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Lecture 1 

We will now begin our study of quantum mechanics. Quantum mechanics is the 

branch of physics and chemistry that describes the behavior of light, matter and energy in 

the limits of molecular scales of size (on the order of nanometers or less), mass (between 

10-20 kg for a large protein or nucleic acid and 10-31 kg for an electron) and energy (on the 

order of 10-18 J or less).  Clearly these are substantially smaller scales than we deal with 

on an everyday basis.  For example the smallest distance that you can easily estimate with 

your naked eye is about 0.2 mm or 2 x 10-4 m, a factor of 100,000 larger than the 

distances with which quantum mechanics concerns itself.   

There are three enormous differences between the approaches taken by 

thermodynamics and quantum mechanics.  First, we have the one that we have just 

mentioned.  Thermodynamics is a theory that describes the transformations of matter in 

bulk.  Quantum mechanics describes the behavior of isolated molecules and atoms or 

small groups of atoms and molecules.  We can describe this by saying that 

thermodynamics deals with the macroscopic behavior of systems, while quantum 

mechanics deals with the behavior of microscopic systems.   Note that while it is 

possible for quantum mechanics to describe macroscopic systems (at least in theory ), 

the difficulty in solving quantum mechanical equations for macroscopic systems makes 

this untenable.  In addition, it turns out that while using quantum mechanics for 

macroscopic systems is accurate, thanks to one of the many brilliant contributions of 

Neils Bohr, the correspondence principle, it is unnecessary. 

The second difference is tied to the first.  Thermodynamics does not need to 

postulate anything about the nature of the material we are examining. We do not 
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need to know whether a gas is made of particles with space between them or continuous 

matter, as long as we can measure certain properties, such as α, κT, p and T.  In contrast, 

quantum mechanics is a theory of the microscopic structure and dynamics of matter.  We 

are concerned with the movements and energies not only of individual atoms, but of the 

electrons and nucleons which make up these particles.  It matters whether matter is make 

of combinations of fundamental particles interacting through space, or a continuous 

smear of matter called phlogiston.  So quantum mechanics involves a substantial 

amount of speculation about the microscopic nature of matter. 

The third difference is that thermodynamics is restricted to study of matter in 

equilibrium.  While a great deal of the current research in quantum mechanics is on 

determining equilibrium properties of matter, major efforts are also being made in 

applying quantum mechanics to the ways that systems change, i.e., their dynamics.  

Therefore, quantum mechanics can study systems in both equilibrium and 

disequilibrium. 

Quantum mechanics was developed between 1905 and 1925.  Before 1890 or so, 

physicists thought that all known phenomena could be explained by the two magnificent 

achievements of classical physics, classical or Newtonian mechanics, and the 

electromagnetic theory of Maxwell.  Notice the phrase “all known phenomena”.  The 

downfall, of course, was new experiments concerning microscopic phenomena whose 

results could not be explained by the laws of classical physics. 

I'd like to mention four of these phenomena, and the postulates that were put forth 

to explain them.  The four phenomena and experiments were blackbody radiation, the 
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photoelectron effect, atomic line spectra, and wave-matter duality.  We'll begin with 

blackbody radiation.   

Blackbody radiation is a phenomenon that I hope all of you are familiar with.  

Simply, if you heat an object, it gives off light.  In particular, a black body is defined as 

one that absorbs and emits light without favoring any particular frequencies. 

In the course of this semester we'll be talking about various objects absorbing or 

emitting light.  An important piece of information about emission or absorption of light is 

the spectrum of the light that is given off or absorbed.  The spectrum is a graph of the 

intensity of light as a function of the frequency or wavelength of the light. All of the 

terms I just used are critical in describing wave phenomena, so let’s quickly review them.   

If we have a normal sine wave, as below, the wavelength is the distance between 

crests and has the symbol λ.  It is also characterized by an amplitude and an intensity.  

The amplitude is the height of 

the wave, and can be either 

positive or negative.  This 

amplitude A is related to the 

intensity by  

I = A2. 

This amplitude is dependent 

both on position and time, i.e., A = A(x,t).  This means that if at a given time we move 

along the wave, the amplitude changes, but also that if we stay in one place the amplitude 

at that position will change with time, since the wave is moving.  The frequency has the 

 

A 

5 10 15 20 25 30 

-1 

-0.5 

0.5 

1 

λ 

 



 4 

symbol ν, and is the number of crests of the wave that pass a given point in a second.  For 

light, the frequency and wavelength are related by the equation 

λν = c, 

where c is the speed of light, 3.00 x 108 m/s. 

Having defined these terms let’s examine the spectrum of a black body.  At very 

low frequencies, the black body emits very small amounts of light, i.e., there is a low 

emission intensity.  In addition, the emittance at high frequencies is low as well, with a 

maximum in the middle. Blackbody emittance always shows this type of bell shaped 

curve. This is conventionally shown by plotting the energy density vs. the frequency.  

The energy density, ρ(ν,T) dν is the energy per unit volume emitted between 

frequencies ν and ν + dν. (The reason that we have to divide by the volume is that the 

amount of light emitted depends on the size of the blackbody – a larger blackbody can 

emit more light than a smaller one.) A typical plot of energy density vs. temperature for a 

black body is shown here.  
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As this plot shows, another important feature of blackbody radiation is that the 

distribution of frequencies and intensities (the spectrum) changes with temperature.  

