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� Economic benefit of charging electric vehicles using renewable energy is assessed.
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� Results.
� show significant environmental benefit from emissions reductions.
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This study evaluates the potential economic and environmental benefits available by providing renew-
able energy for electric vehicle charging at public electric vehicle service equipment (EVSE).
Willingness to pay (WTP) for charging an electric vehicle using renewable energy was collected through
a U.S.-wide online survey of Plugin Electric Vehicle owners and lessees using the choice experiment
method. The results indicate a 433% increase in the usage of charging stations if renewable energy was
offered. Results also show a mean WTP to upgrade to renewable energy of $0.61 per hour for Level 2
EVSE and $1.82 for Direct Current Fast Chargers (DCFC). Using Blink public EVSE network as a case study,
these usage andWTP values translate directly to an annual gross income increase of 655% from $1.45 mil-
lion to $9.5 million, with an annual renewable energy credit acquisition cost of $13,700. Simulation
results also show significant environmental benefit from emissions reductions.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Transportation in the developed world is powered predomi-
nantly by liquid fuels refined from petroleum. In the U.S. for exam-
ple, 97% of transportation is powered by petroleum [1]. The high
energy density and abundance of these fuels have made them a
very effective and relatively affordable transportation energy
source. However, motivations for finding alternate sources of
transportation energy are numerous, including economic security,
mitigation of anthropogenic climate change, and lessening military
conflict in the oil-rich parts of the world. These motivations extend
to reducing risk to human and environmental health posed by
vehicle exhaust, hydrologic fracturing and oil transportation. There
are a number of technologies currently at various stages of
research and development with the ability to supplement or
replace petroleum with a transportation energy source that is
renewable, reduced in greenhouse gas (GHG) emissions, and eco-
nomically feasible. The most currently developed of these tech-
nologies include biofuels, hydrogen fuel cells, and plugin electric
vehicles (PEVs) powered with renewably generated electricity.

Each of these technologies has its benefits and drawbacks. Most
biofuels offer a drop-in replacement liquid fuel requiring little or
no modification of the current internal combustion engine technol-
ogy and fueling infrastructure. However, the land, water, fertilizer,
and energy requirements limit feasibility, energy gain, and GHG
emission avoidance of biofuels for most feed stocks, for supple-
menting a majority portion of transportation energy [2]. Algae dif-
fers from most feed stocks in that it grows more densely and on
inarable land. Meeting U.S. transportation energy needs with corn,
canola or switchgrass would require more than 70% of U.S. arable
land [2], with the U.S. having more arable land per capita than
most developed nations. While algae is a feed stock with great
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potential, current knowledge and technology put algae biofuel pro-
duction estimates at a low net energy gain of 6% [2] and a cost of
$10.87–$13.32 per gallon [3], with these numbers falling towards
the center of a wide range of such published values. Corn ethanol
and soybean biodiesel currently supplement 5% of U.S. land
transportation fuel [1]. However corn ethanol has a low net
energy gain estimated at 22% and an estimated 27% GHG reduction
[2].

While the prices remain high, a few automotive manufacturers
have started leasing hydrogen fuel cell based vehicles in limited
numbers. The hydrogen for these vehicles can be sourced from nat-
ural gas or electrolysis of water. Relative to gasoline, sourcing from
natural gas results in a 21% life cycle GHG reduction, while water
electrolysis with grid electricity increases GHG emissions by 25%
[4]. Electrolyzing with electricity generated by renewables reduces
GHG emissions by greater than 99% [4].

With present technology, all-electric vehicles (EVs) and plug-in
hybrid electric vehicles (PHEVs) offer a relatively cost-effective
means of transportation with significantly reduced GHG emissions
[5,6]. EVs priced for the mass market such as the Nissan Leaf, Ford
Focus EV and Smart ForTwo ED are currently limited to a driving
range of about 60–85 miles per charge, with high end EVs such
as the Tesla Model S traveling greater than 250 miles per charge.
PHEVs such as the Chevy Volt and Ford C-Max Energi provide
20–40 miles of electric driving per charge in addition to a
gasoline-powered driving range, which is most often similar to
that of conventional internal combustion engine vehicles (CVs).
For the majority of U.S. drivers, PHEVs offer enough electric driving
range for daily commutes, while offering extended range when
needed. EVs and PHEVs are collectively referred to as plugin elec-
tric vehicles (PEVs). Charge times for PEVs are typically 3–6 h when
using 240 V AC Level 2 electric vehicle supply equipment (EVSE).
Most EVs can also charge to about 80% capacity in 30 min on Direct
Current Fast Chargers (DCFCs). Powered by the average U.S. grid
electricity mix, PEVs electric energy life cycle GHG emissions are
approximately two thirds that of gasoline powered transportation
[4], while the energy costs are below that of gasoline. Powered by
renewable energy sources, such as wind or solar energy, the energy
life cycle GHG emissions of PEVs amount to less than 1% that of
gasoline and with an energy cost still well below that of gasoline
[4]. Consumer preference is important in the EV market and in pro-
moting the adoption of EVs [7]. EV charging infrastructure is essen-
tial in encouraging the adoption of EVs and enhancing the
environmental benefit of EVs [8].

There are many studies on the environment impact of EVs [9–
12]. There is also an increasing amount of engineering and science
studies that analyze the integration of renewable energy and PEVs
from the perspectives of engineering design, environmental
impact, and energy planning [13–15]. A few papers use engineer-
ing methods to analyze charging from on-site solar in terms of
optimal system design [16,17]. However, there are no papers that
empirically quantify the economic demand for renewable electric
vehicle charging, which is needed for charging companies to eval-
uate such charging options and thus potentially increase the use of
renewable energy.

This study fills the gap in the literature by estimating the will-
ingness to pay (WTP) for and evaluating the potential economic
and environmental benefits of a new PEV charging strategy for
companies offering public PEV charging. Such companies include
utility companies, charging companies, and PEV manufacturers.
The new charging strategy evaluated in this study is to provide
renewable energy to electric vehicle drivers at public stations, also
known as electric vehicle supply equipment (EVSE). A comprehen-
sive search reveals a small number of solar connected public EVSE
with no major U.S. public EVSE companies offering widespread
renewably powered vehicle charging. Through an online survey
and a choice experiment of U.S.-wide PEV owners and lessees the
following information was collected:

1. WTP for upgrading their pay-per-use charge event at a public
EVSE to renewable energy from wind or solar sources.

2. Would the availability of renewable energy at such EVSE change
their EVSE usage frequency?

3. How likely would they choose an EVSE offering renewable
energy over one that does not?

Heterogeneity of the elicited WTP is also examined for trends in
the data. A case study quantifying the economic and environment
benefits available to one of the largest U.S. public PEV charging
companies is included.
2. Background and literature review

2.1. PEV drivers and renewable energy

The California Center for Sustainable Energy conducted a survey
of Californian PEV drivers. Among other useful data and using the
direct ask surveying method, this study provides the stated mean
WTP of Californian PEV drivers for public charging powered by
standard grid electricity, see Table 1 [18].

Current prices charged at public EVSE provide another source of
pricing information. The most common prices from the largest U.S.
public charging companies such as Blink and U.S. average residen-
tial utilities are shown in Table 2 [19,20,1]. Within this table,
where necessary to convert energy-based pricing to time-based
pricing, a 6 kW mean charge rate is used for AC Level 2 EVSE and
a 28 kW mean charge rate is used for DCFCs, each of which is typ-
ical of today’s PEVs using the specified charging technology.

At the pre-9/2014 prices, Blink found their nationally dis-
tributed customers did 9% of their charge events at public AC Level
2 EVSE and 5% at public DCFCs. The remaining 86% of the charge
events occurred at their personally owned EVSE or outlets, paying
utility electricity rates. This usage amounts to 77,640 public charge
events on 2762 public EVSE in the second quarter of 2013 [21].

