption whose 

frequency is given by ν
π µ

= 1
2

k .
F
HG

I
KJ

1 2/

  To see this note that for absorption ∆v = +1, so  

 ∆E = Ev+1 – Ev = (v + 1 + 1/2) hν - (v + 1/2) hν = hν 

Thus the spectrum consists of a single line with frequency ν.  Determining the infrared frequency 

allows us to determine the force constant k of the bond.  For example, the infrared spectrum of 

39K35Cl has a single intense line at 378.0 cm-1.  What is the force constant?  Our first step is to 

convert the wavenumber to frequency, using cν ν= .  This yields 

 ν = 378 cm-1 x 3.00 x 1010 cm/s = 1.134 x 1013 s-1. 
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The reduced mass of 39K35Cl is  

µ KCl = 35AMUx39AMU
35AMU + 39AMU

x1.67x kg
AMU

= 3.08x kg10 1027 26− −  

Rewriting our frequency equation to solve for force constant yields 

 k = (2πν)2µ = (2 π 1.134 x 1013) 2 x 3.08 x 10-26  = 156 N/m. 

All of the quantum mechanical systems we have studied so far have the common property 

that their energies are quantized.  Suppose we have a system where the available energies are the 

set {EJ}.  An example of this would be a diatomic harmonic oscillator, whose energies belong to 

the set {1/2hν, 3/2hν, 5/2hν, ...} = {E0, E1, E2, ...}.  A question of practical importance is the 

fraction of the molecules in a gaseous sample that are at a given energy.  In other words if we have 

N molecules, how many are in E0, how many in E1, how many in E2 and so on.  The answer to 

this question comes from statistical mechanics and says that if Ni is the number of molecules with 

energy Ei, then 

N = cei
E kTi− /  

where k is Boltzmann's constant, T is the absolute temperature and c is a proportionality constant.  

We can evaluate this constant c by summing both sides over all possible energies and recognizing 

that N Ni
i

=∑   This yields 

N N c ei
E kT

ii

i= = −∑∑ /  

or 

c = N
e

i

-E / kTi∑
 

which yields finally 
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i

E kT

i

E kTN = Ne
e

i

i

−

−∑
/

/  

This equation is called a Boltzmann distribution after the German physicist Ludwig Boltzmann, 

and governs how the energy levels are populated at any temperature.  Since most of the time 

we won't know the absolute number of molecules in our sample, a more practical quantity to 

calculate is the fraction of molecules in a given state.  This is given by  

f = N
N

= e
ei

i
E kT

i

E kT

i

i

−

−∑
/

/  

Let’s use this to figure out the fraction of molecules in the ground state of a harmonic 

oscillator.  For the harmonic oscillator, Ei is given by 

 Ei = (i + 1/2)hν 

so our equation for the fi becomes 

f = e

e
i

i h
kT

i h
kT

−
+

−
+∞

∑

( / )

( / )

1 2

1 2

0

ν

ν  

The infinite series in the denominator can be evaluated to be 

e
e

ih
kT

h
kTi

−

−=

∞

=
−

∑
ν

ν

1

10

 

Thus for the harmonic oscillator our equation for fi becomes 

i
h kT ih kTf = (1- e )e− −ν ν/ /  
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 Let’s apply this equation to calculate the fraction of molecules in the ground vibrational 

state for HBr at 300 K and 2000 K.  The fundamental vibrational frequency of HBr is 7.7 x 1013 

Hz.  The easiest way to begin this is to calculate the quantity hν/kT.  At 298 K this is  

h
kT

= (7.7x s )(6.6262x Js)
(298K)(1.38066x JK )

= 12.3ν 10 10
10

13 1 34

23 1

− −

− −  

At 2000 K the same type of calculation shows that hν/kT = 1.8.  If we substitute i = 0, the quantum 

number for our ground vibrational state into our equation for fi, we find that  

f = 1- e 1at 298K0
12 3− ≈.  

while 0f = 1- e =.83 at 2000K.−1 8.  

Thus we see that at room temperature practically all of the HBr molecules are in the ground 

vibrational state, while even at 2000 K the bulk of the molecules are still in the ground vibrational 

state.  Let’s look at the effect of vibrational frequency on the ground state population by calculating 

f0 for I2, which has a ground state vibrational frequency of 6.42 x 1012 Hz, over a factor of 10 

smaller than HBr.  Here hν/kT = 1.034, so  

f = 1- e =.6444 at 298K.0
1 034− .  