As temperature increases, the overall intensity increases, i.e., a black body source is 

brighter at high temperature than at low temperatures.  In addition, the peak frequency, 
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the frequency with the highest intensity, shifts to higher and higher frequency as the 

temperature increases.  This is expressed quantitatively as the Wien displacement law,  

11 1 1
max 1.035 10T x x K sν − −= , 

where T is the temperature in K.   

The problem that this phenomenon presented to classical physicists is that no one 

could come up with an expression to match either the experimental frequency 

dependence or the temperature dependence.  The best attempt was the Rayleigh-Jeans 

law, 

ρ ν π ν( ,T)= 8 kT
c

2

3
 

where k is Boltzmann's constant, R/No = 1.381 x 10-23 J K-1.  The problem with this 

equation is that while it reproduces the experimental energy density pretty well at low 

frequencies, once it reaches the maximum, it just keeps going up.  Since this failure 

occurs at frequencies that correspond to ultraviolet radiation, this shortcoming of classical 

physics was called the ultraviolet catastrophe. 

Enter Max Planck in 1900.  He derived an equation that fit black body 

experiments,  

ρ ν π ν
ν

( ,T)= 8 h( / c )
e -1

3

h / kT
, 

where h is a constant now called Planck's constant, with h = 6.6262 x 10-34 J s.  However, 

in order to do so he had to assume that the energy given off or absorbed by the solid 

came in discreet, discontinuous units called quanta, where the energy of a quantum 

is given by E = hν, and where ν is the frequency of vibration of the crystal.  This was 

a total break with classical ideas that assumed that the energy emitted could take on any 
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value.  In other words, classical physics said that no matter how small the amount of 

energy that was emitted, it could be divided into smaller units (this is what is meant by 

any continuous distribution).  Planck said that there was some tiny energy unit that could 

no longer be subdivided.  This meant that in order to explain blackbody radiation, a new 

characteristic of light emission, quantization, or discontinuity in the energy spectrum, had 

to be called in.  However, while this concept was incompatible with classical 

electromagnetism, it did not have an immediate impact on physics.  Most physicists 

simply felt that quantization was a meaningless mathematical construct, rather than a 

physical reality, and that in time a better theory would come along, that would discard 

this “unphysical” postulate, and return blackbody radiation to the fold of classical 

physics.  However, the phenomenon of the photoelectric effect, and Einstein’s 

explanation of it, soon added a second blow to the bastion of classical physics. 



 7 

Lecture 2 

The second phenomenon that led to the development of quantum mechanics was 

the photoelectric effect.  In this experiment, light of a given frequency and intensity is 

shined on a metal surface and electrons are emitted.  The frequency and intensity are then 

changed and the rate of electron emission and the kinetic energy of the electrons are 

monitored.  Two features of the photoelectron effect disagree with classical theories.  

First, the experiments show that the kinetic energy of the emitted electrons is 

independent of the intensity of the incident light.  How did this differ from the 

predictions of classical physics?  According to classical physics, light consists of 

perpendicular electric and magnetic fields oscillating perpendicular to their direction of 

travel.  The classical theory of the photoelectron effect essentially says that when light 

shines on a metal surface, the electrons in that metal oscillate in unison with the electric 

field of the light wave.  The bigger the intensity of the light wave, the bigger the 

oscillation of the electron.  If the intensity is big enough, the electron breaks free.  Now 

here's the first key point.  In classical physics, the energy of a light wave is proportional 

to the intensity.  Therefore, the kinetic energy of the ejected electron should increase as 

the intensity of the light increases.  Unfortunately this was not observed.  The only thing 

that happened when the intensity of the light increased was that the number of electrons 

emitted increased. 

 The second problem with the classical physics predictions for the photoelectric 

effect is that, as can be seen from our discussion, one of the predictions of the theory is 

that any wavelength can cause a photon to be emitted as long as the intensity is high 

enough.  Unfortunately this was not observed either.  If a plot is made of electron energy 
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vs. frequency, we find that as we increase our frequency from 0, that there is a range of 

frequencies in which no electrons are emitted.  When we reach a threshold frequency ν0, 

photons are emitted with no kinetic energy.  As the frequency increases from this 

threshold frequency, the kinetic energy of the emitted photons increases linearly. 

To explain these results, Einstein, in a 1905 paper, postulated that light exists in 

little packets (or particles) of energy, which G.N. Lewis labeled photons, and which 

had energy equal to hν, where ν is the frequency of the photon and h once again is 

Planck's constant.  In other words, Einstein postulated that the energy was proportional to 

the frequency and NOT the intensity as classical physics predicted.  From this point, 

Einstein just turned to our old friend from thermodynamics, the law of conservation of 

energy.  He argued that the photon energy equaled the energy necessary to eject the 

electron, which he labeled the work function, Φ, plus the kinetic energy of the electron, 

i.e., 

hν = Φ + 1/2 mv2. 

