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Lecture 21

It is fairly easy to write down an antisymmetric wavefunction for helium since there are 

only two orbitals, and therefore only two combinations to worry about, but things get 

complicated quickly when you consider atoms with three or more electrons.  John Slater of MIT 

introduced the use of determinants to construct antisymmetric wavefunctions.  

BUT ... WHAT is a DETERMINANT?  Consider a 2 x 2 matrix, .  Its determinant, 

symbolized by  

a b
c d

a b
c d

ad bc= −   Note two properties of these determinants that are useful in 

evaluating determinants.  First, if you interchange the rows or columns of the matrix, the sign of 

the determinant changes.  Thus we see that 

 
c d
a b

cb ad
a b
c d

= − = −  

Second, if any two rows or columns are identical the determinant is 0.  Thus 

 
a b
a b

ab ab= − = 0  

How do we construct a wavefunction using determinants?  First we construct a 

matrix of spin orbitals.  In the first row of the matrix, we put the orbitals that the first electron 

can occupy, and assign the first electron to them.  This is the same as saying that the first 

electron could be in any one of these orbitals.  Thus for helium we have two orbitals, 1sα and 

1sβ.  The first row of the matrix now becomes 

 1sα(1)     1sβ(1). 
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In the second row of the matrix we put the same orbitals, but assign them to the second electron, 

since the second electron also could be in these orbitals.  Thus the second row of our matrix 

becomes 

 1sα(2)     1sβ(2). 

The wavefunction is the determinant of the matrix,  

 He =
s s
s s

= 1s (1)1s (2) -1s (2)1s (1)ψ
α β
α β

α β α β
1 1 1 1
1 2 1 2

( ) ( )
( ) ( )

, 

which is the antisymmetric wavefunction we obtained earlier.  All wavefunctions generated by 

determinants will be antisymmetric.  We can see this because interchange of electrons in the 

wavefunction is equivalent to interchanging rows in the matrix, which changes the sign of the 

wavefunction. 

The wavefunction as we have written it is not normalized.  To normalize it we need to 

multiply it by 2-1/2, so the overall wavefunction is  

ψ
α β
α βHe

s s
s s

=
1
2

1 1 1 1
1 2 1 2

( ) ( )
( ) ( )

 

A wavefunction generated this way is called a determinantal wavefunction.   

What about the case of lithium?  Let's use the determinantal method to find an 

appropriate wavefunction.  Let’s start with our earliest guess that the ground state of lithium is 

composed of three 1s orbitals, 

 ψLi = 1s(1) 1s(2) 1s(3). 

In this case the first two terms in our first row will be 1sα(1), 1sβ(1), but the third term will have 

to be 1sα or  1sβ as well, since we have no other choices for spin states. We'll choose 1sα(1).  
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Our first row now becomes 

 1sα(1) 1sβ(1) 1sα(1). 

Now in the second and third rows we put electrons 2 and 3, respectively, in the same orbitals.  

Our wavefunction now becomes 

 ψ
α β α
α β α
α β α

=
1
3

1 1 1 1 1 1
1 2 1 2 1 2
1 3 1 3 1 3

s s s
s s s
s s s

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

 

But notice now that our first and third columns are identical.  We have already noted that if two 

rows or columns of a matrix were identical, that the determinant is 0.  Therefore this 

wavefunction built from three 1s orbitals is also zero.  In other words the probability is zero that 

such a wavefunction can exist for lithium. 

This is equivalent to the prediction of the Pauli exclusion principle as we know it.  

Remember that according to this principle, no two electrons can have the same four quantum 

numbers.  But what are the three sets of quantum numbers we just used to try to describe the 

lithium ground state? 

 1sα = 100 1
2

ψ  

 1sβ = 100-1
2

ψ  

and  1sα = 100 1
2

ψ . 

So this set of orbitals which yields a determinantal wavefunction of 0, also has two electrons 

with the same set of quantum numbers.  

In fact we will see that this is a general rule.  Unless all the spin orbitals we put in a 

row of our matrix are different, two of the columns will be the same, the determinant will 
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be zero and therefore the wavefunction will vanish.  If the orbitals are not all different, then 

two must be the same, and if their spin orbitals are the same, their quantum numbers will be the 

same.  Thus we see that the sixth postulate yields the following conclusion:  If two electrons in 

an atom have the same quantum numbers, the wavefunction of the atom will be identically zero.  

This is the Pauli Exclusion Principle as we learned it in General Chemistry. 