We see that even at room temperature a substantial fraction of iodine molecules will be in excited 

vibrational states.  We conclude that either increasing the temperature or decreasing the 

vibrational frequency will result in an increase in the population of vibrational excited states. 

Molecules simultaneously vibrate and rotate.  If we treat the rotations using the rigid 

rotor approximation, and the vibrations using the harmonic oscillator approximation, then the 

energy of this vibrating, rotating molecule is given by  

0vib,rot = (v+1 / 2)h +hcBJ(J +1)E ν  
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where v = 0, 1, 2, ... and J = 0, 1, 2, ....  An important feature of these energies is that the rotational 

energies are generally much smaller than the vibrational energies, so each vibrational state 

is accompanied by a large number of rotational states.  For example, for HCl at room 

temperature, we will find finite populations of molecules with v= 0 and J ranging from 0 to 

approximately 20.  The lowest energy state will be the pure vibration with Enj = ν0/2.  The next 

energy will be ν0/2 + 2B, the next will be ν0/2 + 6B, the next ν0/2 + 12B and so on.  For HCl, the 

vibrational frequency is 2885 cm-1, while B is 10.6 cm-1.  Thus the first few energies are 1442.5 

cm-1, 1463.7 cm-1, 1505 cm-1 and so on.  Because the energies of the rotations are small compared 

to the vibrations, vibrational rotational spectra have the appearance of widely separated clusters of 

rotational lines. 

When a diatomic molecule absorbs infrared radiation, the vibrational transition is 

accompanied by a rotational transition.  The selection rules for absorption of infrared 

radiation by a diatomic molecule are 

 ∆v = ±1 

 ∆J = ±1. 

In other words, when an infrared photon is absorbed, the vibrational quantum number goes up by 

one, and the rotational quantum number either goes up by one or down by one.  The wavenumber 

ν obs  associated with the absorption is 

ν νobs = + B[J (J +1)- J(J +1)]0 ′ ′  

where J is the initial rotational quantum number, and J', the final rotational quantum number, can 

be either J + 1 or J - 1.  If J' = J + 1, then 

ν νobs( J = +1)= + 2B(J +1) J = 0,1,2,...∆ 0 ,  
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If J' = J - 1, then  

ν νobs( J = -1)= - 2BJ J = 1,2,3,...∆ 0 ,  

WHY CAN'T J BE ZERO IN THIS CASE?  Typically, B  is on the order of 1 cm-1 or less, and ν 0  ranges 

from a few hundred to a few thousand wavenumbers, so the spectrum produced by these two 

equations typically contains lines between 3700cm-1 and 350 cm-1 ± integral multiples of 1 cm-1.  

Notice that according to these equations there is no absorption at ν 0 .  Before the quantum 

mechanical explanation of molecular spectroscopy, this was considered an inexplicable anomaly.  

Its explanation was one of the early successes of quantum mechanics.  

The infrared spectrum that you measured for HCl is typical of these spectra.  [Draw]  The 

gap centered around 2885 cm-1 corresponds to the missing line at ν 0 .  On each side of the gap is 

a series of lines whose spacing is about 10 cm-1.  The series toward the high frequency side is 

called the R branch and is due to rotational transitions with ∆J = +1.  The series toward the low 

frequency side is called the P branch and is due to rotational transitions with ∆J = -1. 

Let’s do an example with rotational-vibrational spectra.  The bond length in 12C14N is 117 

pm and its force constant is 1630 N m-1.  Let’s predict the vibration-rotation spectrum of 12C14N. 

Our first step is to calculate ν 0  and B .  Both quantities require the reduced mass, which 

is  

µ = (12.0AMU)(14.0AMU)
(12.0 +14.0)AMU

(1.66x kg
AMU

)= 1.07x kg10 1027 26− −  

The fundamental frequencyν 0 is given by  

1
2 c

( k ) = 1
2 (3.00x cm / s)

( 1630Nm
1.07x kg

) = 2.07x cm1/ 2 1/ 2

π µ π 10 10
1010

1

26
3 1

−

−
−  
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The rotational constant B  is given by  

B = h
8 cI

= h
8 c Rπ π µ2 2

0
2  

= (6.626x Js)
8 (3.00x cm / s)(1.07x kg)(117x m )

= 1.91cm2
10

10 10 10

34

2 10 26 12
1

−

− −
−

π
 

The vibration-rotation spectrum will consist of lines at ν 0  ± 2BJ, where J = 1,2,3,....  There will 

be no line at ν 0  and the separation between the lines in the P and R branches will be even at 2 B  

= 3.82 cm-1.   