This simple equation can explain both of our observations.  First, to eject an electron with 

zero kinetic energy requires a photon with frequency Φ/h.  Any photon with lower 

frequency won't have enough energy to eject the electron.  This explains the existence of 

a threshold frequency.  In addition, if we write our equation to solve for kinetic energy, 

we get 

1/2mv2 = hν - Φ. 

Since Φ is a constant for each metal, this equation tells us that the kinetic energy of the 

ejected electrons will increase linearly with frequency.   
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 The postulate that light exists in particle form, i.e., as packets of energy, also 

explains the effect of increasing the intensity of the incident radiation.  Since intensity is 

energy/unit area, and since each of these photons has energy equal to hν, the only way to 

increase the intensity is to increase the number of photons.  Since a single photon can 

eject a single electron at most, increasing the intensity increases the number of incident 

photons and therefore the number of ejected electrons.  This explanation of the 

photoelectric effect earned Einstein the Nobel Prize in 1921. 

Note that Einstein's explanation represents an extension of Planck's ideas.  Where 

Planck had only said that the energy emitted or absorbed by a black body had to be 

quantized, Einstein said that light itself had to be quantized, where quantized is taken to 

mean that the energy comes in discrete units, or quanta. The photoelectron effect also 

suggested that light had characteristics both of particles and of waves, a completely new 

idea called wave-particle duality. 

Einstein's result was important not just because it extended Planck's ideas but also 

because it involved the same fundamental constant required in Planck's work.  When the 

constant h appeared in Planck's theory of blackbody radiation, it was not considered 

significant, but simply was thought to be an arbitrary number obtained to fit the data to 

the blackbody curves.  However, when the same constant appeared in Einstein's 

explanation of an independent phenomenon, and in an equation for the energy of light, it 

began to appear that this constant was not arbitrary but had some fundamental 

significance. 

Einstein’s conclusion that light has some particle characteristics led to an 

interesting corollary.  Einstein concluded that as a particle, light must have a well-defined 



 10 

momentum.  However, Einstein carried this idea even farther when he calculated the 

momentum of a photon.  Remember that until then, momentum had been considered a 

property of particles, so when Einstein was able to demonstrate that photons had 

momentum, it strengthened the growing belief that light had both particle and wave 

properties.  Einstein's equation for the momentum of a photon was p = h/λ, where p is the 

momentum, h is Planck's constant, and λ is the wavelength of the photon.  Einstein’s 

momentum calculation has been confirmed both qualitatively and quantitatively by 

experiments many times over.   

The next phenomena that caused trouble for classical physics were the spectra of 

atoms, in particular the spectrum of the hydrogen atom.  Remember that according to 

classical physics, energies should be continuous.  In general, classical physics was most 

comfortable with continuous phenomena, and this included the frequencies of light 

absorbed and emitted by matter. For example, the radiation emitted by a black body 

varies continuously with wavelength.  Remember, in the theory of blackbody radiation, it 

was not the light itself which violated classical understanding, but the hypothesis that the 

motion of the electrons which emitted the light was quantized. 

The emission and absorption spectra of atoms were quite another problem. These 

spectra rather than being continuous take the form of lines.  The emission spectra show 

groups of lines with spaces in between in which no light is emitted, while the absorption 

spectra show absorption lines with no absorption in between.  They are intrinsically 

discontinuous.  Classical physics could produce no theory that could account for these 

discontinuities. 

The discontinuities are particularly clear in the spectrum of hydrogen.  Hydrogen 
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has three main groups of emission lines.  The Lyman series, in the ultraviolet, begins at 

121.6 nm and ends at 91.2 nm, the Balmer series, in the visible, begins at 656.3 nm and 

ends at 264.7 nm, while in the infrared, the Paschen series begins at 1876.0 nm and ends 

at 8206 nm.  We can talk of the ends of these series because in each series the lines get 

closer and closer together until they converge to the final value and therefore the final 

value of such a series is called the convergence limit. 

Rydberg showed that the frequencies of all of these series could be accounted for 

by a single simple formula.  This formula uses a unit called wavenumbers to report the 

positions of the lines.  The wavenumber, ν , which has the units cm-1, is defined by  

1
c
νν

λ
= = , 

where the wavelength is in units of cm.  These units were introduced just to keep the 

numbers that spectroscopists have to work with reasonably small, yet still have a unit like 

frequency that is directly proportional to energy.  The Rydberg formula in these units is  

2 2
1 2

1 1 1= = R( - )
n n

n
λ

 

where n2 and n1 are integers such that n2 > n1 and R is the Rydberg constant, 

109,677.5856 cm-1.  For example, the first line in the Lyman spectrum corresponds to n1 

= 1 and n2 = 2, and has the wavenumber ν  = R(1-.25) = 82, 258 cm-1.  Since λ = 1/ν , 

this is equal to 121.6 nm, the same wavelength that we observe experimentally.  The fact 

that integers are an integral part of the Rydberg equation is the mathematical way of 

saying that the spectra are discontinuous.  Once again, classical physics could not account 

for the discontinuities.  
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 I just made a claim that classical physics could not come up with a theory to 

account for the line spectra of atoms, yet I also just taught you about the Rydberg 

formula.  CAN ANYONE TELL ME, WHY WHEN THE RYDBERG FORMULA EXISTS, I CLAIMED 

THAT THERE WAS NO THEORY TO EXPLAIN THE LINE SPECTRA OF HYDROGEN? [The Rydberg 

equation fails to explain why the line spectra are discontinuous – it simply summarizes 

the results of several experiments and expresses them in the form of a succinct equation.  