To actually construct our Li wavefunction, we construct a matrix with the three lowest 

available spin orbitals, 1sα, 1sβ and 2sα.  Our first row will be  

 1sα(1) 1sβ(1) 2sα(1), 

and our second and third rows will put our second and third electrons, respectively, in the same 

 orbitals.  Our determinantal wavefunction is  

 ψ
α β α
α β α
α β α

Li

1s (1) 1s (1) 2s (1)
1s (2) 1s (2) 2s (2)
1s (3) 1s (3) 2s (3)

=
1
3

 

How do we calculate the determinant of a 3 x 3 matrix?  If our matrix takes on the general form  

  
1 2

1 2

1 2

a a a
b b b
c c c

3

3

3

then our determinant is given by the linear sum of three two by two determinants and is equal to  

 
a a a
b b b
c c c

a
b b
c c

a
b b
c c

a
b b
c c

1 2 3

1 2 3

1 2 3

1
2 3

2 3
2

1 3

1 3
3

1 2

1 2

= − +  

A two by two determinant has two terms, so a three by three determinantal wavefunction will 

have six terms.  Why the heck do we need six terms?  Let’s start out by writing one version of 

our ground state wavefunction,  

 ψ = 1sα(1) 1sβ(2) 2sα(3). 

This wavefunction has the flaw that it distinguishes between the three electrons, because it 

identifies specific electrons with specific orbitals.  To write a wavefunction in which all 
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electrons are equivalent, we need to include all the ways that the three electrons can be in the 

three orbitals.  This results in a total of six different configurations.  The only antisymmetric 

combination of these six configurations is given by the Slater determinant, and when written out 

in full is  

 ψLi  = 1sα(1)1sβ(2)2sα(1) -1sα(1)1sβ(3)2sα(2) + 1sα(3) 1sβ(1) 2sα(2) 

 - 1sα(2) 1sβ(1)2sα(3) + 1sα(2)1sβ(3)2sα(1) -1sα(3)1sβ(2)2sα(1). 

Note that when we had two electrons and two orbitals our antisymmetric wavefunction took only 

two terms.  Going to three electrons meant that we had to juggle six terms. In general we will 

find that an atom with n electrons will require n! terms.  Obviously with such a huge number of 

terms it would be very time consuming to identify all the required configurations even without 

the complication of having to find the one that is antisymmetric.  The task would be nearly 

impossible without the simplification offered by the Slater determinant.  The Slater determinant 

can also be used to construct excited state wavefunctions, by using a set of orbitals in which one 

or more is not in the lowest available orbital. 

How do we write a determinantal wavefunction for a n electron atom?  First we list 

our n orbitals, φ, φ2, ..., φn.  FOR EXAMPLE IN THE CASE OF BE WITH FOUR ELECTRONS, WHAT SPIN 

ORBITALS WOULD WE USE? [1sα, 1sβ, 2sα, 2sβ].  Now we construct our matrix.  The first row is 

all n orbitals with electron 1 in them.  The second row is all n orbitals with electron 2 in them.   

This is continued until we have one row for each electron, i.e., 
ϕ ϕ ϕ ϕ
ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ

1 2 3

1 2 3

1 2 3

1 1 1
2 2 2

( ) ( ) ( ) ... ( )
( ) ( ) ( ) ... ( )
.
.
( ) ( ) ( ) ... ( )

n

n

nn n n

1
2

n
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Let’s construct the matrix for beryllium.  WHAT WOULD THE FIRST ROW BE?  THE SECOND ROW?  

Thus our Slater matrix for beryllium is 

 

1s (1) 1s (1) 2s (1) 2s (1)

1s (2) 1s (2) 2s (2) 2s (2)

1s (3) 1s (3) 2s (3) 2s (3)

1s (4) 1s (4) 2s (4) 2s (4)

α β α β

α β α β

α β α β

α β α β  

To get the antisymmetrized wavefunction we just take the determinant of our matrix.  The only 

step we have left is to normalize the wavefunction.  This is simple.  For an n electron atom we 

simply multiply our Slater determinant by 1
n

.  WHAT WILL OUR NORMALIZATION CONSTANT 

FOR BE BE? 
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Lecture 22

When we use our Slater determinants to determine the proper form for the ground state 

wavefunctions the atomic orbitals we use are not hydrogen-like orbitals, but the correct orbitals 

for that particular atom.  For helium we used the variational method to approximate the correct 

orbitals.  This yielded a 2% error, which is not acceptable in atomic and molecular calculations.  

To obtain better results, we use a form of variational method called the Hartree-Fock 

approximation. 