One contingency choice experiment based study [22,23]
focused on refrigerators examined WTP for the U.S. EPA Energy
Star Label, which represents both private (energy cost savings)
and public (environmental) benefits. They found a significant pos-
itive WTP well in excess of even undiscounted energy cost savings
over the life of the appliance. There was a higher WTP among those
with environmental concerns and among those who believed con-
sumers can influence market offerings. Combined, these findings
indicate a WTP for environmental benefit. Another contingency
choice survey [22,23] examined WTP for refrigerators produced
by manufacturers that use renewable energy in comparison to
those that use conventional energy sources. The findings show a
WTP an extra $53.18 to $68.66 for the appliance to be produced
by manufacturers powered by renewable energy.

The few studies that have been conducted on PEV drivers and
renewable energy have found a higher-than-average interest. A
survey of about 1400 PEV owners in California [18] found that
39% of the participants had a photovoltaic (PV) solar system on
their home, with another 17% planning on installing PVs in the
next year, showing demand for renewable energy. Of those with
PVs, about 50% have sized their system to meet the energy demand
of their vehicles. Sixty percent of those who have not done so
already, plan to expand their PVs in the next year to account for
their PEV energy needs, showing demand for charging PEVs with
renewable energy.

A more recent U.S.-wide survey [24] of about 1500 individuals
consisted of three populations of recent vehicle buyers: CV buyers



Table 2
Public Charging Pricing by Public EVSE Providers in 2014 dollars, Standard Grid
Electricity.

Charging source AC Level 2 Price
($/h)

DCFC price
($/30 min charge)

Blink before 9/2014 $1.00 $5.00
Blink starting 9/2014 $2.40 $6.99
ChargePoint $2.94a $6.86b

Sema Charge $2.94a $6.86b

U.S. Residential Utility Average $0.78a $3.65b

a Based on 6 kW charge rate.
b Based on 28 kW charge rate.

Table 1
Stated Californian PEV Driver Public Charging WTP, Standard Grid Electricity [18].

Charging frequency
(count per week)

Mean AC Level 2
EVSE WTP ($/h)

Mean DCFC WTP
($/30 min)

3 or more $0.80 $3.70
1 or 2 $1.17 $5.20
Less than 1 $2.36 $9.28
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(CVBs), hybrid electric vehicle buyers (HEVBs) and PEV buyers
(PEVBs). With typical pricing for each attribute, surveyees were
asked to design the next vehicle they would purchase, then to
design a home energy source and finally after being introduced
to the possibility of powering a PEV with renewable energy, they
were given an opportunity to redesign both the vehicle and energy
source. Krupa et al. found increased use of renewable energy with
electrification of the participants’ purchased vehicle, with 18% of
CVBs, 44% of HEVs, and 41% of PEVBs currently powering their
home with renewable energy. After the introduction to renewable
PEV charging, Krupa et al. found the following percentages of par-
ticipants chose an energy source and vehicle combination allowing
for renewable vehicle charging: CVBs-31%, HEVBs-53%, and PEVBs-
86%. Krupa et al. also found a 22% increase in PEV demand with the
introduction to renewable PEV charging. This study shows a strong
interest in charging with renewable energy, particularly among
PEV owners.

A comprehensive literature review revealed no public studies
on the willingness of PEV drivers to pay for renewable energy
and the resultant economic and environmental benefits of provid-
ing renewable energy for PEV charging at public pay-per-use EVSE,
which is the major contribution of our study.
1 Data Masters, www.datamasters.com.
2.2. Sources of renewable energy for EVSE

The most plausible means of acquiring renewably generated
electricity for use at public EVSE include on-site solar, utility green
pricing programs, and renewable energy credits (RECs). While on-
site solar is good for marketing, a degree of engineering and instal-
lation is required at each site. Upfront cost, loans or long-term
solar lease contracts would also be required. This option also does
not offer a means to choose how much renewable energy is pro-
duced each month. The amount of solar electricity generated could
either exceed or fall short of meeting the renewable charging
demand.

Local utility green pricing programs (GPP) avoids the installa-
tion costs and long term commitment. However, using GPPs for a
nationally distributed EVSE network would require signing up for
these programs and purchasing from tens to hundreds of different
utility companies, while only about half the electric utility cus-
tomers in the U.S. have access to a GPP [25], making this option
unavailable in some locations.
Renewable energy credits are used to track the trade of renew-
able energy in the U.S., including energy sold in GPPs. Purchasing
RECs directly from REC brokers, wind farms, or solar fields, would
allow a public EVSE company to use its nationwide renewable
energy demand to negotiate a lower price and to make a periodic
purchase from a single supplier in a quantity matching usage,
without making any changes with their utility companies [25].
Of the renewable energy sold in the U.S., 63% is purchased as RECs
separate from the purchase of electricity [25]. The majority of these
REC sales are to corporations with an interest in reducing their
environmental impact and improving their corporate image,
including Whole Foods, Intel, Walmart and others. Representing
the renewable qualities of renewable energy, RECs are a third party
certified, paper commodity used to track the purchase of renew-
able energy from the generator to the customer. RECs are necessary
since the electric grid cannot physically direct electricity from a
specific generator to a specific customer. RECs are also available
at a low cost, typically about $0.001 per kW h for nationally
sourced wind energy [25]. For these reasons, RECs are used in
the case study of profitability in this study.
3. Methodology

3.1. Surveys

Data was gathered by surveying current owners and leases of
PEVs within the U.S. The names and postal addresses of PEV own-
ers and leases were purchased from a mail marketing company1

that obtains their records from the Department of Motor Vehicles
in states where this information is available. The company also pur-
chases information from automotive insurance companies and auto-
motive repair shops, amongst other commercial sources.

Postcards requesting participation in an online survey about
electric vehicles and renewable energy were sent to 1500 individ-
uals. Of these postcards, 28 were returned as undeliverable. Two
hundred and three respondents completed at least the first 20
questions regarding WTP, representing a 13.5% response rate,
while 181 respondents answered every question.

The survey was developed and administered with the online
survey tools provided by Qualtrics. The 55 question survey col-
lected information on PEV usage, public EVSE usage, motivations,
demand and WTP for renewably powered public PEV charging
and demographics. Within the surveys, information was gathered
for two formats of offering renewable energy. Both every charge
being sourced renewably and offering renewable energy as an
optional upgrade were examined. The survey examined direct
ask WTP, usage and competitive choice likelihood for two methods
of offering renewably generated electricity. Renewable energy was
described as coming from wind and solar sources. These questions
as presented in the survey are shown in Table 3.

3.2. Choice experiment

WTP was assessed through both directly asking and with a
choice experiment model. Directly asking for WTP has been shown
to generate biased results, such as overstating prices due to pres-
tige effects or understating because of customer collaboration
[26]. We used the choice experiment method for a more accurate
assessment of theWTP for renewable energy charging. The method
more closely simulates a purchase decision by asking the surveyee
which of two product options they would choose to buy [27]. With
this method, each option has a specified price, and purchasing nei-
ther is the third option. TheWTP for the individual attributes of the
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Table 4
Survey choice experiment WTP instructions and questions. Choice sets were listed in
random order.