If we compare these results with experimental data, we see that there are several features 

which we are not able to explain with this combination of the rigid rotor and the harmonic oscillator 

alone.   The intensities, or heights, of the lines in the P and R branches show a definite pattern and 

the spacing of the lines is not equal.  Close examination shows that the lines in the R branch are 

more closely spaced with increasing frequency, and that the lines of the P branch become farther 

apart with decreasing frequency.  We now turn to an explanation of these details. 

We turn first to the intensity pattern of the P and R branches.  We know that Beer's law, 

A = εlc, holds for all optical spectra, and that therefore the intensities of the rotational lines in a 

vibration-rotation spectrum depends on the population in any given rotational state.  Since 

this population is proportional to the fraction of molecules in that rotational state, we can use the 

Boltzmann distribution of rotational energies to explain the general nature of the observed 

intensities.  We need to modify our Boltzmann equation a bit since the rotational energy levels 

are 2J + 1-fold degenerate.  If an energy level Ni has a degeneracy gi, then the number of 

molecules with energy i becomes 
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N = cg ei i
E kTi− /  

where c is a constant.  For rotational energies this becomes 

( 1)hcBJ J
kT

J TN = N (2J +1)e
+

−
 

where NT is the total population.  This allows us to calculate the ratio of the population of the state 

with quantum number J, to the population of the lowest energy level, and therefore to calculate the 

ratios of the intensities of the peaks corresponding to these two states.  There are two competing 

factors in this population curve.  As J increases, the degeneracy increases linearly with a slope of 

two.  At the same time as J increases, the energy increases, so the population decreases 

exponentially.  Taken together these two factors yield the characteristic shape of the P and R 

branches.  Thus we see that the shape of the P and R branches reflects the population of the 

rotational energy levels. 

So far in our treatment of the rotational and vibrational spectra of diatomic molecules, we 

have used two approximations, that the bond length of the molecule was fixed during rotation, and 

that the vibrations were governed by a harmonic potential.  These approximations yield a crude 

approximation of the experimental results, but closer examination of these results shows that they 

are not entirely correct.  Let’s consider rotations again. 

The experimental observation which shows that our rigid rotor model needs to be 

refined is that the lines in a rotational spectrum are not equally spaced, as the rigid rotor model 

predicts.  You have all seen this with the vibrational-rotational spectrum of HCl, but it is also true 

for the pure rotational spectrum of HCl.  If we examine the first few transitions in the rotational 

absorption spectrum we can see this clearly. 

The Rotational Spectrum of H35Cl 
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 The Rotational 
Absorption Spectrum of 
H35Cl 

Transition 1/obs cmν −  1/obs cmν −∆  
3 → 4 83.03  

  21.07 
4 → 5 104.10  

  20.20 
5 → 6 124.30  

  20.73 
6 → 7 145.03  

 
The spacing between the rotational lines varies in these few points between 20.2 cm-1 and 21.07 

cm-1.  The discrepancy can be resolved by realizing that a chemical bond is not truly rigid.  As the 

molecule rotates faster and faster, i.e., as J increases, the centrifugal force causes the bond to 

stretch.  The extent of the stretching of the bond can be determined by balancing the centrifugal 

force, µRω2, which causes the stretching, with the Hooke's law force, k(R - R0) which resists the 

stretching.  Thus we have 

 k(R - R0) = µRω2=
2

3

L
Rµ

  

where R0 is the bond length when J = 0 and there is no rotation.  This yields 

2 2

0 3 3
0

L LR R
R k R kµ µ

− = ≈  . 

This approximation is valid because in general 

0 0R R R− <<  . 