The physical basis of the Hartree-Fock method can be summarized as follows.  We 

know that the effect of the interelectron term, 
2e

4 rπε 0 12

, is important in determining the energy of 

the helium atom.  Maybe our one electron wavefunctions will be more accurate if, instead of 

ignoring the interelectron repulsion, they include the potential of our electron interacting 

with the other electron at its average interelectron distance.  In other words, we replace the 

variable r12, which is equal to r1-r2,by the term r1 - <r2>, which we know how to calculate.  Then 

the term for r2 in the interelectron repulsion term in the Hamiltonian is a constant and the 

interelectron repulsion term is equal to 
2e

4 (r - < r >πε 0 1 2 )
.  Notice that since <r2> is a constant, a 

one electron Hamiltonian containing this term is now a function of one variable.  As a result we 

are now capable of treating one electron wavefunctions which include the interelectron 

repulsion. 

Let's show how the Hartree-Fock approach works by returning to helium.  We start 

by writing our two-electron wavefunction as the product of two one-electron orbitals, 

 ψ(r1, r2) = φ1(r1)φ2(r2) 
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  The probability distribution of the electron in orbital 2 is given by  

 φ*(r2)φ(r2) r2dr2. 

Since this is a distribution in space of a charged particle, the electron, we can view this as the 

charge distribution.  Because of this, the average, or effective, potential that electron 1 

experiences due to the position of electron 2 can be written as 

 * 2
1 2 2 2 2 2

0 12

2
eff
1

e(r )= (r ) (r )r drV 4 r
φ φ

πε∫ 2  

We now define the Hamiltonian for a single electron as  

 1
eff

2

e
1
2 effH = -

2m
- Ze
4 r

+V (r )∇
2

0 1
1πε

 

The Schrödinger equation for this effective one electron Hamiltonian is  

  ( ) ( ) ( )H r r reff
1 1 1 1 1 1 1φ ε φ=

and is called the Hartree-Fock equation, in this case for the helium atom.  In this equation, ε1 is 

called the orbital energy, the energy of the single electron orbital.  It is important to realize that 

once the orbital wavefunctions are determined by solving this Schrödinger equation, the 

total energy is then given by 

 * *
1 2 1 1 2 2 2 2 1 1

ˆ( ) ( ) ( ) ( )E = dr dr r r H r rφ φ φ φ∫ ∫  

where H  is the complete helium Hamiltonian, 

 H = -
2m

( + )- e
4

( Z
r

+ Z
r

- 1
r

)
2

e
1
2

2
2

2

∇ ∇
πε 0 1 2 12

 

If we plug this into our equation for E, we can break it up into three integrals, 
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2 2

* *
1 1 1 1 2 2 2 2 1 2 1 2 2 1

0 1 0 2 0 12

22 2
2 2
1 2

e e

Ze Ze eE = dr (r )(- - ) + dr (r )(- - ) + drdr
2m 4 r 2m 4 r 4 r

* *φ φ φ φ φ φ φ
πε πε πε

∇ ∇∫ ∫ ∫ ∫ φ  

We represent this sum as  

 E = I1 + I2 + J12. 

What are the meanings of these three terms? Let’s consider I1 and I2 first. 

 
2

*
1 1 1 1

0 1

2
2
1

e

Ze
1I = dr (r )(- - )

2m 4 r
φ φ

πε
∇∫  

Note that the Hamiltonian for this term is just the hydrogen-like Hamiltonian for He.  Helium has 

hydrogen-like orbitals only when it is singly ionized.  This means that I1 and I2 are the energies 

the electrons would have if they were in orbitals of the helium ion, i.e., the energies they would 

each have if there was no other electron.  This means that the third integral 

 * *
12 1 2 1 2 1 2

0 12

2eJ = drdr
4 r

φ φ φ
πε∫ ∫ φ

φ

 

contains the whole effect of the two electrons interacting with each other. It is called the 

coulomb integral. 

How do we solve the Hartree-Fock equation?  First of all the angular part of the 

Hartree-Fock equation is exactly the same as that for the hydrogen like atom, since our 

effective interelectron potential depends only on r and not θ or φ.  This means that we can write 

our Hartree-Fock orbitals as  

  φ θ(r )= R(r)Y ( , ).l
m

1

If we substitute this wavefunction in our Hartree-Fock equation, we obtain a radial equation, 

 [-
2m r

d
dr

(r d
dr

)- Ze
4 r

+ l(l+1)
2m r

+V (r )]R(r )= R(r )
2

e

eff

2 1
2

1
1

2

1

2

0 1 1
2 1 1 1 1πε

ε  
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It appears that we've reduced the Hartree-Fock equation to an ordinary differential 

equation that the theoretician can then solve using the same methods that yield the solution to the 

hydrogen atom.  But there's a problem here.  Remember that  

 *
1 2 2 2 2

0 12

( )
2

eff e(r )= dr r (r ).V
4 r

φ φ
πε∫ 2  

What this means is that the solution to our equation is part of our Hamiltonian.  We need to 

know our answer even before we can start! 