Equations or principles that summarize experiments are called laws.  A theory must 

contain an explanation for the observed behavior.] 

Neils Bohr was able to explain the spectrum of hydrogen and the Rydberg 

equation with his model of the hydrogen atom.  The key concept of his model has to do 

with a property called angular momentum.  Let’s quickly review this concept since it is 

important in many chemical phenomena, including NMR spectroscopy. 

Remember that linear momentum has the definition p = mv.  Now consider a 

particle rotating in a plane around some fixed central point at a distance r from the center. 

The frequency of rotation is the number of times the particle passes an angular position 

on the plane in a second.  If the frequency of rotation is νrot, then the velocity of the 

particle is 

v = 2πrνrot. 

We can define a new type of velocity called angular velocity as  

ω = 2πν.  
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This angular velocity is the rate at 

which the revolving particle 

sweeps through the angles of the 

circle in radians, d
dt
θ  and is related 

to our linear velocity by 

v = rω. 

The kinetic energy, T,  of our 

particle is equal to  

T = 1/2 mv2 = 1/2 mr2ω2. 

It is convenient at this point to define another new variable for circular motion called the 

moment of inertia,  

I ≡ mr2. 

Just as mass represents the resistance to linear acceleration, the moment of inertia 

represents the resistance to angular acceleration.  Introduction of the moment of inertia 

allows us to write the kinetic energy of the rotating particle as 

T = 1/2Iω2. 

Our equations of motion for linear motion and angular motion are analogous.  We see 

that in our two equations for kinetic energy that m is analogous to I, while v corresponds 

to ω.  What this suggests is that there should be a quantity for rotating systems that is 

analogous to the momentum mv.  Such a quantity exists and is called the angular 

momentum,  

 ≡  I ω = mvr. 

r
m

ω
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It turns out that just as m, v, and p are convenient parameters to describe the dynamics of 

linear motion, I, ω, and  are much more convenient when describing the dynamics of 

circular motion.   
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Lecture 3 

Bohr's theory of the atom, first proposed in 1913, was built from the following 

three hypotheses. 

1) Electrons in atoms have stationary orbits.  I.e., the radii of the orbits are fixed. 

(Of all of Bohr’s hypotheses, this is the least intuitive, since in classical mechanics all 

macroscopic objects have orbits that decay, unless energy is continuously provided to 

keep the orbit stable.  Think of satellites and the first space station.) 

2) The angular momentum of the electrons in these orbits is quantized according 

to ω = mvr = n, where  is h/2π.  Again, quantization means that the angular momentum 

cannot vary continuously, but must change in discrete steps (quanta).  In this formula, the 

quantization lies in the presence of the integers n, which Bohr labeled quantum numbers.  

If the range of angular momenta were continuous, the integer n would be replaced by a 

positive real number. 

3) The spectrum of hydrogen arises when an electron in one orbit moves to a 

different orbit, and the energy difference between the two is emitted or absorbed as a 

photon of energy hν.  The photon is emitted if the electron moves from an orbit of high 

energy to one of low energy, and the photon is absorbed if the electron moves from an 

orbit of low energy to one of high energy. 

The first implication of Bohr's model of the hydrogen atom is that the electron in 

the hydrogen atom can only occupy orbits with certain fixed radii.  By combining his 

hypotheses with results from classical physics, Bohr was able to come up with a formula 

for the radii of these orbits, 



 16 

r 4 n
e

=
πe
µ

0
2 2

2

 , 

where eo is a constant called the permittivity of free space, 8.854 x 10-12 C2N-1m-2, n is an 

integer greater than zero called the principle quantum number, e is the charge of an 

electron, 1.602 x 10-19 C, and µ is a quantity called the reduced mass. 

The reduced mass has the formula µ =
+

m m
m m

1 2

1 2

.  It is used to simplify the 

treatment of a class of problems involving two particles bound together by a central 

force.  A central force is one that acts along a straight line between two particles.  

One example of a central force is the bond between two atoms.  Another example of a 

central force is the coulomb attraction between the proton and electron in our hydrogen 

atom.  For the hydrogen atom the reduced mass is given by 

µ =
+

=
+

=
− −

− −
−m m

m m
9.100x kg x1.673 x kg
9.100x kg 1.673 x kg

9.095x kge p

e p

10 10
10 10

10
31 27

31 27
31  

Notice that the reduced mass of the hydrogen atom is slightly smaller than the mass of the 

lighter of our two particles, the electron.  You will find that the upper bound of the 

reduced mass will be the mass of the lighter of the two particles, while the lower 

bound is 1/2 of the mass of the lighter particle.  This is because the reduced mass is the 

effective resistance to acceleration for the two particle system, and two particles coupled 

by a central force accelerate more easily than the lighter particle alone. 