Level 2 charger DC fast charger

For each combination in the
following, there are two options of
charging your electric vehicle at a

Level 2 commercial charging

station. The two options differ in:
(1) Percentage of electricity
coming from renewable sources
such as wind or solar at this
charging station. (2) Price of
charging per hour. There are 10
combinations in total. For each
combination, please choose your
preferred alternative of charging
or choose ‘‘Neither of these”

For each combination in the
following, there are two options of
charging your electric vehicle at a

30 min DC Fast commercial charging

station. The two options differ in: (1)
Percentage of electricity coming from
renewable sources such as wind or
solar at this charging station. (2)
Price of charging per hour. There are
10 combinations in total. For each
combination, please choose your
preferred alternative of charging or
choose ‘‘Neither of these‘‘

� 50% Renewable energy $1 per
hour

� 50% Renewable energy $1.06 per
hour

� Neither of these

� 50% Renewable energy $5 per
hour

� 50% Renewable energy $5.15 per
hour

� Neither of these

� 75% Renewable energy $1.06 per
hour

� 0% Renewable energy $1 per hour
� Neither of these

� 75% Renewable energy $5.15 per
hour

� 0% Renewable energy $5 per hour
� Neither of these

� 50% Renewable energy $1.18 per
hour

� 50% Renewable energy $1.24 per
hour

� Neither of these

� 50% Renewable energy $5.45 per
hour

� 50% Renewable energy $5.60 per
hour

� Neither of these

� 100% Renewable energy $1.24
per hour

� 25% Renewable energy $1.12 per
hour

� Neither of these

� 100% Renewable energy $5.60
per hour

� 25% Renewable energy $5.30 per
hour

� Neither of these

� 100% Renewable energy $1.18
per hour

� 25% Renewable energy $1.06 per
hour

� Neither of these

� 100% Renewable energy $5.45
per hour

� 25% Renewable energy $5.15 per
hour

� Neither of these

� 25% Renewable energy $1.06 per
hour

� 75% Renewable energy $1.18 per
hour

� Neither of these

� 25% Renewable energy $5.15 per
hour

� 75% Renewable energy $5.45 per
hour

� Neither of these

� 0% Renewable energy $1.12 per
hour

� 100% Renewable energy $1.18
per hour

� Neither of these

� 0% Renewable energy $5.30 per
hour

� 100% Renewable energy $5.45
per hour

� Neither of these

� 25% Renewable energy $1 per
hour

� 75% Renewable energy $1 per
hour

� Neither of these

� 25% Renewable energy $5 per
hour

� 75% Renewable energy $5 per
hour

� Neither of these

� 0% Renewable energy $1.12 per
hour

� 100% Renewable energy $1.24
per hour

� Neither of these

� 0% Renewable energy $5.30 per
hour

� 100% Renewable energy $5.60
per hour

� Neither of these

� 75% Renewable Energy $1.24 per
hour

� 0% Renewable Energy $1.12 per
hour

� Neither of these

� 75% Renewable Energy $5.60 per
hour

� 0% Renewable Energy $5.30 per
hour

� Neither of these

Table 3
Survey questions on competitive choice likelihood, usage and direct ask WTP.

Every charge renewable Renewable energy option

If 100% renewable energy such as
wind or solar was provided by
commercial charger with every
charge:

If the commercial charger provided
as an option 100% renewable energy
such as wind or solar:

How much more likely would you
choose this charger over one that
does not provide renewable
energy? 0% meaning it would not
influence your decision.100%
meaning you would use the
renewably powered charger every
time

How much more likely would you
choose this charger over one that
does not provide renewable energy?
0% meaning it would not influence
your decision.100% meaning you
would use the renewably powered
charger every time

How many times per month would
you charge on a commercial
charger, if they provided
renewable energy with every
charge?

How many times per month would
you charge on this charger that offers
the option of renewable energy?

– How many times per month would
you choose to use the option to
charge with renewable energy on this
charger?

How much extra would you be
willing to pay to use a renewably
powered 30 min DC Fast charger,
per charge?

� $0.00 per charge
� $0.05 per charge
� $0.10 per charge
� $0.15 per charge
� $0.20 per charge
� $0.30 per charge
� $0.40 per charge
� $0.60 per charge
� $0.80 per charge
� More than $0.80 per charge

How much extra would you be
willing to pay to use the option to
charge with renewable energy on a
30 min DC Fast charger, per charge?
� $0.00 per charge
� $0.05 per charge
� $0.10 per charge
� $0.15 per charge
� $0.20 per charge
� $0.30 per charge
� $0.40 per charge
� $0.60 per charge
� $0.80 per charge
� More than $0.80 per charge

How much extra would you be
willing to pay to use a renewably
powered Level 2 charger, per
hour?

� $0.00 per hour
� $0.02 per hour
� $0.05 per hour
� $0.10 per hour
� $0.15per hour
� $0.20per hour
� $0.25 per hour
� $0.30 per hour
� More than $0.30 per hour

How much extra would you be
willing to pay to use the option to
charge with renewable energy on a
Level 2 charger, per hour?
� $0.00 per hour
� $0.02 per hour
� $0.05 per hour
� $0.10 per hour
� $0.15 per hour
� $0.20 per hour
� $0.25 per hour
� $0.30 per hour
� More than $0.30 per hour
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product are assessed by varying the attributes of interest and pric-
ing presented, while holding any other attributes constant.

For our survey, the attribute being assessed is the addition of
renewable energy to public pay-per-use PEV charging. The survey-
ees were presented with various fractions of their charge being
powered by renewably generated electricity from sources such as
wind turbines and solar systems. The fraction of renewable energy
was varied from 0% to 100%, with prices for the charge varying
from $1 per hour to $1.24 per hour for AC Level 2 charging and
$5.00 to $5.60 per 30 min charge for DC fast charging (see Table 4).
These prices were chosen based on the Blink network prior to
September 2014 prices, REC prices, and the results of a pilot-
scale survey of 19 individuals at public EVSE in the Phoenix, Ari-
zona metropolitan area. In the full-scale survey, 10 such choice
experiment model questions were asked for AC Level 2 charging
and 10 for DC fast charging. The choice design is based on efficient
rppanel design, created using Ngene software. We use the Db-
efficient design algorithm to generate the options in the choice
experiments. This algorithm was chosen because it is more
efficient for mixed logit models using panel data which seeks to
minimize the determinant of the variance-covariance matrix of
the parameter estimators.

In order to aid in the analysis of the choice experiment results,
there are three choice sets in each of the experiments that can
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measure whether the survey respondent made irrational choices or
not. In Table 4, for Level 2 Charger, the three choice sets measuring
irrationalness are (1) 50% renewable energy at $1 per hour versus
50% renewable energy at $1.06 per hour, (2) 50% renewable energy
at $1.18 per hour versus 50% renewable energy at $1.24 per hour,
and (3) 25% renewable energy at $1 per hour versus 75% renewable
energy at $1 per hour. In these three choice sets, if the survey
respondent chooses an option of paying a higher price for the same
amount of renewable energy or an option for less renewable
energy for the same price, then the respondent made irrational
choices, resulting is a coding of the dummy variable ‘‘Made irra-
tional choice” to a value of one for that respondent. For DC Fast
Charger, there are three similar choice sets that similarly measure
irrationalness.
3.3. Economic model

The commonly used discrete choice modeling framework was
applied in this study, assuming that the respondents base their
purchasing decisions on maximizing utility. The Random Utility
Model [28] describes the utility U provided by a product option j
has to an individual i as the sum of the observable component V
and the unobservable part e:

Uij ¼ Vij þ eij

To estimate the choice experiment model WTP we used a utility
function including only the attributes presented in choice experi-
ment questions:

Vij ¼ bi;REFREFij þ bPriceCEPriceij
bi;REF ¼ bREF þ li;REF

REFij is the product attribute of renewable energy fraction. bREF is a
population mean coefficient for REF and li;REF represents the
stochastic deviation of the individual’s preference from the popula-
tion mean. CEPriceij is the product alternative price. bPrice is the coef-
ficient for CEPriceij. bi;REF , the coefficient for renewable fraction, is
random in order to investigate the heterogeneity of individual pref-
erences for renewable energy. This random coefficient is assumed
to be normally distributed, as the parameter showed some central
tenancies in our pilot scale study. A normal distribution is also
the most widely used in mixed logit models. Several other model
specifications of the observable utility were applied to explore the
possible correlations with characteristics of the respondents, by
including or excluding variables for demographics and current
charging habits.