It is this last statement of the problem that suggests how we proceed.  The procedure for 

solving the Hartree-Fock equation is as follows. 

1) Choose a trial function φ.  This will usually be a product or linear combination of 

hydrogen-like orbitals. 

2) Calculate V1
eff with the trial function. 

3) Calculate a new φ by solving the radial equation. 

4) Compare the old and new φ's. 

5) If the new orbital wavefunction is different from the old, we take the new orbital φ, 

calculate a new V1
eff and repeat the process until at step four there is no discernible difference 

between the old and new orbitals. 

At this point the calculation is finished, the initial and final orbitals are consistent with 

each other, and for this reason, this method of solving the Hartree-Fock equation is called the 

self-consistent field method.  The Hartree-Fock Method gives an energy of E = -
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2.8617 me
(4

4

0
2 2πε )

 as the energy of the helium atom, compared with the best experimental value 

of E = -2.9033 me
(4

4

0
2 2πε )

.   

It is interesting to ask at this point what the source of the difference between the exact 

energy and the self consistent field energy is.  Remember that we assumed at the beginning 

that  

 ψ(r1,r2) = φ(r1)φ(r2). 

This product implies that the positions of the electrons are completely independent.  But 

this is not a valid assumption.  Remember that because the electrons have the same charge they 

repel each other, so one electron is less likely to be in the region occupied by the other electron.  

This means that the motions of the electrons are not entirely independent.  We say that the 

electron positions are correlated.  We call the difference between the exact energy and the self-

consistent field energy the correlation energy, i.e., 

 Correlation energy  = Eexact - ESCF. 

The calculation of these correlation energies that would allow calculation of atomic and 

molecular energies without further correction, is an extremely active field in computational 

chemistry. 
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Lecture 23

At this point we've shown the power of the sixth postulate, the Pauli exclusion principle, 

in predicting ground state atomic wavefunctions.  For example, in carbon with its six 

electrons, two electrons go into the 1s orbital, and two go into 2s orbitals, which means that the 

remaining two go into 2p orbitals for a ground state configuration of 1s22s22p2. 

Unfortunately this is not an unambiguous description of the ground state.  While the 1s 

and 2s orbitals are filled and can have only one configuration, the 2p orbitals can hold up to six 

electrons, and the two 2p electrons could be in one of two distinguishable configurations, 2px 2py 

or 2px
2. These configurations will not be equivalent in energy, since two electrons in the same 

orbital will be closer to each other than electrons in two different orbitals.  We need to find a 

way to distinguish between these two configurations without having to write them out fully, and 

a way to determine which configuration is the ground state configuration. 

We can make a simple physical argument that allows us to determine the ground 

state configuration.  Remember that for the helium atom, the interelectron repulsion term is 

given by  

 V = e
4 r

= e
4 |r - r

2 2

πε πε0 12 0 2 1|
 

where |r2 -r1| is the separation between the two electrons.  This tells us that for the helium atom 

the interelectron repulsion is lowest when the electrons are as far apart as possible.  For 

multielectron atoms, the interelectron term is given by a sum of pairwise interelectron potentials, 

i.e., 

 V = e
4 |r - r |

,i j.
i=2

n

j=1

n-1 2

i j
∑∑ ≠

πε 0
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In other words the interelectron repulsion term for a multielectron atom is obtained by taking the 

repulsion term for every combination of two electrons and summing them.  This term is 

minimized when all of the electrons are as far from each other as possible.  

Now consider the carbon atom in the configuration 2px
2.  Because both electrons are in 

the same orbital, they are located in the same region of space.  However for the configuration 2px 

2py, the electrons are separated and the interelectron term will be lower in energy.  This suggests 

that in general, the ground state will be the one in which the pairing of electrons within a 

degenerate set of orbitals is minimized.  So for nitrogen, for example, we would expect the 

configuration  

 N 1s2 2s2 2px 2py 2pz

which results in the widest possible spatial distribution of electrons. 

Writing out these electron configurations as we have done above gets a bit bulky and it is 

convenient to have a shorthand notation that represents these states unambiguously.  In addition 

we can state a simple rule to determine atomic ground states in terms of this shorthand notation. 

These shorthand notations are called term symbols.  A term symbol takes the general 

form , where S is the total spin angular momentum of the atom, L is the total orbital 

angular momentum, and J is the total angular momentum of the atom.  A typical term 

symbol might be 2 , which is read as doublet P three halves.  The doublet indicates that S = 

1/2 since our setting the superscript 2 equal to 2S + 1 and solving for S yields S = 1/2.  Note that 

the total orbital angular momentum is represented by a letter.  In analogy to the orbital 

angular momentum of single electrons where we have l = 0 is s; l = 1 is p; l = 2 is d; l = 3 is f and 

2 1S
JL+

3 2P /



 
 

141

so on, for total orbital angular momentum we have L = 0 is S, L = 1 is P, L = 2 is D, L = 3 is 

F, etc. 

