Global Climate Change

Greenhouse Gases and Earth's Energy Balance

Outline of Topics

The Natural Earth System

- Earth's Energy Balance
- The Greenhouse Effect

Radiative Forcing

- The Carbon Cycle
- Other GHGs
- Energy Balance Effects

Climate Change

- Temperature
- Models and Predictions

Solar Energy Input

How much energy does the earth receive from the sun?

- $\bullet\,$ To maintain balance, Earth must also emit at the same rate of $1.7\times 10^{17}\,\, J/s$
- Divide by surface area: 342 W/m^2 .
- The solar constant, a long-term annual average.

How much of this sunlight is (a) reflected immediately, (b) absorbed by the atmosphere, or (c) absorbed by Earth's surface?

Earth's Energy Balance: Blackbody Radiation

Contrast Earth's incoming and outgoing radiation.

- The sun and the earth are reasonable *blackbody radiators*
- Blackbody radiator: light emitted is determined almost entirely by temperature of the radiator
- See figure: hotter sun emits 10% uv, 40% vis, 50% near-IR, while Earth emits entirely in the mid-IR at 5–50 μ m.

What is the greenhouse effect?

- 90% of IR light emitted by the surface/clouds is re-absorbed by GHGs
- GHGs re-emit some IR light back to the surface

The Greenhouse Effect

Is there direct evidence of the greenhouse effect?

- 90% (avg) emitted light is absorbed and re-emitted
- But some light escapes without heating air through an **IR Window**
- IR window is dynamic, depends on composition (esp water vapor)
- main window is
 8–14 μm
- more windows in
 0.2–5.5 μm

What are *greenhouse gases*, GHGs? Name the five most important GHGs present naturally in the atmosphere.

Greenhouse gases are those that absorb in the region, 5–50 $\mu m,$ emitted by the earth's surface. The most important natural GHGs are:

- water, H_2O
- carbon dioxide, CO₂
- ozone, O₃
- methane, CH₄
- nitrous oxide, N₂O

The Greenhouse Effect

Give a more detailed description of Earth's current energy balance.

The Greenhouse Effect

Compare the heat inputs of the atmosphere and surface.

The atmosphere receives: 540 W/m^2 : The surface receives: 504 W/m^2 :

- sunlight (32%)
- re-emitted IR light from GHGs (68%). This is the greenhouse effect.

- sunlight (14%)
- 'thermals' (3%)
- latent heat (16%)
- absorption of IR light by GHGs (66%)

The Global Carbon Cycle

What is a Keeling Curve? Explain the trends and fluctuations.

- Regular oscillations, with 1-yr period
- NH and SH 180° out of phase
- Oscillation amplitude greater at ML
- General increase in CO₂
- ML increasing faster than SP

What is a biogeochemical cycle?

- A biogeochemical cycle is a description of the major reservoirs of a substance, and the processes that exchange that substance between the reservoirs.
- Each reservoir has a *stock* of substance in it, and each exchange process causes a *flow* of substance from one reservoir to another.
- Processes are biological/chemical/geological, and can operate on greatly different time scales
- Biogeochemical cycles can be local or global

Describe the carbon cycle and how we have affected it.

Global Climate Change

The Global Carbon Cycle: Fast and Slow Carbon Pools

Explain the difference between 'fast' and 'slow' carbon cycles.

The Global Carbon Cycle

Explain what happens to the CO₂ humans emit.

- The 'old' carbon we emit re-distributes between the three 'fast' pools
- Uptake by dissolution into surface ocean and by fast-growing plans is pretty rapid (avg 4.5 yr)
- But most of this is re-emitted back into the atmosphere (still in 'fast' C pool)

The Global Carbon Cycle

How about some numbers this time?

Anthropogenic sources	fossil fuel combustion, cement production	8.3 ± 0.4 PgC/yr
	changes in land-use	1.0 ± 0.5 PgC/yr
	total emissions	9.3 ± 0.6 PgC/yr
Partitioning among reservoirs	net ocean uptake	2.5 ± 0.5 PgC/yr
	net land uptake	2.6 ± 0.8 PgC/yr
	<i>net storage in atmosphere</i> (<i>measured</i>)	4.3 ± 0.1 PgC/yr

- Less than half (46%) of emitted carbon stays in air
- Dissolution in ocean causes acidification: $CO_2 + H_2O \longrightarrow H_2CO_3$
- Land sink has the highest uncertainty, subject of much current research

How much has atmospheric CO_2 increased since 1750? What is the recovery time if all anthropogenic CO_2 emissions ceased?

IPCC: 'Depending on the [future emission] scenario, 15 to 40% of emitted CO_2 will remain in the atmosphere longer than 1000 years.'

What GHGs have increased since 1750?