The second implication of Bohr's hypothesis is that the energies that an electron 

can have will also be limited to certain values that will be discontinuous, i.e. the 

electron energies in a Bohr hydrogen atom are quantized.  Bohr used his hypotheses 

and the laws of classical physics to come up with a formula for these energies, 
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 The third implication of Bohr's model is that we will observe spectra that follow 

Rydberg’s formula.  To see this remember that Bohr said that emission of light from H 

atoms occurs when an electron in one orbit drops to another orbit with lower energy, and 

that the difference in energy appears as a photon.  In equation form this becomes 

En2 -En1 = ∆E = hν. 

If we substitute Bohr's formula for the energy of an electron in an orbit with quantum 

number n we get 

h e
8 h

( 1
n

- 1
n

)n µ
e

=
4

0
2

1
2

2
2  

If we remember that ν = cν , then we can rewrite this in terms of wavenumbers to get 

ν µ
ε

=
ε

8 h c
( 1

ν
- 1

ν
)

4

0
3

1
2

2
2  

Notice that this equation bears a marked resemblance to the Rydberg formula.  In fact 

comparison of the two equations shows that if Bohr's model is correct that the Rydberg 

constant is given by 

R e
8 h c

=
µ
e

4

0
2 3  

When we plug in the values of the constants in this equation, we find that the theoretical 

value of the Rydberg constant is 109,681 cm-1, a number which compares favorably with 

the best experimental value of 109,678 cm-1. 

Bohr's model was very successful for hydrogen, but it has its limitations.  One 

of these is that it can't predict how bright a given line in the hydrogen spectrum will be, 
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i.e., it can't predict the intensity of the line.  The second is that it fails absolutely in 

describing the behavior of any atom with two electrons or more.  The failure of Bohr's 

model lay primarily in too great a dependence on classical ideas.  There were a few more 

key ideas that needed to fall into place before a new mechanics could be developed which 

could accurately describe atoms, molecules and elementary particles. 

The next piece of the puzzle was provided in 1924 by Louis de Broglie, a French 

aristocrat turned physicist. After the Einstein photoelectric effect paper, de Broglie 

proposed that not just photons, but all matter would show wave particle duality.  De 

Broglie went through a thought process something like this.  Einstein showed that light, 

which everyone thought was a wave, had particle characteristics, and momentum.  

Perhaps matter, which we thought consisted of particles, acts like a wave.  This means 

that it must have a wavelength.  To find the wavelength of a particle, de Broglie turned 

the Einstein formula around to get 

λ = h/p = h/mv, 

where m is the mass of the particle, and v is its velocity, the de Broglie formula.  De 

Broglie’s formula was counterintuitive, since most of us have seen no evidence that 

macroscopic particles (golf balls, baseballs, basketballs, and physical chemistry 

textbooks) have any wavelike behavior.  However, only three years later, De Broglie’s 

hypothesis and his formula were both proven correct by an experiment done at Bell 

Laboratories in Murray Hill, New Jersey, by two American physicists, Clinton Davisson 

and Lester Germer.  

The Davisson-Germer experiment showed that electrons accelerated near the 

speed of light and passed through a crystalline material form interference patterns.  
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This was a particularly astonishing result, because interference is a phenomenon that is 

exhibited solely by waves, and electrons were definitely matter, particles. 

Because interference is a basic property of waves, and because it will be 

important in our understanding of chemical bonding, this is another basic concept I'd like 

to review.  Interference is most clearly demonstrated by the double slit experiment.  You 

have a light source and a screen.  In between the light source and the screen there is a 

board with two slits in it.  Cover up one slit, and you get a smooth distribution of light 

with a single intensity maximum.  Cover this one and open up the other and you get the 

same thing.  But open up both slits at the same time and you get an undulating intensity 

pattern, with alternating bright and dim spots, or in other words, alternating intensity 

minima and maxima.   

This phenomenon is called interference.  It is a result of two things.  The first is 

the fact that waves vary periodically.  Light of one pure color, called monochromatic 

light, can be represented as a simple sine wave.  If the wave has an amplitude A, its 

maximum value is A and its minimum will be -A.  If we overlay two of these waves we 

can do it in a number of ways. One is to overlay them so that all the positive peaks line 

up.  In this case when we sum the waves, the resulting amplitudes are twice as high as 

either of the original waves.  This is called constructive interference.  Now consider the 

case where the positive peaks line up with the negative peaks.  When we add the waves 

the amplitudes cancel, and there is no resultant intensity.  Since adding the waves 

destroys them this is called destructive interference.  So you see that depending on how 

the peaks of the waves line up, we can have either reinforcement of the intensity or 

canceling of the intensity.  (If this doesn’t seem real to you, think of waves in the ocean.  
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Positive amplitude would correspond to the peaks of waves (which are higher than a calm 

ocean surface), and negative amplitude would correspond to troughs of waves (which are 

lower than a calm ocean surface).  If the trough from one ocean wave and the peak from 

another ocean wave met at the same place, they would cancel and the result would appear 

to be the calm ocean surface.) The variable that describes the way that the peaks line up is 

called the phase.  We say that if waves have opposite phases then we will observe 

destructive interference, and if waves have the same phase we will have constructive 

interference.  Interference patterns can be produced by splitting a light source into two 

parts and recombining it, or by shining light on a grating.  Typically a crystalline solid is 

used as a grating for light in the x-ray region of the spectrum.  Practical applications of 

these interference concepts are FTIR's, which use interference patterns to determine IR 

spectra, and lasers, whose incredible brightness comes from many repetitions of 

constructive interference.   