We analyzed the choice experiment results using the mixed
logit model, which allows the random components of the choice
alternatives to be correlated and takes into account the repetitive
nature of choice experiment responses [29]. This method has been
found effective for such discrete experiment data [30].

WTP for a renewable energy premium on a one unit change in
renewable energy faction be can calculated from the marginal rates
of substitution between the REF and the price. With the linear util-
ity function we have applied, the marginal rate of substitution
between these attributes is the ratio of their coefficients. The
WTP for a renewable energy premium is:

WTP ¼ �
@V
@REF
@V

@CRPrice

¼ � bREF

bPrice

The standard deviation of the estimatedWTP can be estimated from
the standard deviation of the stochastic coefficient bi;REF .
4. Descriptive survey results

There are 181 surveyees that completed every question of our
survey and choice experiment. The surveyed demographics of the
study sample indicate PEV drivers are predominantly male (77%),
while 15% are aged 30–39 years, 21% aged 40–49, 35% aged 50–
59 and 21% aged 60–69. The vast majority have college degrees,
with 33% having a bachelor’s, 41% having a master’s and 16% hav-
ing a doctorate. Those surveyed also are middle to high income,
where 12% have a household income of $50–70k, 20%: $70–
$100k, 26%: $100–$150k and 40%: more than $150k. These demo-
graphics combined with residential PV usage match fairly well
with other surveys of PEV owners as provided by the California
Center for Sustainable Energy [18] and Ecotality North America
[21] as shown in Table 5, giving some assurance of a representative
sample. The California study and the survey findings of this study
clearly reveal a high interest in renewable energy amongst PEV
owners, relative to the general population [31,32].

Sixty-two percent of the respondents stated that they own or
lease an EV, while the other 38% have a PHEV. Of the households
surveyed, 48% own two vehicles, 24% own three, 9% own 4 and
6% own five or more. For 12% of households, their PEV is their only
vehicle. Four percent of households own or lease an EV as their
only vehicle. The dominant motivations for purchasing a PEV
include environmental reasons, fuel cost savings, energy indepen-
dence and new technology interest, as shown in Table 6. Looking at
these top four motivations, 60% gave environmental reasons as
their primary or secondary reason. This value is 52% for fuel cost
savings, 38% for energy independence and 26% for new technology.

The PEV usage shows a broad range of mean daily vehicle dis-
tance traveled, largely staying conservatively within the per-
charge battery range limits of today’s mass market PEV’s, with
7% traveling less than 10 miles per day, 19%: 10–20 miles, 24%:
20–30 miles, 21%: 30–40 miles, 18%: 40–60 miles and 7%: 60–80
miles. Interestingly, 76% of participants average zero charge events
per month at commercial pay-per-use EVSE, with 23% using com-
mercial EVSE 1–10 times per month. Approximately half the com-
mercial EVSE usage comes from the top 2% of the most frequent
users. The far majority of the commercial EVSE usage is at AC Level
2 EVSE, with only 4% of participants using DCFCs and no partici-
pants averaging more than one DC fast charge per month. Low
public EVSE usage rates have also been seen by The EV Project
[21]. Commercial EVSE usage is expected to increase as EVSE and
PEVs become more prevalent.

As stated, the survey examined direct ask WTP, usage and com-
petitive choice likelihood for two methods of offering renewably
generated electricity. These methods include every charge being
powered renewably and providing an option for renewable energy.
Since the survey started with the choice experiment questions,
these questions came after 20 questions on pricing. The survey
queried the likelihood that the participant would choose an EVSE
offering renewable energy over one that does not, with 0% repre-
senting indifference and 100% indicating choosing the renewable
offering EVSE every time. These two cases gave similar values with
a mean likelihood of 79% with every charge being renewable and
81% for optionally renewable, while 100% likelihood was the most
chosen, showing that offering renewable energy provides a signif-
icant advantage in competitive markets. The results were bimodal
distributions, likely due to differing levels of price sensitivity and
differing interest in renewable energy. For the every charge renew-
able case, 12% chose a likelihood of 0–19%, 1% chose 20–39%, 2%
chose 40%–59%, 9% chose 60%–79%, 12% chose 80–99% and 64%
chose 100%.

Comparing the respondents current commercial EVSE usage to
stated usage if renewable energy was offered, there is a 419%



Table 5
Demographics and residential PV comparison.

Study ECOtality
EV
project
survey

California
PEV
owner
survey

This
study
all

This
study
rational

This
study
irrational

Study population U.S. PEV
owners

CA PEV
owners

U.S. PEV
owners

U.S. PEV
owners

U.S. PEV
owners

Respondent count 6156 2039 203 169 34
Male 63% 71% 77% 75% 91%
Mean annual

household income
$149k $140k $117k $116k $121k

Mean education (yrs) 16.9 17.3 17.2 17.1 17.4
Mean age (yrs) 50.9 – 52 52.8 49.4
Have residential PV – 39% 23% – –
General population

have residential PV
– CA: 0.77% U.S.:

0.15%
– –

Table 6
Reason for purchase of current PEV.

Reason Participant fraction

Primary motivation
(%)

Secondary motivation
(%)

Environmental 37 22
Fuel cost 22 30
Energy independence 17 22
New technology 15 11
Other 3 2
Fun to drive 2 10
HOV lane access 2 1
Vehicle cost 1 1
Influence of friend or

family
0 0

0%

10%

20%

30%

40%

50%

60%

70%

80%

0  1 - 5 6 - 10 11 - 15 16 - 20 21 - 25 More

Re
sp

on
se

 fr
ac

�o
n

Charges (Count/month)

Pay-per-use charger usage
Current

Stated If Every
Charge Renewable

Fig. 1. Influence of renewable energy offering on charger usage.
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increase in monthly charging events for the every charge renew-
able case based on summing usage across all respondents. This
value represents a mean increase from 1.1 to 4.8 charge events
per month per respondent. The optionally renewable case gave
very similar results with a 448% total increase and a mean of 5.0
charge events per month. The average of these two usage increase
values was used in the case study, equaling a 433% increase or 4.9
commercial charges per month. These usage values are compared
as histograms in Fig. 1. As a whole, respondents indicated that
for 99.5% of the charge events they would choose to use the renew-
able energy option. Before calculated the above summarizing usage
statistics, the authors found it necessary to perform some data
cleaning with the stated usage survey responses. There were nine
of the 181 responses that had indicated a usage rate when renew-
able energy was offered that exceeded 30 charges per month. In all
these cases, the stated usage value was equal to the value given by
the respondent to the previous question. This preceding question
asked for a percent likelihood, while the usage question asked for
a number of charges per month. We chose to eliminate these nine
responses from the usage data and performed all calculations with-
out them.