Note that all of the quantities that are involved in term symbols, S, L, and J, are vector 

quantities.  In addition, note that this form of the term symbol implies that L and S are well 

defined quantities, i.e., that there are quantum numbers from which these values can be 

directly determined.  What we mean here by well-defined quantities is that if a quantity is well 

defined then its value when measured will be one of several values which is stable for a 

substantial time.  If the value is continually fluctuating it is not well defined.  In general, for 

multielectron atoms this is not a valid assumption for L and S.  In general, among the three 

quantities L, S, and J, only J will truly be an eigenvalue.  In other words, we will be able to 

make observations that reflect the value of the total angular momentum J or which depend on 

there being a definite value of J, but not ones that yield L or S exactly.  However, for the 

specific case of light atoms, where the atomic number Z < 40, L and S are so close to being 

well defined, that we can treat them as if they are. 

How do we determine the total spin angular momentum, total orbital angular 

momentum, and total angular momentum for an atom?  For light atoms, the quantities L and 

S are defined by 

 i
i

L l=∑  

and  S si
i

=∑  

In other words, when the total orbital angular momentum is a well defined quantity, it is given 

by the sum of the orbital angular momenta for each of the electrons in the atom, and when the 
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total spin angular momentum is a well defined quantity, it is given by the sum of the spin angular 

momenta for each of the electrons in the atom.  Finally J, the total angular momentum for the 

atom, is given by 

 J = L + S. 

This scheme, where the total orbital angular momentum, L, and the total spin angular 

momentum, S, are summed to give the total angular momentum, J, is called either Russell-

Saunders coupling or spin-orbit coupling.  Again, this scheme is valid only for Z < 40. 

The alternative means of determining total angular momentum is good for Z >40, and is 

called j-j coupling.  According to this scheme, the total angular momentum is first 

determined for each electron by the relation 

 ji = li + si, 

and then the total angular momentum for the atom is determined by summing the total 

angular momenta for the electrons, i.e., 

 J ji
i

= ∑  

It is a useless, but interesting piece of trivia that a 1950's physicist turned science fiction novelist 

chose J. J. Coupling as his pen name. 

Now back to our term symbols.  To write a term symbol for a given electronic 

configuration we need to know, L, S, and J.  Unfortunately, these are difficult to determine 

directly.  To see this consider our definition for L,  

L li
i

= ∑  
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l i

Note that we are adding vector quantities.  

Addition of vector quantities does not yield 

unique results when, as in our case, only the 

magnitude of the vector is specified.  

Consider the case where l1 = 3, and l2 = 1.  

There are many ways to add these two 

vectors.  Two possible ways are when the 

vectors are aligned in the same direction and when the vectors are aligned in opposite directions.  

Notice that even though the same two vectors are added the sums are very different. 

  

As a result we resort to an indirect method of determining L, S, and J.  What we will 

do is determine M, MS and MJ, and deduce L, S, and J from them.  The reason that this 

procedure is superior is that since m, and ms are the z components of their respective angular 

momenta, they are scalars.  Therefore the sums  

 M mi z
ii

= = ∑∑  

and  M = ms
i

si∑  

are easy to determine.  Since the rules that relate the values of z components of the angular 

momentum to the angular momentum itself are simply defined, i.e., 

 M = 0, ± 1, ± 2, ... , ± L 

and  MS = 0, ± 1, ± 2, ... , ± S,  
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we should be able to deduce the values of L and S.  We are able to deduce L and S because 

if an atom exists with a certain L state, all of the M states that go with that value of L must 

be present. 

Let's consider as a first example an atom with an ns2 configuration.  We will only need 

to consider the valence electrons of an atom since L and S are both 0 for a filled shell.  The 

procedure for determining the term symbol is first to set up the following table: 

 
m1

 
ms1

 
m2

 
ms2

 
M 

 
MS

 
0 

 
1/2 

 
0 

 
-1/2 

 
0 

 
0 

 
The left side of the table consists of the value of m and ms for each electron.  For an ns2 atom 

in the ground electronic state, there is only one possible set of these quantum numbers, with both 

electrons in the ns orbital, one having spin up and the other spin down.  This means that m = 0 

for both electrons, while ms = 1/2 for one and -1/2 for the other.  The right side consists of the z 

component of the total orbital angular momentum for the atom, M, and the z component of 

the total spin angular momentum for the atom, MS.  In this case M = m1 + m2 = 0, and MS = 

ms1 + ms2 = 0.  To deduce L we note that the lowest value of L which could give rise to M = 0 is 