 We can see that interference is a phenomenon closely tied to waves.  Thus when 

Davisson and Germer observed interference patterns for electrons it was quite a shock 

because it led to only one conclusion - electrons and, by extension, other particles - 

have wavelike characteristics.  This provided qualitative proof of the DeBroglie 

hypothesis. However, Davisson and Germer also provided quantitative proof of the 

DeBroglie equation.  By calculating the wavelength of the electrons that hit their crystal 

using the DeBroglie formula, they were able to demonstrate that the observed diffraction 

pattern was the same that would have been observed for X-rays of the same wavelength 

passing through the crystal. 
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The final result that preceded the development of the quantum mechanics was the 

Heisenberg Uncertainty principle, Heisenberg’s most famous, and third most important 

contribution to modern physics. [What were the first two? Second, the simultaneous 

development of a second form of quantum mechanics at the same time as Schrödinger.  

First, failing to develop an atomic bomb for the Nazis.] The Heisenberg uncertainty 

principle is innocent looking enough. It is simply 

δp δx ≥ /2. 

In this equation, δ means the uncertainty in the measured value of a quantity, and   is 

simply 2
h

π .  Therefore this equation means that the uncertainty in the position of a 

particle times the uncertainty in the momentum of a particle has to be greater than or 

equal to Planck’s constant divided by 4π.  In other words, if you know where the particle 

is with infinite precision you can't know where it's going, and if you know where it’s 

going with infinite precision, you can't know where it is. 

This principle has little effect on classical physics in its normal domain, i.e., large 

particles, and high energies, because Planck's constant, 6.6262 x 10-34, is such a small 

number.  However, in the limit of quantum energies and quantum dimensions, the degree 

of uncertainty becomes significant. 

We can use the following thought experiment to demonstrate the reasonableness 

of Heisenberg’s principle, although the exact derivation is somewhat more subtle.  

Suppose you have an electron with an exactly known momentum that you want to locate.  

The only way to locate such a small particle is to scatter a photon off of it.  The 

uncertainty in the location of an electron located this way is approximately equal to the 

wavelength of the photon, since we can use the wavelength of a photon as a measure of 
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its size. This means that we can write δx ≈ λ.  The shorter the wavelength of the photon, 

the smaller the uncertainty in the position of the electron is.  Now when two particles 

collide, some fraction of the momentum of one particle is transferred to the other.  You've 

all seen this when a cue ball in pool strikes another ball and starts it moving.  A photon 

with wavelength λ has momentum p = h/λ.   When it strikes the electron some or all of its 

momentum may be transferred to the electron.  We don't know how much.  Thus the 

uncertainty in the momentum induced by the photon striking the electron is δp ≈ h/λ.  

Now if we take the product of the two uncertainties we get δx δp ≈ h.  This matches the 

requirement of the Heisenberg principle that the uncertainty be greater than or equal to 

/2. 

The implications of this principle are far reaching.  It is the death of the concept 

of the trajectory, which is so central to classical mechanics.  A trajectory is the 

knowledge of how the position and momentum of an object change over time.  We are all 

intuitively familiar with this concept.  For example if I throw this eraser to 

_____________ (s)he will  be able to make at least a valiant attempt at catching it 

because (s)he can predict the position and momentum as it approaches her (him) from its 

previous behavior.   

When we talk about Bohr orbits, we are saying that the electrons in a hydrogen 

atom move in circular trajectories.  The key point here is that in order to have well 

defined trajectories, you have to know both the position and the momentum of the 

particle exactly and at the same time.  Heisenberg says that we can't.  So we can't have 

electrons moving in well-defined orbits.  We can only talk about where we can find 

electrons OR where they are going. Therefore from now on we have to find a way to 
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describe the behavior and dynamics of matter without trajectories, and therefore without 

causality. 
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Lecture 4 

 Let me summarize our results about the behavior of matter on the scale of 

molecules.  The energies of electrons in solids and in atoms are limited to discrete units 

called quanta.  The energies of photons are also quantized.  Quantization of photon 

energy also implies that light occupies a discrete space, or in other words, has particle 

characteristics.  Matter, in turn, has wave characteristics, in particular a wavelength.  

Finally, there are certain pairs of observables, like energy and time, or position and 

momentum, for which we cannot simultaneously measure values with infinite precision.  

For position and momentum, this implies that we cannot speak of trajectories for particles 

that are sufficiently small. 

 It was necessary to find a new version of mechanics that included all of these 

features.  In the 20’s, Schrödinger and Heisenberg both came up with theories that 

accounted for these results.  While neither theory was complete, both provided 

foundations upon which more and more accurate versions of quantum mechanics were 

based.  To give a brief history, Schrödinger’s and Heisenberg’s quantum mechanics 

yielded accurate results for many experimental observations, but did not yield electron 

spin.  Dirac, by treating the mass of the electron relativisitically, came up with an 

equation whose solution yielded the electron spin and predicted the existence of the 

positron.  Subsequent modifications by Feynman, Schwinger, Tomonaga, Gell-Mann, 

Weinberg, and Glashow have resulted in a quantum mechanics which can account for all 

electromagnetic phenomena, the weak force, which controls the decay of fundamental 

particles, and some aspects of the strong force, which holds nuclei together, overcoming 

the coulomb repulsion between the protons.  Anyone interested in reading more of the 
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fascinating history of quantum mechanics should read either The Second Creation, by 

Crease and Mann, or The Making of the Atomic Bomb by Richard Rhodes, both of which 

are in our library. 

