Energy from Electron Transfer

Batteries and Fuel Cells

Outline of Topics

Renewable Energy Overview

- Biomass Energy
- Geothermal Energy
- Solar/PV Energy
- Hydroelectric Power
- Wind Energy

2 Chemical Batteries

- Redox Reactions
- Single-Use Batteries
- Rechargeable Batteries
- Fuel Cells

3 The Hydrogen Economy

- Current Energy System
- Components of H₂ Economy
- H₂ Production
- Problems and Alternatives

Lecture Question

What are the renewable energy sources? Be as comprehensive as possible. Which of these do you think of as 'clean?'

About 80% of energy from (nonrenewable) fossil fuels
Over 90% of energy from combustion

3 / 29

Biomass Energy (Review)

Remind me: what are the environmental impacts of using biomass energy?

Potential advantages:

- Renewable/sustainable energy source
- More versatile than other renewable sources
- Theoretically/ideally only minor impact on global carbon cycle

Potential disadvantages:

- Air quality problems from combustion
- Water quality problems from intensive agriculture
- Increase in food prices
- Generally: envmtl/social impact very dependent on biomass source

Geothermal Energy

How does it work?

- Geothermal power plants: use earths heat to power steam turbines
- Geothermal direct use: use hot springs (etc) as heat source
- Geothermal heat pumps
 - Heating and cooling, uses ground as heat source/sink
 - Temperature of ground below 6 ft is equal to average annual temperature of the surroundings
 - Not truly geothermal: energy source is the sun
 - 'Ground-source heat pump' or 'geo-exchange system' are better terms
 - Unlike power plants and direct use, can work in virtually any location
 - According to the EPA: the most efficient, clean and cost-effective space heating system available.

Geothermal Energy

What are its advantages and disadvantages as an energy source?

Advantages?

- Renewable
- Easy to exploit in some cases
- Carbon efficiency generally better than fossil fuels
- High net energy yield

Disadvantages?

- Not available everywhere
- Releases some noxious gases, including hydrogen sulfide (H₂S), methane, (CH₄), ammonia (NH₃), carbon dioxide (CO₂)
- Land subsidence, groundwater depletion can be a problem
- Can produce some water pollution

Radiant Solar Energy

How does radiant solar energy work as an energy source?

- Solar power plants: steam produced to turn turbine (heat engine)
- Solar heating: active and passive systems
 - Active solar heating requires another energy source to power pumps, fans, (etc) to move the heat
 - Passive solar heating uses no other energy source
- Photovoltaic cells: 'solar cells' use special semiconductors.

Radiant Solar Energy

What are the advantages and disadvantages of solar/PV as an energy source?

Advantages?

- Renewable
- High energy yield
- A very clean source of energy
- No air/water pollution during operation
- Low operating costs; capital costs decreasing
- Will pay for themselves over time

Disadvantages?

- Intermittent source: energy storage issues
- Low energy density: requires pretty much land area
- Materials for PV cells not necessarily renewable

Hydro Energy

How does it work and what are its advantages and disadvantages?

- River is dammed to create a reservoir
- Volume/size of reservoir represents stored hydrologic (potential) energy
- Flowing water turns turbine to generate electricity

Advantages?

- Cheap to operate
- Renewable
- High yield (not a heat engine)
- Pretty plentiful
- Not intermittent
- Reservoirs have multiple uses
- Less air pollution than combustion heat engines

Disadvantages?

- Human population displacement
- More significant breeding ground for disease
- Reduces availability of water downstream
- Ecosystem impacts
- Water pollution problems
- Air pollution
- Decommissioning is a challenge

Wind Energy

How does it work?

- Shading gives potential for in-state electrical needs
- Numbers give potential for all US electricity

Wind Energy

What are the advantages and disadvantages of wind energy?

Advantages?

- High energy yield (not a heat engine)
- Renewable
- Very clean source of energy: no pollution (air or water) during operation
- Long operating life
- Low operating/maintenance costs
- Can be quickly built; not too expensive
- Cost now almost competitive with hydro and fossil fuels
- Compatible with some multiple uses

Disadvantages?

- Energy storage issues
 - Intermittent
 - Must be connected to electrical grid
- Only practical in areas that are windy enough
- Visual and noise pollution
- Danger to some fliers (birds, bats)
- Low energy density of wind: must use large areas of land

Lecture Question

What is a redox reaction? Give an example, and define the following terms: oxidation, reduction, and half reaction.