Given the role of these usage values in our case study in calcu-
lating financial income and environmental emissions, we will put
these values into context. On average, PEV drivers travel 745 miles
and charge 39 times per month, while averaging 27 miles between
charges [21]. Our respondents and other studies have shown the
far majority of charging happens at their residence [21]. The stated
increase of 433% in commercial charger usage represents a driver
charging away from home on a commercial, pay-per-use charger
4.9 times per month rather than 1.1 times per month. This rise in
commercial charging could displace home charging and/or add
up to an estimated 100 miles of driving per month, which is still
will within typical U.S. vehicle usage. Financially, if we look at
the more frequently used Level 2 chargers as an example, the aver-
age charge lasts 4.5 h, costing $4.5 [33]. Forgoing a price increase
for renewable energy for the moment, adding 3.8 chargers per
month would raise the average driver’s monthly commercial
charging expense from $4.95 to $22.50, which is well within reason
for the mid to high income individuals that own PEVs. The time
they spend commercially charging which would likely occur as
the driver is working, shopping or dinning would likewise rise
from 5.0 to 22.5 h per month or 5.25 h per week, also quite feasible.
In terms of interest in renewable energy, PEV drivers are 50–150
times more likely to power their homewith renewable energy than
the general public [18]. Of course, these usage increase values were
obtained by directly asking in a survey, and it is possible to get
some bias with this method. Performing regional or small scale tri-
als with PEV drivers actually making purchases could confirm or
improve these estimates and is a logical next step in evaluating
the potential of renewably powered PEV charging presented in this
study.

At 66%, the majority of participants prefer that the EVSE offer
renewable energy with every charge, while 19% prefer renewable
energy be provided as an option, 14% like these options equally
and 0.5% prefer the chargers not offer renewable energy.
5. Modelling results and discussion

5.1. Choice experiment findings on WTP

Several model specifications were fitted in the choice
experiment WTP survey results using mixed logit model, each with
the inclusion or exclusion of different independent variables.
Tables 7 and 8 show the results and form of these models.
Models 1–5 are different model specifications for the mixed
logit models. In Model 1, the basic economic model is
Vij ¼ bi;REFREFij þ bPriceCEPriceij as discussed in Section 3.3. In models
2–5, more variables as indicated by variables in the left column of
the table are added into this basic economic model in order to
explain the random utilities of the survey respondent when
choosing different charging options. Estimated mean and standard
deviation values are given only for the variables included in each of
these models. These variables are added in order to test whether
these variables have impact on the choice of charging options
and thus the estimates of WTPs.

WTP was assessed for AC Level 2 and DCFCs using the choice
experiment and direct ask methods. We will focus our discussion
on the choice experiment results, which are less prone to bias
and expected to be a closer approximation to actual WTP. The
direct ask results are available in Appendix A. The choice experi-
ment WTP values are estimated with several models with the



Table 7
AC Level 2 EVSE choice experiment analysis results.

Mean and standard errors of coefficients Model 1 Model 2 Model 3 Model 4 Model 5

Price ($) �32.358*** �32.273*** �33.056*** �31.865*** �32.704***

(2.196) (2.299) (2.320) (2.204) (2.340)
Renewable fraction (unit is one, not%) 19.638*** 19.975*** 15.786*** 19.558*** 18.890***

(1.992) (2.370) (5.248) (2.207) (2.461)
Renewable fraction ⁄ Currently use commercial chargersa (dummy) 5.36*** 3.305*

(1.404) (1.884)
Renewable fraction ⁄ Currently use Level 2 commercial chargersb (dummy) 5.090*** 5.023***

(1.273) (1.150)
Renewable fraction ⁄ Income 0.07***

(0.015)
Renewable fraction ⁄ Education �0.416

(0.340)
Renewable fraction ⁄ Female 6.803***

(1.871)
Renewable fraction ⁄ Age 0.01

(0.056)
Renewable fraction ⁄Made irrational choicesc (dummy) �1.399

(1.665)

Willingness to pay estimate
Mean 0.607 0.646 0.798 0.634 0.582
Lower bound for the 95% interval 0.512 0.599 0.754 0.589 0.543
Upper bound for the 95% interval 0.702 0.692 0.842 0.679 0.620

Standard deviations of the random coefficient
Renewable fraction 12.828*** 14.719*** 13.216*** 13.647*** 11.071***

(1.514) (2.270) (1.740) (1.773) (1.494)
N 6090 6090 5970 6090 6090
LR chi2(2) 1659.6 1617.98 1465.7 1610.95 1597.48
Log likelihood �702.956 �706.358 �678.779 �705.837 �705.554

Between LR chi2(1) Prob > chi2

LR test for nested models Model 1 Model 2 �6.80 1.0000
Model 1 Model 3 48.35 0.0000
Model 1 Model 4 �5.76 1.0000
Model 1 Model 5 �5.20 1.0000
Model 2 Model 3 55.16 0.0000
Model 4 Model 5 0.57 0.4521

Note: The simulation uses 500 Halton draws. With the attributes for the status quo option set to zero, the status quo was handled with a dummy variable, which equals one if
the option is status quo and zero otherwise. For brevity, this variable is not shown in the table.

a Given a value of 1 for those that currently use public pay-per-use chargers, otherwise a value of 0.
b Given a value of 1 for those that currently use a Level 2 public pay-per-use charger, otherwise a value of 0.
c See Section 3.2.

Standard errors in parentheses.
* p < 0.1.
** p < 0.05.

*** p < 0.01.
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means and 95% confidence intervals shown in Tables 7 and 8. The
distributions for WTP are bimodal, as shown in Fig. 2, with a minor
fraction having a lower WTP. The standard deviations of the ran-
dom coefficient for Renewable fraction show that there exits
heterogeneity of the WTP among the respondents. For the case
study we chose to use model one, which incorporates only param-
eters presented in the choice sets and provides one of the lower
valued choice experiment WTP estimates. The mean WTP esti-
mated by this model is $0.61 per hour to upgrade to renewable
energy from the Level 2 EVSE and $1.82 per charge from renewable
energy from the DCFC.

To put these WTP values into context in combination with the
stated usage values, the average PEV driver charging from Level 2
commercial chargers would see a rise in their monthly pay-per-
use charging expense from $4.95 to $36. For the DCFC chargers this
monthly expense would increase from $5.50 to $29.53. In both
cases, this is feasible for the mid to high income owners of PEVs.

In both the Level 2 and DCFC cases, the following trends
emerge:

� Greater WTP for renewable energy for those that use the type of
EVSE in question
� WTP increases with an increase in income
� WTP decreases with years of education
� Females are willing to pay more for renewable energy
� WTP increases with age

The numbers for the variable ‘‘Currently use commercial charg-
ers” in Table 8 differ between model 2 and model 3. Their methods
of estimation differ in that additional variables included in the
model for model 3. These additional control variables have an
impact on this variable for Model 3 when fitting a model to the
respondents’ DCFC charging choices. For example, income and gen-
der could be correlated with respondents’ decisions to charge at
DCFC charging stations. In Table 8, the coefficient for the interac-
tion term between ‘‘Made irrational choices” and Renewable frac-
tion is positive, meaning that if a person made an irrational
choice, they will be more likely to choose an option if there is
higher fraction of renewable energy.

We also ran the models on a subset of responses that excludes
those who made irrational choices in the choice experiments. The
results are listed in Table 9. In addition, the demographics of the
rational versus irrational people are listed in Table 5. The elicited
WTPs of the rational people are similar to those for the whole



Table 8
DCFC choice experiment analysis results.