 In chemistry, we usually limit our attention to the Schrödinger and Heisenberg 

models of quantum mechanics, adding the electron spin in an ad hoc manner.  

Sometimes, for heavy atoms, such as bromine, mercury or iodine, where the core 

electrons are moving at relativisitic speeds, we use the Dirac equation, but that is outside 

of the sphere of our course. 

 Schrödinger postulated an equation for the behavior of a particle that was 

analogous to the classical mechanical equation for the dynamics of a wave.  The most 

general form of this equation depends both on time and position.  We will spend most of 

our time on a special case called the time independent Schrödinger equation, which is 

sufficient for many problems in chemistry. 

 For a single particle that is constrained to move only along the x-axis, the time 

independent Schrödinger equation is  

2

22 (x)- +V(x) (x)= E (x)
2m x

ψ ψ ψ∂
∂

 , 

where m is the mass of the particle, V(x) is the potential energy in which the particle 

moves, E is the total energy (kinetic plus potential) of the particle, and ψ(x) is called the 

wavefunction of the particle and is a function of the position only. We will talk about the 

solution of this equation and the interpretation of the results in some detail, but in brief, 

the way that this equation is solved is by finding a function ψ(x), that meets the 

requirement that when it’s second derivative is taken and multiplied by 
2

-
2m
  and added 



 26 

to the product of the function with the potential V(x) yields the original function times a 

constant, which we will call E.  While this sounds like a daunting procedure, it is a 

procedure that is well established for many problems, and we will learn how to solve for 

the wavefunction one problem at a time.  Some of these problems will be too advanced 

for this course, so in those cases, it will be enough for you to take the wavefunctions I 

provide for you, and to demonstrate that they are solutions of the Schrödinger equation.  

To reiterate – our tasks will be 1) to learn how to write the Schrödinger equation for a 

given problem.  2) Given the Schrödinger equation for a given problem learn either how 

to solve for the wavefunction ψ or to demonstrate that a given wavefunction ψ is a 

solution of the Schrödinger equation.  3) Learn how to extract measurable predictions 

about our problem from the wavefunctions.   

The wavefunctions that are obtained can be either real functions or complex 

functions.  Remember that the concept of complex numbers arises from the square roots 

of negative numbers.  There is no real number that can be squared to yield a negative 

number.  However, if we introduce a new number i, where i is defined as the square root 

of -1, it is now possible to write down square roots of negative numbers.  For example, 

the square root of -a is given by 

-a = i a , 

where a is a positive number.  Any number that is a real number times i is called an 

imaginary number.  Any number that has both real and imaginary parts, i.e., any 

number of the form a ± i b, is called a complex number. 
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 It is possible for complex numbers to be the arguments of functions.  Complex 

numbers take on particular importance in quantum mechanics because of the Euler 

relation,  

e ii± = ±θ θ θcos sin  

The Euler relation connects exponentials of complex numbers to sine and cosine 

functions, which are the functions that describe wave behavior. The Euler relation also 

leads to a really wonderful equation,  

eiπ = −1 

This equation, rather unexpectedly, connects the three most important transcendental 

numbers in an extremely simple relation. 

 Let's return to the Schrödinger equation,  

-
2m

(x)
x

+V(x) (x)= E (x)
2 2
 ∂

∂
ψ ψ ψ2  

This equation is a second order differential equation, because it contains a second 

derivative (
2

2

( )x
x
ψ∂
∂

).  When we set up an equation like this, our only knowns are the 

mass of the particle and the potential energy function in which it moves.  Our goal in 

solving an equation like this is to find those wavefunctions ψ(x) that are solutions of this 

equation and the energies that are associated with these wavefunctions.  The 

wavefunctions that solve the Schrödinger equation have the special name eigenfunctions 

and the energies that are associated with these eigenfunctions are called eigenvalues.  In 

general, there will not be a single solution to the equation, but rather a set of solutions.  

We will indicate this by labeling an individual eigenfunction ψi(x), and the associated 

energy Ei. 
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 It is fairly simple to find the solution to this equation for the simplest cases, and 

we will do this shortly.  However, in general, solving the Schrödinger equation is quite 

involved, so for most cases, I will merely show you how to set up the equation and what 

the results are.  Even though I won't be expecting you to solve the Schrödinger equation, 

I will expect you to be able to confirm that what I claim is a solution actually is one.  In 

principle, the procedure for this is trivial - you merely take the solution and plug it in to 

the equation and see if it yields a constant times itself.  In practice, the math can be quite 

involved.  We will demonstrate this for the simplest couple of cases.  The more 

complicated cases will be left to you as homework. 