 $\bullet\,$ When a strip of Zn is submerged into a solution containing ${\rm Cu}^{2+}$ ions, the metal becomes tarnished

$$Zn(s) + Cu^{2+}(aq) \longrightarrow Zn^{2+}(aq) + Cu(s)$$

- Oxidation half-rxn: $Zn \longrightarrow Zn^{2+} + 2e^{-}$
- Reduction half-rxn: $Cu^{2+} + 2e^{-} \longrightarrow Cu$

More Redox Reactions

What are some important redox reactions and their corresponding half-reactions?

Hydrogen fuel cells are based on the oxidation of elemental hydrogen gas to form water:

$$2 H_2(g) + O_2(g) \longrightarrow 2 H_2O$$

This can be a combustion reaction but it can also happen at the electrodes of a fuel cell.

- Anode (oxidation half-rxn): $2 H_2 \longrightarrow 4 H^+ + 4 e^-$
- Cathode (reduction half-rxn): $O_2 + 4 H^+ + 4 e^- \longrightarrow 2 H_2 O$

Lecture Questions

What are batteries and how do they work? Define the *anode* and *cathode*.

Chemical Batteries

What are some key characteristics of chemical batteries? Why are they important?

Characteristics:

- Redox half-rxns occur at separate electrodes: *reactants never physically meet*
- LEO goes GER
- Electrons generated at anode, flow thru external circuit to cathode
- Anode is oxidation, cathode is reduction
- Redox rxn must be fast enough to generate a useful current at operating conditions

Importance:

- Rechargeable batteries are the most widely used method of electricity storage
- Fuel cells offer a scalable, clean, efficient way to convert chemical energy to electricity

Lecture Question: Alkaline Batteries

How does the alkaline cell work?

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Lecture Question: Rechargeable Batteries

How do rechargeable batteries work?

- Galvanic vs electrolytic cells. Illustrate the latter with water.
- Rechargeable cells: electrolytically re-generate the reactants.
- Not all redox rxns are reversible
- Side rxns limit the number of recycles
- Many modern electronics use rechargeables

Lecture Question: Lead Acid Battery

How does the lead-acid storage battery work?

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Lecture Questions: Hydrogen Fuel Cells

How do fuel cells work? And what is distributed generation?

- A fuel cell is a battery in which the *reactants are continually supplied to the electrodes*, and the products are continually removed.
 - Much more efficient (2-3 times) than heat engines at generating electricity
 - Most common type of fuel cells based on hydrogen (there are others)
- Fuel cells are scaleable
 - Large ones can power homes or neighborhoods
 - Small ones can be used in appliances
- Distributed generation with fuel cells
 - A decentralized power system consisting of hydrogen generators and fuel cells

Hydrogen Fuel Cells

What might a H₂ fuel cell look like?

Hydrogen Fuel Cells

What is a proton exchange membrane (PEM) fuel cell?

- An ion-conductive barrier ('electrolyte') is needed to prevent bulk mixing but allow current to flow
- Fuel cells are differentiated by fuel and electrolyte barrier
- Also have different power output capabilities and operating temperatures

Hydrogen Fuel Cells

Any other notable fuel cells?