Mean and standard errors of coefficients Model 1 Model 2 Model 3 Model 4 Model 5

Price ($) �14.725*** �14.442*** �14.550*** �14.770*** �14.757***

(1.128) (1.104) (1.130) (1.129) (1.144)
Renewable fraction (unit is one, not%) 26.841*** 27.586*** 39.127*** 31.620*** 27.354***

(2.887) (3.449) (7.772) (3.456) (2.906)
Renewable fraction ⁄ Currently use commercial chargersa (dummy) 8.839*** �3.194***

(1.847) (1.117)
Renewable fraction ⁄ Currently use DCFC commercial chargersb (dummy) 42.393*** 7.468**

(5.685) (2.960)
Renewable fraction ⁄ Income 0.074***

(0.021)
Renewable fraction ⁄ Education �1.386***

(0.446)
Renewable fraction ⁄ Female 13.396***

(2.138)
Renewable fraction ⁄ Age 0.098**

(0.049)
Renewable fraction ⁄ Made irrational choicesc (dummy) 0.531

(1.233)

Willingness to pay estimate
Mean 1.82283 2.174 2.116 2.258 1.952
Lower bound for the 95% interval 1.507992 2.011 1.968 2.090 1.825
Upper bound for the 95% interval 2.137669 2.337 2.264 2.425 2.079

Standard deviations of the random coefficient
Renewable fraction 18.426*** 20.130*** 19.638*** 24.211*** 19.536***

(2.347) (2.800) (2.426) (3.057) (2.642)
N 6090 6090 5970 6090 6090
LR chi2(2) 2357.48 2348.6 2112.12 2338.12 2326.27
Log likelihood �547.367 �545.731 �529.749 �543.379 �545.014

Between LR chi2(1) Prob > chi2

LR test for nested models Model 1 Model 2 0.13 0.7223
Model 1 Model 3 35.24 0.0000
Model 1 Model 4 7.98 0.0047
Model 1 Model 5 4.71 0.0951
Model 2 Model 3 35.11 0.0000
Model 4 Model 5 �3.27 1.0000

Note: The simulation uses 500 Halton draws. With the attributes for the status quo option set to zero, the status quo was handled with a dummy variable, which equals one if
the option is status quo and zero otherwise. For brevity, this variable is not shown in the table.

a Given a value of 1 for those that currently use public pay-per-use chargers, otherwise a value of 0.
b Given a value of 1 for those that currently use a DC fast public pay-per-use charger, otherwise a value of 0.
c See Section 3.2.

Standard Errors in Parentheses.
* p < 0.1.

** p < 0.05.
*** p < 0.01.

Fig. 2. Distribution of elicited WTP based on Model 5 in Tables 7 and 8.
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sample, which implies that whether respondents are rational or
not as determined in the choice experiment does not impact much
their decisions to charge their EVs with renewable energy. On aver-
age, irrational respondents are more likely to be male, have higher
income, and are younger.
We’ve also estimated the WTP using conditional logit models,
with the results shown in Appendix B in Table B.1. As can happen
with conditional logit models, the results have overestimated the
WTP. This further justifies our use of mixed logit models in this
study.



Table 9
Choice experiment analysis results of rational respondents.

Mean and standard errors of coefficients AC Level 2 DCFC

Price ($) �43.669*** �45.171*** �24.011*** �24.396***

(3.490) (3.547) (2.283) (2.469)
Renewable fraction (unit is one, not%) 28.326*** 33.904*** 46.283*** 41.687***

(3.174) (3.889) (5.300) (5.115)
Renewable fraction ⁄ Charge at this type of commercial charging stationa 15.547*** 26.259***

(2.347) (5.144)

Willingness to pay estimate
Mean 0.649 0.763 1.928 1.944
Lower bound for the 95% interval 0.557 0.700 1.632 1.790
Upper bound for the 95% interval 0.740 0.827 2.223 2.100

Standard deviations of the random coefficient
Renewable fraction 19.528*** 24.588*** 30.992*** 37.683***

(2.608) (3.224) (3.987) (5.232)
N 5070 5070 5070 5070
LR chi2(2) 1447.64 1423.1 2052.28 2032.99
Log likelihood �555.399 �553.688 �391.887 �389.912

Note: The simulation uses 500 Halton draws. With the attributes for the status quo option set to zero, the status quo was handled with a dummy variable, which equals one if
the option is status quo and zero otherwise. For brevity, this variable is not shown in the table.

a Given a value of 1 for those that currently use Level 2 public pay-per-use chargers, otherwise a value of 0 for the analysis of Level 2 charging; Given a value of 1 for those
that currently use DC fast public pay-per-use chargers, otherwise a value of 0 for the analysis of DC fast charging;
Standard Errors in Parentheses.

* p < 0.1.
** p < 0.05.

*** p < 0.01.
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5.2. Regression findings

An ordinary least squares regression was applied to the follow-
ing dependent variables (1) all variations of increase in EVSE
usage and (2) all variations of renewable charger competitive
choice likelihood. This regression analysis allows us to examine
the heterogeneity across different PEV drivers. Tobit regression
was used for the likelihood of choosing a renewable energy offer-
ing EVSE dependent variable. The use of the Tobit method cor-
rects for the censoring created by the survey question, where in
Table 10
Regression analysis results.

Dependent variable Every
over n

Adjusted R Square 0.220
Significance F 0.000
Coef Mean

Intercept 131.01
EV vs PHEVa (dummy) 1.974
Travel Distance (mi/day) �0.232
Current commercial charger use (events/mo.) 0.178
Current level 2 charger use (events/mo.) �0.325
Current DC fast charger use (events/mo.) �7.715
Currently use commercial chargersb (dummy) 9.855
Currently have home renewable energyc (dummy) 2.397
Environmental reason primary or secondaryd (dummy) 15.400
Energy independence reason primary or secondary (dummy) �3.136
Fuel cost savings reason primary or secondary (dummy) �14.02
New technology reason primary or secondary (dummy) �19.79
Vehicles household owns (count) 1.218
Household income (100,000 s) 0.674
Years of education �1.690
Gender �3.463
Age (yr.) �0.401

a Given a value of 1 for owners of EVs and a value or 0 for owners PHEVs.
b Given a value of 1 for those that currently use public pay-per-use chargers, otherwi
c Given a value of 1 for those that currently charge their vehicle at with renewable e
d Given a value of 1 if respondents purchased a their vehicle for the stated reason, ot
* p < 0.1.

** p < 0.05.
*** p < 0.01.
the range was defined from 0% to 100%, with 0% indicating indif-
ference. This phrasing does not account for the possibility of a
preference for the non-renewable chargers. In all cases, the
regression was applied to the results from the 181 respondents
that completed every question. Table 10 shows the dependent
variables for which there is a statistically significant regression
model based on all the independent variables listed. Given the
similarity of the results between the every charge renewable
and optionally renewable cases for the choice likelihood variables,
regression results are solely shown for the every charge
charge: Likelihood choose
on-renewable charger

Optional: Charger use increase

0.068
0.033

Std Err Mean Std Err

*** 28.979 7.076 9.839
5.477 �0.426 2.847
0.113 0.055 0.059
1.109 �0.242 0.577
1.620 �0.102 0.843
14.863 �3.139 7.729
6.576 �5.483 3.421
5.369 4.422 2.791

** 7.094 4.055 3.691
6.834 4.096 3.555

5** 6.777 �1.473 3.525
7** 7.645 0.670 3.972

2.728 �0.769 1.417
4.904 �6.591*** 2.550
1.400 0.065 0.728
6.449 �2.415 3.355

* 0.237 0.106 0.123

se a value of 0.
nergy at home, otherwise a value of 0.
herwise a value of 0.
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renewable case. Only the optionally renewable case provided a
statistically significant regression model for charger usage
increase. At 6–22%, these models explain a minor fraction of the
variability. Though, they do provide some trends.

For the likelihood of choosing a charger offering renewable over
one that does not, regression indicates:

� 15% greater likelihood for those that purchased their vehicle for
environmental reasons.

� 14% less for those that purchased for fuel cost savings.
� 20% less for those that purchased in interest of new
technology.

� A weak correlation (with significance at the p = 0.1 level) of less
likelihood with increasing age.

Regression of the indicated increase from current EVSE usage to
usage if EVSE offered renewable energy shows that 6% of the vari-
ability can be attributed to a trend of a less usage increase for those
with higher incomes.