L = 0, so we deduce that L = 0.  Similarly MS = 0 implies that S = 0.  All that remains is to 

determine J.  Since MJ = MS + M = 0, we can deduce that J = 0.  Thus for this filled subshell, L = 

0, S = 0, and J = 0, and our term symbol is .   1
0S

 This result is not just a special case.  In general, whenever your electron configuration 

consists only of completely filled subshells, L = 0, S = 0 and J = 0.  This is wonderful news 

since it means that for an atom like C, which has the configuration 1s2 2s2 2p2, we need only 
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consider the 2p electrons in determining our term symbols.  Let's make up our table for carbon.  

There are 15 possible sets of quantum numbers m and ms.  They are 

 
m1

 
m1s

 
m2

 
m2s

 
M 

 
MS

 
MJ

 
1 

 
1/2 

 
1 

 
-1/2 

 
2 

 
0 

 
2 

 
1 

 
1/2 

 
0 

 
1/2 

 
1 

 
1 

 
2 

 
1 

 
1/2 

 
0 

 
-1/2 

 
1 

 
0 

 
1 

 
1 

 
1/2 

 
-1 

 
1/2 

 
0 

 
1 

 
1 

 
1 

 
1/2 

 
-1 

 
-1/2 

 
0 

 
0 

 
0 

 
1 

 
-1/2 

 
0 

 
1/2 

 
1 

 
0 

 
1 

 
1 

 
-1/2 

 
0 

 
-1/2 

 
1 

 
-1 

 
0 

 
1 

 
-1/2 

 
-1 

 
1/2 

 
0 

 
0 

 
0 

 
1 

 
-1/2 

 
-1 

 
-1/2 

 
0 

 
-1 

 
-1 

 
0 

 
1/2 

 
0 

 
-1/2 

 
0 

 
0 

 
0 

 
0 

 
1/2 

 
-1 

 
1/2 

 
-1 

 
1 

 
0 

 
0 

 
1/2 

 
-1 

 
-1/2 

 
-1 

 
0 

 
-1 

 
0 

 
-1/2 

 
-1 

 
1/2 

 
-1 

 
0 

 
-1 

 
0 

 
-1/2 

 
-1 

 
-1/2 

 
-1 

 
-1 

 
-2 
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-1 1/2 -1 -1/2 -2 0 -2 

Note that since electrons are indistinguishable that the sets of quantum numbers  

 0   1/2   -1   1/2 and -1  1/2  0  1/2 

are identical, and only one of these configurations needs to be written down.   

Now we need to use our table to determine the different term symbols that arise when we 

put two electrons into 2p orbitals.  It is usually easiest to begin with the highest value of M.  In 

this case the highest is M = 2.  Note that there is only one value of MS when M = 2, MS = 0.  We 

immediately conclude that S = 0 for this state.  Now for L.  If M = 2, then the lowest value of L 

which can give rise to this M is L = 2.  So this state has L = 2, and S = 0 and is a 1  state.  FOR 

L = 2 WHAT ARE THE ALLOWED VALUES OF M? [2, 1, 0, -1, 2]  This means that there are four other 

configurations of our 1  state which have these values of M, and M

D

D S = 0.  If we label these five 

configurations as 1  configurations, we have 10 remaining.   D

The largest value of M remaining is M = 1, which suggests that L = 1.  WHAT ARE THE 

VALUES OF M WHICH ARISE FROM L = 1? [1,0,-1]  Now notice that if we look at the values of MS 

which go with M = 1, that we have three different configurations, MS = 0, 1, and -1.  If we look 

at M = 0, we find the same three values of MS, and looking at M = -1 gives us the same three 

values of MS.  WHAT DOES S HAVE TO BE IN ORDER FOR MS TO RANGE FROM -1 TO 1? [1]  Thus for 

these 9 configurations, we have L = 1 and S = 1,  and our term symbol is 3P .  Why do we have 9 

configurations which are labeled 3P ?  The answer is that we have three different orientations for 

the orbital angular momentum when L = 1, which are each split into three different 

configurations by the presence of three different orientations of the spin angular momentum.  If 
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we label these 9 configurations as 3P , then we have one remaining, with M = 0 and MS = 0.  The 

lowest values of L and S which yield these values are L = 0 and S = 0, a 1S state. 