 When Schrödinger first solved his equation, it was a big success, yielding the 

correct energies for a number of phenomena.  In addition to these energies, he also got 

this wavefunction ψ, which was a bit of a problem, because he didn't know what it meant.  

The current interpretation of the wavefunction was first suggested by Max Born.  It 

says that the wavefunction allows us to determine the probability that we will find a 

particle in a given region in space.  More precisely, he suggested that the wavefunction 

gives a probability amplitude for the particle at a given point in space.  [Analogy to 

waves] The actual probability that a particle will be found in the infinitesimal region 

between x and x + dx is given by  

Prob{x,x+ dx} = x x dxψ ψ*( ) ( )  

ψ*(x) is called the complex conjugate of ψ(x).  You form a complex conjugate of a 

complex number by reversing the signs of all the i' 's in that number. For example if we 

have a complex number 5 - 7i, its complex conjugate is 5 + 7i.  You can also take the 

complex conjugate of a function by reversing the signs of each i in the function.  For 
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example if ψ(x) = ei x + e-2i x, the complex conjugate ψ*(x) = e-i x + e2i x.  The quantity 

ψ*ψ, called the probability density, is always real and positive, because all products of 

a complex function and its complex conjugate are real and positive. For example, if a 

complex number z = 5 + 7i, then  

z z = (5+7i)(5 -7i)= 25 - 49 i = 25+ 49 =74,* 2  

while if f(x) = eix , then 

f(x) f x = e e = e = e = 1ix -ix ix-ix 0( )* ( )  

Because of our interpretation of ψ*ψ as a probability density, it makes sense that it is 

always real and positive, since negative or imaginary probabilities make no sense.  The 

probability density, ψ*(x)ψ(x), is often abbreviated as ψ 2 ( )x . 

 If we want to find the probability that our particle is between two positions on 

the x axis, we have to integrate our previous probability expression, 

*b

a
Prob{a,b}= (x) (x)dxψ ψ∫  

Since for a one dimensional problem the particle must be somewhere on the x axis,  

* 1Prob{- , } dxψ ψ
∞

-∞
∞ ∞ = =∫  

 When the integral of the square of a wavefunction over all space is equal to 1, the 

wavefunction is called a square normalized function.  All wavefunctions must either 

be normalized, or normalizable.   

 Let's do an example of normalizing a function.  Suppose that we want to 

normalize ψ(x) = sin 2πx, where the particle is restricted to lie between -1/2 and 1/2.  

This means that we are looking for a constant B so that Bψ = ψ' is a normalized function, 

i.e., 
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1/ 2 1/ 2* * 2 *

1/ 2 1/ 2
( ) ( ) ( ) ( ) 1B x B x dx B x x dxψ ψ ψ ψ

− −
= =∫ ∫  

For our case this becomes 

1/ 22 2

1/ 2
sin 2 1B x dxπ

−
=∫  

 HOW MANY OF YOU KNOW WHAT THE INTEGRAL OF SIN22πX DX IS?  HOW MANY OF 

YOU REMEMBER HOW TO CALCULATE IT?  The good news is that you really don't have to 

know how to.  The reason is that in the CRC handbook and in various math and physics 

handbooks you can find tables of integrals, and look up the answers to integrals far more 

complicated than this.  I've photocopied a couple of pages from one table of integrals.  

CAN ANYBODY FIND THE INTEGRAL OF SIN22πX DX?  WHAT'S THE CLOSEST INTEGRAL YOU 

CAN FIND?  What we need to do is put our integral in a form so that it looks exactly like 

the one in the table.  To do this we use substitution of variables.  We need our integral 

to look like sin2x, so we'll create a new variable z = 2πx.  This makes our integral 

2 2sin 1B z dx =∫  

We need to do two more things.  First we need to match the differential with the variable 

z.  This is easy.  Since z = 2πx, dz = 2πdx which implies that dx = dz/2π.  Substituting 

this gives 

2
2sin 1

2
B z dz
π

=∫  

 Now we need to turn to the limits of integration.  Our original limits of 

integration were from x = -1/2 to x = 1/2.  Since we're integrating over z now, we have to 

find the equivalent values of z.  This is also easy.  Since z = 2πx, when x = -1/2, z = -π 

and when x = 1/2, z = π.  So our integral is now 
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2
2sin 1

2
B z dz

π

ππ −
=∫  

DOES THIS MATCH ONE OF THE INTEGRALS IN THE BOOK?  Close but no cigar!  The integral 

in the book is  

2

0
sin

2
x dx

π π
=∫  

 
Notice that the function is the same from -π to 0 as from 0 to π, so that all we need to do 

is recognize that  

2 2

0
sin 2 sinzdz zdz

π π

π
π

−
= =∫ ∫  

 Our condition for normalization now becomes 

2

2 2B or Bπ
π

= =  

So our normalized wavefunction is ψ(x) = 21/2 sin 2πx. 

 Besides normalization, the interpretation of wavefunctions as probability 

amplitudes requires that our wavefunctions have two other characteristics.  First, ψ(x) 

must be single valued. [Draw a single valued and a doubled valued function.] This 

should make sense since we can't have two different probabilities of finding the particle 

at a given place and time.  Second, ψ(x) must be a continuous function. 