In order to determine the effect of the centrifugal stretching on our rotational spectra, we need to 

find how this changes our rotational energy.  As usual we begin with the classical case and use the 

correspondence principle to find the quantum analog. 
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As a result of the stretching the total classical energy of the rotator is made up of a kinetic 

energy term and a potential energy term: 

( )
2

2
0

1
2 2
LE k R R
I

= + −  

Substituting our value for R-R0 into this equation, and neglecting higher powers of R-R0 yields 

2 4

2 2
0 0 02 2

L LE
I I R k

= −   

We obtain the quantum mechanical energy for this stretching rotor by substituting the quantum 

value for L2,  2J(J+1): 

 
2 4

2
2 2

0 0 0

2
J = J(J +1) J (J +1)E 2I 2I kR

−
   

This is usually written in wavenumbers as 

E = E
hc

= BJ(J +1)- DJ (J +1 )J
J 2 2  

By comparing these two equations we find that  

D =
4 cI kR

= 4B

3

0
2

0
2

3

2π ν
 

D is called the centrifugal distortion constant, and results in a lowering of the rotational 

energy compared with the rigid rotor for all states with J > 0.  Typical values of D  are much 

smaller than B .  For H35Cl, for example, B  = 10.395 cm-1 and D  = .0004 cm-1, and therefore 

the centrifugal distortion term represents a small correction to the rigid-rotator approximation.  

Note also because the centrifugal distortion term is a function of J2(J + 1)2, that the size of the 

correction increases with J.   
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The frequencies of absorption due to a transition from J → J + 1 are given by  

ν = E - E = 2B(J +1)- 4D(J +1 ) J = 0,1,2,....J J+1
3 ,  

If we use this equation and the values of B  and D for H35Cl, we find that the new calculated 

values are closer to the experimental values but are still off by a bit.  This is due to the fact that 

the bond length also changes because the molecule is vibrating, which also affects the 

rotational energy.  This phenomenon is called vibration - rotation interaction. We will cover this 

in a moment, but first I would like to consider corrections to our basic picture of molecular  

vibration. 

There is experimental evidence that our picture of vibrating molecules is only 

approximately correct.  The most obvious problem is our observation, which we made before, 

that the harmonic potential does not allow for the possibility of dissociation of the molecule.  The 

deviation of a true potential from a harmonic potential is called the anharmonicity.  Since the 

potential is correct only toward the bottom of the potential well, and vibrational frequencies are 

dependent on the shape of the potential, vibrational frequencies which are based on a harmonic 

potential will have to be approximate.  Note that the harmonic potential is close to the true 

molecular potential for much of the lower energy part of the curve.  This suggests that the easiest 

way to find the true vibrational energy is to begin with the harmonic frequency and find a 

correction term. 

The easiest way to represent the true potential in a way that lends itself to finding such a 

correction term is to expand the potential function V(R) in a Taylor series about Re, the equilibrium 

bond length, which is also the minimum of V(R).  This expansion yields 
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2 3
2

2 3)
e e e

3
e e e eR=R R=R R=R

dV 1 d V 1 d VV(R)=V(R )+( (R - R )+ ( (R - R + ( (R - R +....) ) ) )
dR 2! dR 3! dR

 

The second term of the expansion is zero, because the first derivative of V with respect to R will 

be zero at the minimum of the potential.  The derivative in the second term 
2

2 eR=R
d V( )
dR

 is simply 

our force constant k.  Thus the difference in energy from the potential minimum can be written as  

2 3 43 4
e

kV(R)-V(R )= x + x + x
2 6 24

γ γ  

where x = (R - Re),  γ3 = 
3

3 eR=R
d V( )
dR

, and γ 4 = 
4

4 eR=R
d V( )
dR

. 

Notice that if we ignore the last two terms we have a harmonic potential.  Therefore the 

harmonic oscillator approximation consists of keeping only the quadratic term in the Taylor 

expansion.  As we showed earlier, the harmonic oscillator approximation predicts that there will 

be only one line in the vibrational spectrum of a diatomic molecule.  Experimentally it is found 

that there is indeed one dominant line, called the fundamental, but in addition there are lines of 

weaker intensity at almost integral multiples of the fundamental.  These lines are called overtones.  