Notice that we have said nothing about the total angular momentum J yet.  We will use 

our values of MJ to assign values of J, just as we used values of M and MS to assign the values of 

L and S.  First we need to determine the range of J values associated with given values of L 

and S.  Remember that we obtain J by adding the two vectors, L and S, which represent the total 

orbital and spin angular momenta.  Remember also that the magnitude of the sum of the two 

vectors depends on the orientation of the two vectors.  As we said earlier, the largest sum will 

arise when the two vectors are aligned as much as possible in the same direction.  Thus the 

maximum value of J will be L + S, with the spin and orbital angular momenta aligned.  The 

minimum sum of the two vectors will arise when the two vectors are aligned in opposite 

directions.  It follows that the minimum value of J will be |L - S|, where we take the absolute 

value because it is the magnitude of J we are interested in. 

Lets consider our 1  state first.  For this state L = 2 and S = 0, so we expect only one 

value of J, J = 2 + 0 = 2.  WHAT VALUES OF M

D

J DO WE EXPECT FOR A J = 2 STATE? [2, 1, 0, -1, -2]  

Note these are the values of MJ associated with our five 1  configurations, so all five 

configurations have J = 2, and the complete term symbol for these configurations will be 1 .  

Now lets turn to our

D

2D

3P  configurations.  For these configurations L = 1 and S = 1.  WHAT ARE 

THE POSSIBLE VALUES OF J FOR A 3P  STATE? [J = 2 , 1, 0]  WHAT ARE THE POSSIBLE VALUES OF 

MJ, WHEN J = 2? Notice that five of our 3P  configurations have these values of MJ, and therefore 

we label these five configurations as 3  configurations.  WHAT ARE THE POSSIBLE VALUES OF M2P J 
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WHEN J = 1?   Notice that three of our remaining 3P  configurations have these values of MJ, and 

we label these configurations as  configurations.  Our remaining3
1P 3P  configuration has MJ = 0.  

What will J be for this state? Therefore the term symbol for this state will be .  Finally our 3
0P 1S  

state has L = 0 and S = 0.  WHAT IS J?  Thus our final term symbol will be 1 .  Our fifteen 

configurations have resulted in five electronic states for our np

0S

2 configuration, 1 , 3 ,  , 3 , 

and . Note that what we have done here is identified the different electronic states which go 

with each configuration. 

2D 2P 3
1P 0P

1
0S

What we have not yet done is to determine the relative energies of these states.  We 

can order these states by calculating their energies using quantum mechanical methods we have 

already covered, and a great deal of computer time, but it is also possible to quickly order them 

according to three rules established by the German spectroscopist Friedrich Hund.   

The rules are as follows: 

1. The state with the largest value of S is the most stable, and stability decreases with 

decreasing S.  

2. For states with the same value of S, the state with the largest value of L is the most 

stable. 

3. If states have the same value of L and S, then, for a subshell which is less than half 

filled, the state with the smallest value of J is the most stable; for a subshell which is 

more than half filled, the state with the largest value of J is the most stable. 

Let's apply these rules to carbon.  Our five states are 1 , ,  , 3 , and .  There 

are three states, ,  , ,  which are triplets, with S = 1, so according to our first rule one of 

2D 3
2P 3

1P 0P 1
0S

3
2P 3

1P 3
0P
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these will be the stablest state.  All three of these are P states with L = 1, so we can't use our 

second rule to distinguish them.  To use our third rule, we must first determine whether the 

subshell is more or less than half filled. Since an p subshell can hold up to six electrons, our np2 

state is less than half filled and our rule states that the lowest energy state will be that with the 

smallest value of J.  Thus 3  is the ground state for C,  is the first excited state, and  is 

the second excited state.  This leaves two states, 1 and , both of which are singlets, so we 

can't use our first rule.  Our second rule tells us that the state with higher L will be lower in 

energy, so our third excited state will be 1 , and our fourth excited state will be 1 . 

0P 3
1P 3

2P

2D 1
0S

2D 0S

To see that this ordering of states matches our original common sense approach lets just 

look at the configurations which go with , our highest state, and , our lowest state.  The 

 state has the configuration 

1
0S 3

0P

3
0P

0 1/2 -1 1/2 

which has electrons in two different orbitals and the same spin.  This is exactly what we figured 

our lowest state should look like.  The 1  state has the configuration 0S

0 1/2 0 -1/2 

which has both electrons in the same orbital with opposing spins.  Again, this is exactly what we 

predicted based just on the idea that the electrons should be as far removed from each other as 

possible. 
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Lecture 26

We've now completed our treatment of the quantum mechanics of the atom.  I'd like to 

spend just a little time to review some of the consequences of our results.  The most chemically 

significant consequences of our results are the aufbau principle, which results in the structure of 

the periodic table, and the periodic trends in size and ionization energy. 