5.3. Case study: Blink network

Our case study applies the knowledge gained from the survey to
examine the economic and environmental benefits available to the
electric vehicle charging industry by focusing on the Blink charging
network as an example. The wind energy for this case study is
sourced from U.S. wind farms through the purchase of RECs, which
are the basis of grid-tied renewable energy trade in the U.S. See
Section 2.2 for more information on RECs. The Blink public EVSE
network was built by ECOtality, Inc. as part of The EV Project,
which had a total of $230 million in support from the U.S. Depart-
ment of Energy (DOE), Chevrolet, Nissan and other partners from
2009 to 2013. The EV Project was developed to build a significant
charging infrastructure in 18 metropolitan areas across the U.S.
and to collect and analyze data needed to learn from the first gen-
eration of PEVs in order to support the development of future vehi-
cles and infrastructure. While our study focuses on the commercial
EVSE, the project installed 6141 residential EVSE in addition to
2675 commercial AC Level 2 EVSE and 87 commercial DCFCs
[21]. The collected charging data was summarized and published
in numerous reports. This publicly available data, specifically the
most recent quarterly report of second quarter 2013, are used in
this study to calculate potential profitability and emissions reduc-
tion. The bankruptcy of ECOtality in September of 2013 led to the
purchase of the Blink network by Car Charging Group, Inc.

5.3.1. Economic benefit
When combined with our survey results, The EV Project quar-

terly report provides enough information to determine the Blink
network second quarter 2013 gross income and the increase in
gross income and profit, if the offering of renewable energy leads
to the usage and mean WTP found in the survey. This information
will be annualized by simply multiplying quarterly values by four
where appropriate, assuming no seasonal change or other source of
Table 11
Renewable energy profitability inputs.

Description AC Level 2

Number of charge events 202,916 even
Average energy consumption 8.6 AC kW h/
Average time connected 4.5 h/event
Price of charge $1.00/h
Wholesale cost of nationally sourced wind energy REC $0.0012/AC k
Choice experiment mean stated renewable energy WTP $0.61/h
Average stated usage increase with renewable energy 433%
increase or decrease in EVSE usage. Given that Blink’s contracts
with their EVSE host site owners are not public knowledge and that
renewable energy profits may not be addressed in these contracts,
it is unclear how the income and costs would be shared between
these parties.
5.3.1.1. AC Level 2 EVSE price increase. Values used to calculate the
income and profit for AC Level 2 EVSE are shown in Table 11. Since
the WTP for renewable energy was surveyed with a base price of
$1.00/h and because this was the price charged when the second
quarter 2013 data were collected and at the time of survey admin-
istration, the case study uses the pre-September 2014 price.

Gross annual income without renewable energy is calculated by
multiplying together the number of charge events per year by the
average number of hours per charge event by the price the cus-
tomer paid for an hour of use.

IncomeL2 ¼ 202;916
events
yr

� 4:5
h

event � $1:00=h ¼ $913;122=yr

Gross annual income from the sale of renewable energy is calcu-
lated similarly though with the mean WTP in place of the base price
per hour.

IncomeL2;RE ¼ $557;004=yr

This represents a 61% increase in gross income from AC Level 2
charging. The profit without renewable energy cannot be deter-
mined as the costs of running the Blink network are not public
information. However, the additional profit available through the
sale of renewable energy can be calculated by subtracting the
annual cost of RECs from the renewable energy gross income.

CostL2;RE ¼ 202;916
events
yr

� 8:6
AC kW h
event � $0:0012=AC kW h

¼ $2094=yr
ProfitL2;RE ¼ IncomeL2;RE � CostL2;RE ¼ $554;910=yr

This value indicates a 99.6% profit margin on the sale of renew-
able energy. Nationally sourced wind RECs sold on the voluntary,
non-compliance market have traded below $0.002/kW h since
2010. The highest wind voluntary REC prices to date were observed
for wind energy generated in the western U.S. during some price
peaks between 2009 and 2012, with values topping out at
$0.0086/kW h. While nationwide sourced wind was available at
$0.001–$0.0015 during this period and there is no reason not to
use the lower priced RECs, the effect of this higher price is noted
as a point of profit sensitivity.

CostL2;RE � $0:0086
$0:0012

¼ $15;007

The higher REC cost is clearly still well below IncomeL2;RE, leaving a
97.3% profit margin, relative to the gross renewable energy income.
DCFC Source

ts/yr 107,644 events/yr [21]
event 8.3 AC kW h/event [21]

– [21]
$5.00/event [21]

W h $0.0012/AC kW h [34]
$1.82/event Survey from this study
433% Survey from this study
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5.3.1.2. DCFCs price increase. The needed inputs for the income and
profit values from the sale of renewable energy on the DCFCs are
also presented in Table 11. Following the same process, the DC fast
charging gross annual income without renewable energy, the gross
annual income from the sale of renewable energy, the cost of RECs
and renewable energy profit is calculated as follows.

IncomeDC ¼ 107;644
events
yr

� $5:00=event ¼ $538;220=yr
20%
IncomeDC;RE ¼ $195;912=yr

0%
CostDC;RE ¼ 107;644
events
yr

� 8:3
ACkWh
event � $00012=AC kW h

¼ $1072=yr

Fig. 3. Normalized fuel well-to-wheels life cycle emissions mass and consumer
costs.
ProfitDC;RE ¼ IncomeDC;RE � CostDC;RE ¼ $194;840=yr

These values indicate a 36% increase in gross income and 99.4%
profit margin from the sale of renewable energy on DCFCs.
5.3.1.3. Totaling and usage increase. Summing the AC Level 2 and
DCFC pre-renewable energy gross annual income provides the total
pre-renewable energy EVSE income

IncomeEVSE ¼ IncomeL2 þ IncomeDC ¼ $913;122=yrþ $538;220=yr

¼ $1:45 mill

and the total gross annual income from renewable energy is

IncomeEVSE;RE ¼ IncomeL2;RE þ IncomeDC;RE ¼ $0:75 mill

This represents a 52% increase in gross income. Due to the low cost
of REC’s the total annual profit increase from the addition of renew-
able energy WTP is quite similar and is calculated simply the sum of

ProfitEVSE;RE ¼ ProfitL2;RE þ ProfitDC;RE ¼ $0:75 mill=yr

Averaging the stated usage increase from the every charge
renewable case and the optional renewable case from the survey
results of this study provides a stated usage with renewable energy
increase of 433%. The impact this rise in usage has on gross annual
income and profit increase can be calculated as follows.

IncomeEVSE;Tot ¼ Usage� ðIncomeEVSE þ IncomeEVSE;REÞ
¼ 433%� ð$1:45 millþ $0:75 millÞ ¼ $9:5 mill
2 Our calculations summing emissions mitigated only include emissions that would
be saved relative to powering the electric vehicles with grid electricity, based on a fuel
life cycle analysis.
ProfitRE;Tot ¼ Usage� ProfitEVSE;RE ¼ 433%� $0:75 mill

¼ 3:2 mill=yr

Combined with the renewable energy price premium, such a
rise in usage would bring the total gross annual income increase
to 655% from the original $1.45 million to $9.5 million. At this
usage rate, the cost of RECs would rise to $13,700. Regardless of
the direct recipient, such increases in income and profits would
provide some needed financial support to this industry experienc-
ing low usage rates and bankruptcies.

These income and profit calculations are obviously based signif-
icantly on survey provided stated WTP and stated charger usage.
While the findings of this and past studies show the drivers of
PEV’s have a strong interest in renewable energy with being 50–
150 times more likely to power their home with PV energy than
the general population, future study in the form of regional or
small scale trails with customers actually making purchases are
recommended to improve these estimates.
5.3.2. Emissions reduction simulation
A fuel well-to-wheels life cycle impact assessment comparison

of powering vehicles with three different energy sources was sim-
ulated using the GREET model produced by Argonne National Lab-
oratory [4]. Fig. 3 compares the consumer energy costs and life
cycle emissions mass for a vehicle powered with gasoline, average
U.S. power grid electricity mix and wind generated electricity,
based on U.S. average residential electric utility pricing and U.S.
average gasoline cost September 2013 – August 2014 [1,35].