GHG	1750	Recent	GWP	Lifetime, yr	RF, W/m^2
CO ₂	280 ppm	400 ppm	1	100-300	1.68
CH ₄	722 ppb	1825 ppb	28	12	0.97
N ₂ O	270 ppb	325 ppb	265	121	0.17
Ō ₃	237 ppb	337 ppb	n/a	short	*
CFC-11	0	235 pptr	4,660	45	0.18 (all)
CFC-12	0	527 pptr	10,200	100	
CFC-113	0	74 pptr	5,820	85	
HCFC-22	0	220 pptr	1,760	11.9	

• GWP is the global warming potential relative to CO₂ over a 100 yr period

- Lifetime is for the troposphere; it is not well defined for CO₂
- $\bullet\,$ There are a number of other halogenated compounds not included in the table: HCFCs, HFCs, halons, CCl_4, SF_6

The Methane Cycle

What human activities have lead to the increase in CH_4 ?

- Note unit change compared to CO₂ emissions
- Total anthropogenic flux: 330 Tg/yr (50–65% of total flux from all sources)
- Main natural source: wetlands (about 200 Tg/yr)

Part of the Nitrogen Cycle

What human activities have lead to the increase in N_2O ?

• Current anthropogenic flux: 7 Tg/yr (35-40% of total from all sources)

 $\bullet\,$ Main natural sources: soils (6.6 Tg/yr) and oceans (3.8 Tg/yr)

What is radiative forcing?

- 2nd panel adds an atmosphere with GHGs (some flows omitted)
- 3rd panel shows an imbalance of 4 W/m^2 due to a doubling of CO_2 concentration

Radiative forcing, RF, is this quantitative measure of the radiative energy imbalance

 $\mathsf{RF} = \mathsf{incoming} - \mathsf{outgoing}$

• 4th panel shows a restored energy balance after global warming has occurred

Increased GHG levels traps additional radiation (global energy input/output not balanced) *global warming* Trapped radiation warms Earth's surface and lower atmosphere

What are the recent temperature trends?

Global Climate Change

Besides the increase in global mean temperature, what other changes have been observed?

- Oceans absorbed most (90+%) of the heat dumped into the system in the last 40 yr
- Precipitation has increased (NH mid-latitude)
- Extreme events: heat waves, droughts, heavy precipitation events
- Glaciars have shrunk worldwide
- Antarctic and Greenland ice sheets have lost mass for two decades
- Arctic ice sheet and NH snow cover (see figure)
- Sea levels have risen by 0.19 m since 1901 (figure)
- Non-climate: ocean pH has decreased by 0.11 $(30\% \text{ increase in } [H_3O^+])$

Climate Modeling

What are General Circulation Models (GCMs)?

- Math model of the circulation of air or ocean to describe/simulate climate
- Divides fluid up into 3-d grid
- Mathematically describes flow of energy and mass between grids using set of differential equations solved numerically
- Complete climate model requires coupled air/ocean GCMs plus other components (eg ice sheet model)

Can we attribute temperature increases to human activities?

Separating Human and Natural Influences on Climate

Climate Modeling

What are feedback effects? Examples?

- Response to a change that either opposes further change (negative feedback) or amplifies it (positive feedback).
- Can lead to non-linear equations that are harder to model.
- Possible carbon cycle feedbacks:
 - CO₂ solubility decreases with increasing temperature (positive)
 - carbon fertilization effect (negative)
 - increased rate of decomposition with temperature (positive)
 - melting of permafrost releases stored methane (positive)
- Hydrologic cycle feedback: water vapor pressure increases with temperature (positive)
- Earth's albedo:
 - increases due to increased cloud cover (negative)
 - decreases due to reduced snow/ice cover (positive)
- Changes in air/ocean circulation causes local feedback effects

How does the IPCC use models to predict future climate effects?

- Range of values due to variability in models (scientific uncertainty)
- Range of values due to variability in emission scenario (policy response uncertainty)
- Two sources of variability roughly similar

Future Carbon Emission Scenarios

Explain the IPCC future emission scenarios.

What changes are predicted for temperature and sea level?

		2046–2065		2081–2100	
	Scenario	Mean	Likely range	Mean	Likely range
Global Mean Surface Temperature Change (°C)	RCP2.6	1.0	0.4 to 1.6	1.0	0.3 to 1.7
	RCP4.5	1.4	0.9 to 2.0	1.8	1.1 to 2.6
	RCP6.0	1.3	0.8 to 1.8	2.2	1.4 to 3.1
	RCP8.5	2.0	1.4 to 2.6	3.7	2.6 to 4.8
	Scenario	Mean	Likely range	Mean	Likely range
	RCP2.6	0.24	0.17 to 0.32	0.40	0.26 to 0.55
Global Mean Sea Level	RCP4.5	0.26	0.19 to 0.33	0.47	0.32 to 0.63
Rise (m)	RCP6.0	0.25	0.18 to 0.32	0.48	0.33 to 0.63
	RCP8.5	0.30	0.22 to 0.38	0.63	0.45 to 0.82

• Ranges are 90% confidence intervals