The aufbau principle is simple.  It says simply that we obtain the ground state 

electronic configurations of atoms by filling our orbitals starting with the orbital of lowest 

energy, and when this is filled moving on to the next orbital, and so on.  The Pauli principle 

tells us that we are restricted to 2 electrons in each spatial orbital.  As a result, each s 

subshell can hold two electrons, each p subshell 6 electrons, each d subshell 10 electrons and so 

on.  Our Hartree-Fock calculations tell us that the energies of the orbitals of multielectron atoms 

in the absence of an external field depend on both n and l, i.e., the energy depends not just on the 

shell but on the subshell as well.  This yields the structure of the first two rows of the periodic 

table in an extremely straightforward way.  When we get to the third row, we need to explain the 

absence of electron configurations involving d orbitals.  The answer here is simply that when we 

calculate the energies according to the Hartree-Fock method, that the energies of orbitals 

follow the order 1s, 2s, 2p, 3s, 3p, 4s, 3d, 4p.  In other words there is some factor that allows 

the energy of a 4s orbital to be lower in energy than a 3d.  We can see what this is if we look at 

the radial functions for 3d and 4s.  Even though the bulk of the electron density is closer to the 

nucleus for 3d than for 4s, remember that all s orbitals have some electron density very close to 

the nucleus.  It is the presence of this density close to the nucleus, called core penetration, that 
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brings the energy of ns orbitals slightly below n-1 d orbitals.  Note however, that the energy 

difference is small.   

Our results can also explain periodic trends.  First of all, we note that all species with the 

same valence electron configuration will have similar chemical properties.  This is the basis of 

the chemical group numbers.  One property that is important is the size of atoms.  There are two 

opposing factors that control atomic sizes.  The first is the value of the principal quantum 

number n.  Remember that as n increases the average radius, <r>, increases.  The second is 

that as the effective nuclear charge increases, coulomb attraction causes the atomic radius 

to shrink.  The experimental observations about atomic size are that as one goes down a 

chemical group, the size of the atom increases, while if one goes across a period, the size of the 

atom decreases.  In short, as one goes diagonally from the bottom left of the periodic table to the 

upper right, the atomic radius decreases. 

This is easy to explain.  As one goes down a group, because of shielding, the effective 

nuclear charge stays essentially constant, but the principle quantum number increases, so the 

radius of the atom increases.  In contrast, as one moves across the periodic table, the principle 

quantum number stays constant, but the effective nuclear charge increases, so the atomic radius 

decreases. 

Another important periodic property is the ionization energy.  The ionization energy is 

the energy necessary to remove an electron from an atom or ion in its ground electronic 

state.  The first ionization energy is the energy necessary for the reaction 

 A → A+ + e-,  

while the second ionization energy is the energy necessary for the reaction 



 
 

152

 A+ → A+2 + e-. 

It is observed that the first ionization energy decreases as we go down a group, and increases 

as we go across a period.  Once again we can explain these observations from our previous 

results.  The decrease in ionization energy as one goes down a period is because the effective 

nuclear charge exerted on the valence electrons remains approximately constant as we go down a 

period, but the distance between the nucleus and the valence electrons increases.  Remember that 

Coulomb’s law is  

 
0

( ) 1 2q qV r = -
4 rπε

 

If the charges are staying the same and the radius is increasing as we go down the group the 

energy necessary to remove the electron must be decreasing as well.  The general trend that the 

ionization energy increases across the periodic table can be explained when we realize that the 

effective charge is increasing across the periodic table, at the same time that the atomic radius is 

decreasing.  Both of these factors serve to increase the energy necessary to remove the electron 

from the atom.  There are some deviations from this general trend.  For example when we go 

from Be which has a 2s2 configuration to B which has a 2s2 2p configuration the ionization 

energy goes down slightly.  This is a result of the special stability associated with filled 

subshells.  There are also anomalies which indicate that half filled shells have a special 

stability as well.  Thus when we go from N with the configuration 2s2 2p3 to O with 

configuration 2s2 2p4, the ionization energy decreases slightly. 

Finally, we note that if we look at the sequence of first, second, third ionization energies, 

that there is a gradual increase in ionization energies until an ion is obtained with a noble 
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gas configuration, at which point the ionization energy jumps drastically.  For example C 

has a first ionization energy of 11.26 eV, a second ionization energy of 24.38 eV, a third of 47.88 

and a fourth of 64.49 eV.  The fourth ionization gives C+4 the noble gas structure of He.  The 

fifth ionization energy is 392 eV.  The reason for the gradual increase in ionization energy is the 

increase in effective nuclear charge as electrons are removed.  The reason for the drastic increase 

when the fifth electron is removed is that we are moving down one principle quantum number 

and in addition to the increase in effective nuclear charge, the radius is much smaller as well, so 

the ionization energy jumps drastically. 