For example for H35Cl, the fundamental occurs at 2885.9 cm-1, while successively weaker bands 

appear at 5668.0, 8347.0, 10923.1 and 13396.5 cm-1.  These bands are called the first, second, third 

and fourth overtones respectively.  They represent transitions from v = 0 → 2, v = 0 → 3, v = 0 → 

4, and v = 0 → 5.  Note that all of these transitions are in violation of the harmonic oscillator 

selection rule of ∆v = ± 1.  The wavenumbers of these bands also do not match the prediction of 

the harmonic oscillator, which predicts that all of the overtones will occur exactly at integral 

multiples of the fundamental frequency. 
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If the terms of higher order than the harmonic terms, called the anharmonic terms, are 

included in the Hamiltonian operator for the vibrational motion of a diatomic molecule, then 

perturbation theory yields  

2
n e e eE = (v+1 / 2)+ x (v+1 / 2 +...)ν ν  

where xe  is called the anharmonicity constant.  The anharmonic correction is much smaller than 

the harmonic term because xe  << 1.  For example, for H35Cl, ν e  = 2989 cm-1, while ν e ex  = 52.05 

cm-1.  For another example, CO has ν e  = 2170.2 cm-1, while it has ν e ex  = 13.46 cm-1. 

The effect of the anharmonic terms is that the spacing of vibrational energy levels is 

not even, and that the spacing decreases with increasing v.  [Draw]  Notice that the harmonic 

oscillator approximation is best for small values of n, which are the states which have the highest 

population at room temperature.    

The selection rule for an anharmonic oscillator is that ∆v can have any integral value, 

although the intensities of the ∆v = ±2, ±3, ... transitions are successively smaller and are much 

less than for the ∆v = ± 1 transitions.  Earlier we showed that for diatomic molecules, most of the 

population at room temperature is in the v = 0 state.  This implies that most vibrational transitions 

will originate in the v = 0 state.  The wavenumbers of the observed v = 0 → n transitions will be 

given by 

0 ,obs v e e e= E - E = v - x v(v+1) v = 1,2,...ν ν ν  

Application of this equation to the spectrum of H35Cl results in an agreement with experiment to 

the fifth significant figure. 



 
 

 

229 

229 

Let’s work an example of calculating the wavenumbers for the absorptions of an 

anharmonic oscillator.   

Example: Given that ν e  = 536.1 cm-1 and ν e ex  = 3.83 cm-1 for 23Na19F, calculate the frequencies 

of the fundamental and the first and second overtones.  We use our equation for the wavenumber 

for a transition of an anharmonic oscillator for all three of these transitions.  The fundamental is 

calculated by letting v = 1 and the overtones are calculated by letting v = 2 and 3.  For the 

fundamental,  

ν ν νobs e e e= - 2 x = 528.44cm .−1  

For the first overtone 

ν ν νobs e e e= 2 -6 x = 1049.22 cm−1  

For the second overtone 

ν ν νobs e e e= 3 -12 x = 1562.3cm .−1  

Note that the overtones are not integral multiples of the fundamental frequency. 

Now we turn to the final correction to our vibrating rotating molecule.  Recall that the rigid 

rotor harmonic oscillator model leads to 

, 0v jE = (v+1 / 2)+ BJ(J +1).ν  

Because the amplitude of vibration increases with the vibrational state, we expect that R0 should 

increase slightly with n, and that therefore B should decrease with increasing n.  Since B  depends 

on the vibrational quantum number we now write 

, 0v j vE = (v+1 / 2)+ B J(J +1).ν  
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The dependence of B  on the vibrational quantum number is called vibration-rotation 

interaction.  The vibration-rotation interaction affects the P and R branches of a rotational 

vibrational spectrum differently.  The frequencies of the P and R branches are given by 

ν νR ( J = +1)= +(2B - B )J +(B - B )J J = 0,1,2,...∆ 0 1 0 1 0
2 ,  

and  ν νp( J = -1)= -(B + B )J +(B - B )J J = 1,2,3,...∆ 0 1 0 1 0
2 ,  

In both cases J is the initial rotational quantum number.  Because B1 < B0 , the spacing between 

the lines in the P branch increase with increasing J.  You should all either have observed this or 

will shortly observe this in your spectra of H35Cl. 

The lines in the R and P branches are labeled by the initial value of the rotational quantum 

number giving rise to the lines.  Thus, the lines for the R branch are labeled as R(0), R(1), R(2), ... 

and those of the P branch are labeled P(1), P(2), P(3), ... etc.  Given the following data, 

 
Line 

 
Wavenumber/ cm-1 

 
R(0) 

 
4178.98 

 
R(1) 

 
4218.32 

 
P(1) 

 
4096.88 

 
P(2) 

 
4054.12 

 
lets calculate B0 , B1 , R0 and R1.  The reduced mass of the molecule is 1.58 x 10-27 kg. 