Fuel cell name +	Electrolyte +	Qualified power (W) +	Working temperature (°C) +	Efficiency (cell) +	Efficiency (system) +	Status +	Cost (USD/W) +
Metal hydride fuel cell	Aqueous alkaline solution		> -20 (50% P _{poak} @ 0 °C)			Commercial / Research	
Electro-galvanic fuel cell	Aqueous alkaline solution		< 40			Commercial / Research	
Direct formic acid fuel cell (DFAFC)	Polymer membrane (ionomer)	< 50 W	< 40			Commercial / Research	
Zinc-air battery	Aqueous alkaline solution		< 40			Mass production	
Microbial fuel cell	Polymer membrane or humic acid		< 40			Research	
Upflow microbial fuel cell (UMFC)			< 40			Research	
Regenerative fuel cell	Polymer membrane (ionomer)		< 50			Commercial / Research	
Direct borohydride fuel cell	Aqueous alkaline solution		70			Commercial	
Alkaline fuel cell	Aqueous alkaline solution	10 – 100 kW	< 80	60-70%	62%	Commercial / Research	
Direct methanol fuel cell	Polymer membrane (ionomer)	100 mW - 1 kW	90-120	2030%	10-25% ^[47]	Commercial / Research	125
Reformed methanol fuel cell	Polymer membrane (ionomer)	5 W – 100 kW	250-300 (Reformer) 125-200 (PBI)	50-60%	25-40%	Commercial / Research	
Direct-ethanol fuel cell	Polymer membrane (ionomer)	< 140 mW/cm ²	> 25 ? 90-120			Research	
Proton exchange membrane fuel cell	Polymer membrane (ionomer)	1 W – 500 kW	50-100 (Nation) ^[48] 125-220 (PBI)	50-70%	30-50% ^[47]	Commercial / Research	50-100
RFC - Redox	Liquid electrolytes with redox shuttle and polymer membrane (lonomer)	1 kW - 10 MW				Research	
Phosphoric acid fuel cell	Molten phosphoric acid (H ₃ PO ₄)	< 10 MW	150-200	55%	40% ^[47] Co-Gen: 90%	Commercial / Research	4-4.50
Solid acid fuel cell	H*-conducting oxyanion salt (solid acid)	10 W - 1 kW	200-300	55-60%	40-45%	Commercial / Research	
Molten carbonate fuel cell	Molten alkaline carbonate	100 MW	600-650	55%	45-55% ^[47]	Commercial / Research	
Tubular solid oxide fuel cell (TSOFC)	O ² conducting ceramic code	< 100 MW	850-1100	60-65%	55-60%	Commercial / Research	
Protonic ceramic fuel cell	H*-conducting ceramic oxide		700			Research	
Direct carbon fuel cell	Several different		700-850	80%	70%	Commercial / Research	
Planar Solid oxide fuel cell	O ² conducting ceramic oxide	< 100 MW	500-1100	60-65%	55-60%[47]	Commercial / Research	
Enzymatic Biofuel Cells	Any that will not denature the enzyme		< 40			Research	
Magnesium-Air Fuel Cell	Salt water		-20 to 55	90%		Commercial / Research	

(Click above for link)

Lecture Question/Class Exercise

Make a list of the environmental impacts of batteries, including fuel cells.

- Use of the battery is clean but that doesn't mean no impact
- Cradle-to-grave analysis needed, including obtaining raw materials (eg through mining), battery manufacture, and disposal
- Many use toxic or precious metals
- Materials used in battery are not necessarily renewable or obtained in a sustainable manner

The Hydrocarbon (Fossil Fuel) Economy

Describe, in a broad sense, how the current hydrocarbon economy works to deliver energy to the end user.

Largely dependent on *combustion-based heat engines*. For example:

- Transportation: oil is extracted, refined, and burned at the source in an internal combustion engine.
- Electricity generation: fossil fuels burned in a steam turbine.
- On-site combustion of fuel for heat.

So we distribute most of our energy as a hydrocarbon fuel that is burned, or as electricity generated from burning a hydrocarbon.

Lecture Question: The Hydrogen Economy

What is the hydrogen economy?

Potential Advantages

- Clean, renewable
- Potentially more reliable (using distributed generation)

BUT many roadblocks including potential show-stoppers

 Poses great technological challenges for efficient hydrogen production, storage, and transport

transportation

• Efficient and clean: scalable

• The Hydrogen Economy is a hypothetical

• Hydrogen (usually) plays a central role in

large-scale system in which elemental hydrogen (H₂) is the primary form of energy storage
Fuel cells would be the primary method of conversion of hydrogen to electrical energy

Lecture Question: The Hydrogen Economy

What are the components of the hydrogen economy?

Components: production, storage, delivery, end use.

The Hydrogen Economy

How is hydrogen gas produced?

- Fossil Fuels
 - Steam reforming of natural gas
 - Partial Oxidation (POX) of Hydrocarbons
 - Coal Gasification
- Electrolysis of water
 - Efficiencies 70-85%
 - Produces highest purity of hydrogen
 - Currently, the electricity consumed is usually worth more than the hydrogen produced
- Experimental methods
 - Biological hydrogen production
 - Direct photolysis
 - Thermolysis

The Hydrogen Economy

Summarize the renewable paths to H_2 production.

The Hydrogen Economy

Is a hydrogen economy in our future? Are there alternatives?

- The hydrogen economy has its share of critics
- Alternative: EVs running on 'clean' electricity, and/or plug-in hybrids running on biomass-derived fuels (and clean electricity)
- Some advocate a *methanol economy*