If we apply our equations for the R and P branches we find that for the R branch 

4178.98 cm = + 2B−1
0 1ν  
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and  4218.32cm = +6B - 2B .−1
0 1 0ν  

For the P branch we have  

 4096.88 cm = - 2B−1
0 0ν  

and 4054.12cm = + 2B -6B−1
0 1 0ν . 

If we subtract the first line of the P branch from the second line of the R branch, we find 

 121.44cm = 6B−1
1  

or B1= 20.24 cm-1.  If we subtract the second line of the P branch from the first line of the R branch, 

we find  

 124.68 cm = 6B−1
0  

or B0  = 20.81 cm-1.  Using our usual equation for B  we find that R0 = 92.3 pm and R1 = 93.6 pm. 

The dependence of Bn  on n is usually expressed as 

B = B - (n+1 / 2).n e eα  

The vibrational spectra of polyatomic molecules are more complicated.  This is primarily 

because of one factor: the larger number of atoms yields a larger number of vibrations, any of 

which may or may not absorb infrared radiation.  

The biggest factor is the number of vibrations.  There are two simple rules which tell us 

how many different vibrations a given molecule has.  For a linear molecule, there will be 3N-5 

vibrations, where N is the number of atoms in the molecule.  For a nonlinear molecule there 

will be 3N-6 vibrations.  Where do these rules come from?  Consider a single particle.  It can 

move in space three different independent ways, in the x-direction, the y-direction and the z-

direction.  We call these independent ways the particle can move degrees of freedom, and say that 
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a single particle has three degrees of freedom.  Now suppose that we have two different particles 

moving through space.  HOW MANY DEGREES OF FREEDOM WILL THESE TWO PARTICLES HAVE? [6] 

Now suppose that we have N independent particles moving through space.  How many degrees 

of freedom will these N particles have? [3N] Now suppose that we take these N particles and 

bind them together in a molecule.  The interesting thing is that the number of degrees of freedom 

is conserved, but now it is divided among three different types of through-space motion: 

translation, rotation and vibration.   

The way the 3N degrees of freedom are divided between the types of motion depend 

slightly on whether the molecule is linear or not.  Let’s consider a nonlinear molecule first.  The 

molecule can move through space only three independent ways in the x, y and z directions, so of 

the 3N total degrees of freedom, three are taken up by translation.  This leaves 3N-3 for 

rotation and vibration.  A three dimensional molecule can rotate in three different ways (illustrate).  

Thus there are three rotational degrees of freedom.  This leaves 3N-6 degrees of freedom, 

which means that a nonlinear molecule will have 3N-6 independent vibrations.  A linear molecule 

differs because it has only 2 rotational degrees of freedom (illustrate), and thus will have 3N 

-5 vibrational degrees of freedom.  As examples, acetylene, which is a linear polyatomic 

molecule has, 3N-5 or 7 vibrations, while ammonia, which is nonlinear, has 3N-6 or 6 vibrations. 

  These polyatomic vibrations are crudely divided into two types, stretching vibrations and 

bending vibrations.  There is a simple rule which determines the number of stretching and 

bending vibrations - the number of stretching vibrations is equal to the number of bonds and 

the rest are bending vibrations.  For example in the case of acetylene, there are three bonds, the 
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two CH bonds and the C≡C bond, and therefore there will be three stretching vibrations and four 

bending vibrations. 

What do these vibrations look like?  The main requirement is that the vibrational motions 

conserve linear momentum (i.e. don’t get the molecule translating faster) and conserve angular 

momentum (i.e. don’t get the molecule rotating faster).  Vibrations which satisfy these 

requirements are called normal modes of vibration or normal vibrations.  Let me illustrate for 

water and acetylene.  [Symmetric and asymmetric stretches, bending, degeneracy for C2H2]  The 

way that these vibrations are identified is to group them by symmetry, from most symmetric to 

least symmetric, and within each symmetry group, number the vibrations starting from the highest 

vibrational frequency and moving to the lowest.  Thus for water, we have two symmetric 

vibrations, the stretch and the bend.  Since these have the highest symmetry they are numbered 

first.  The stretch has a higher vibrational frequency, so it becomes ν1, and the symmetric bend is 

labeled ν2.  The asymmetric stretch is labeled last and is called ν3. 

Will we see all of these vibrations?  The answer is no.  A critical requirement for a 

vibration to absorb light is the presence of a dipole derivative, a change in the dipole moment 

of the molecule due to the vibration.  For diatomic molecules, it is trivial to determine whether a 

the dipole moment of a molecule will change on vibration - if the molecule is homonuclear, there 

will be no dipole moment change and no infrared absorption, while if the molecule is 

heteronuclear, there will be a dipole moment change and an infrared absorption will be 

observed.  Thus HCl, CO or KF will all have dipole derivatives and infrared spectra, while H2, N2, 

and O2 will not absorb in the infrared.  This latter fact is very convenient, since it means that we 
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can take infrared spectra in air without interference from the enormous numbers of nitrogen and 

oxygen molecules present. 

For polyatomic molecules all polar molecules will have dipole derivatives for all their 

vibrations.  However, unlike diatomic molecules, nonpolar polyatomic molecules can still have 

infrared absorptions from some of their vibrations.  The general principle here is that for most 

nonpolar molecules, the lack of polarity is from the dipole moments in polar bonds cancelling due 

to symmetry. [Illustrate with CO2] This lack of polarity is retained during a vibration if the 

vibration doesn’t change the symmetry of the molecule.  This is easiest to see if you draw the 

molecule before and after the vibration. [Illustrate with CO2] Thus the CO2 symmetric stretch 

retains the original symmetry, and will not result in an infrared absorption, while the asymmetric 

stretch and the bend both break the symmetry and will result in infrared absorptions. 

In addition to absorbing electromagnetic radiation as a result of rotational and vibrational 

transitions, molecules can absorb electromagnetic radiation as a result of electronic transitions.  

The difference in energies between electronic levels are usually such that the radiation absorbed 

falls in the visible or ultraviolet regions.  Just as rotational transitions accompany vibrational 

transitions, both rotational and vibrational transitions accompany electronic transitions.  If 

we draw a series of electronic potentials, we see that each electronic state has a series of vibrational 

states associated with it.  The energies of these vibrational states are small compared to the energies 

of the electronic states, so the vibrational levels will appear as fine structure in an ultraviolet-

visible (UV-vis) spectrum.  Each of these vibrational levels, will, in turn, have a set of 

rotational levels associated with it. 
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Lecture 38 

According to the Born-Oppenheimer approximation, the electronic energy is independent 

of the vibrational-rotational energy.  If we use the anharmonic oscillator to describe the vibrations 

of the molecule, and the rigid rotor to describe the rotations, the total internal energy of a 

diatomic molecule, i.e., the total energy excluding translation, is in wavenumbers 

2
total el e e e

1 1E = + (v+ )- x (v+ + BJ(J +1))
2 2

ν ν ν  

where ν el is the energy at the minimum of the electronic potential energy curve.  The selection 

rules for vibronic transitions ( vibrational transitions in electronic spectra) allows ∆v to take 

on any integral value, unlike the case of vibrational-rotational transitions where ∆v = ±1.  

Because rotational energies are much smaller than vibrational energies, we shall ignore the 

rotational term in our equation for the internal energy and investigate only the vibrational 

substructure of electronic spectra. 

In electronic absorption spectroscopy, the vibronic transitions usually originate from 

the n = 0 state because that is the only state which is appreciably populated at room 

temperature.  The frequencies of an electronic transition originating in the n = 0 state are given 

by  

' ' ' '' '' '' ' ' ' ' ' '
obs elel e e e e e e e e e

1 1 1 1= +( - x )- ( - x )+ n - x v (v +1)
2 4 2 4

ν ν ν ν ν ν ν ν  

The term ν el el,  is the difference in energies of the minima of the two electronic potential energy 

curves [illustrate].  The single primes indicate the upper electronic state and the double primes 

indicate the lower electronic state.  Both the fundamental vibrational frequency, ν e , and the 
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anharmonicity, ν e ex , depend on the shape of the electronic potential energy curve at its minimum 

and so should differ for each electronic state. 

 