These results show energy costs for 30 miles of travel in a U.S.
passenger vehicle at $3.80 for gasoline, $1.17 for residential grid
electricity and $1.27 for residential wind energy. Switching from
gasoline to average U.S. mix electricity reduces every modeled
emission type with the exception of SOx. Switching from gasoline
to wind power reduces emissions of every modeled type by more
than 4 orders of magnitude, with the exception of PM10. Relative
to gasoline, GHGs are 42% less for grid electricity and 99.997% less
for wind energy.

The total annual energy distributed by the Blink network can be
calculated by summing the total annualized second quarter 2013
AC Level 2 and DCFC energy consumption as follows, using the val-
ues from Table 11.

202;916
events
yr

� 8:6
AC kW h
event þ 107;644

events
yr

� 8:3
AC kW h
event

¼ 2639 MW h=yr

Using an average U.S. electricity mix carbon dioxide intensity
factor [36] the total annual grid electricity carbon dioxide emis-
sions for the Blink network are

2639 MW h=yr� 602 kg CO2=MW h ¼ 1589 metric tons CO2=yr

Using the GREET model wind energy carbon dioxide intensity fac-
tor, powering every charge with wind energy would reduce emis-
sions to

2639 MW h=yr� 0:0476 kg CO2=MW h ¼ 126 kg CO2=yr

This equates to the prevention of 1589 metric tons CO2 per year or
the removal of 334 U.S. gasoline passenger cars from the road [36].
At the increased survey stated usage rate, these figures increase to
6880 metric tons CO2 prevented per year and the elimination of
1446 passenger cars.2
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Expanding these calculations to all PEV’s in the U.S., the US
Energy Information Administration [37] estimates the number of
PEV’s on the road in 2015 at 340,000 vehicles. Our respondents
indicate 58 commercial charge events per vehicle per year with
renewable energy. Applying the calculations used above, it can
be estimated that 167 GW h of renewable energy would be
required to meet the demand if every commercial charge were
powered renewably. This electricity demand represents 0.07% of
the 2015 U.S. annual wind and solar energy production of
230,000 GW h [38]. This amount of wind powered PEV charging
would prevent 98,700 metric tons CO2=yr, equivalent to the elimi-
nation of 20,800 gasoline passenger cars.
6. Conclusions and implications

Previous studies and the survey findings of this study show PEV
drivers have a higher- than-average interest in renewable energy
and in protecting the environment, with currently 50% powering
their home with renewable energy and 60% having purchasing
their PEV for environmental reasons. These findings show a will
to take action and pay for reducing their environmental impact.
The survey and choice experiment results in this study indicate a
433% increase in the usage of the EVSE if renewable energy was
offered and a mean WTP to upgrade to renewable energy of
$0.61 per hour for AC Level 2 EVSE and $1.82 per charge for DCFCs.
Using data from the 2013 second quarter report of Blink, a public
charging station company, this WTP and usage translates directly
to an annual gross income increase of 655% from the original
$1.45 million to $9.5 million, with a cost of $13,700 to purchase
RECs. Excluding any profit seen purely from the rise in usage,
$3.2 million in profits would be gained directly from the renewable
energy price premium.

Looking at residential and retail energy pricing, the energy cost
for 30 miles of travel in a U.S. passenger vehicle is $3.80 for gaso-
line, $1.17 for residential grid electricity and $1.27 for residential
wind energy. Switching from gasoline to wind power reduces
emissions of GHGs, VOCs, CO, NOx, and SOx by more than 4 orders
of magnitude. Relative to gasoline, GHGs are 42% less for U.S.
average blend grid electricity and 99.997% less for wind
energy. Powering all Blink network charge events with wind
energy would reduce the annualized 2Q 2013 GHG emissions
of 1589 metric tons CO2=yr to 126 kg CO2=yr the equivalent of
removing 334 U.S. gasoline passenger cars from the road. At the
433% survey stated increased usage, 6880 metric tons CO2=yr
would be prevented per year or the equivalent of the elimination
of 1446 passenger cars. These economic and environmental benefit
values will increase with the usage of commercial chargers, which
is expected as PEV ownership increases with time.

Our results provide a promising new charging strategy for
companies that offer public EV charging stations such as utility
companies, charging companies, and EV manufacturers to increase
their profits through offering renewable energy charging sources.
Given the current lack of EV charging infrastructure, which is one
of the biggest challenges for the development of EV industry, our
study demonstrates prominent financial benefit to encourage
private sectors to invest in such charging stations with the
option of providing renewable energy. In addition, this strategy is
associated with significant environmental benefit.
A logical next step in future work for evaluating the potential
presented by this study would be to perform regional or small scale
customer trials with actual purchases to improve estimates of WTP
for renewable energy and charger usage if renewable energy were
offered, both of which significantly impact the findings.

For policy makers to help develop the charging infrastructure
for the EV industry, in addition to providing direct subsidies for
charging companies, they should also help these companies to
adopt new business strategies to grow more sustainably. Our
results show that policy makers can educate and incentivize these
companies to provide renewable energy option for their EV charg-
ing customers to increase company profits, given the elicited WTP
for renewable energy of the PEV drivers. In addition, policy makers
can educate PEV drivers as well as the general public of such
renewable charging programs through information and education
programs. Our results are based on the premise that the REC mar-
ket can be operated efficiently. Thus policy makers and regulators
should be aware of any potential issues in operating the REC mar-
ket such as lack of uniformity in REC rules across regional markets
and REC ownership uncertainty, which can be barriers for expand-
ing REC to larger markets.
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Appendix A. Direct ask WTP

WTP was assessed for AC Level 2 and DCFCs using the choice
experiment and direct ask methods. The choice experiment WTP
values are estimated with several models. For this comparison to
the direct ask WTP findings we will focus on the WTP values from
model one, which incorporates only parameters presented in the
choice sets and provides one of the lower valued choice experi-
ment WTP estimates.

At $0.61 per hour to upgrade to 100% renewable energy using
AC Level 2 EVSE and $1.82 per 30 min charge event for the DCFC,
the mean WTP collected through the choice experiment method
are substantially higher than those from the direct ask method,
as shown in A-1. In the calculation of the direct ask mean WTP
and the 95% confidence interval, a value of $0.35 was used for
those that selected ‘‘more than $0.30,” assuming an additional
increment of $0.05 for the AC Level 2 and a value of $1.00 was used
in place of ‘‘more than $0.80,” an additional increment of $0.20 for
the DCFC. The bootstrap method was used to calculate the confi-
dence intervals. As discussed, the choice experiment results are
less prone to bias and are expected to be a closer approximation
to actual WTP.

The direct ask WTP distributions are given in Table A.2. We see
a bimodal distribution with $0.00 WTP for 16% of participants for
Level 2 EVSE and 20% for DCFC. The other 84% for Level 2 and other
80% for DCFC of respondents broadly showing interest increasing
with increasing WTP. The most popular option for both was the
highest WTP option, ‘‘more than $0.30” per hour for Level 2 and
‘‘more than $0.80” per charge for DCFC. There is little difference
in the direct ask WTP results between renewable energy being pro-
vided with every charge and with it being offered as an option, as
seen in the mean values in Table A.1.



Table A.2
Distribution of direct ask WTP for renewable energy on a commercial EVSE with every
charge renewable.

AC Level 2 DCFC

WTP
($/h)

Participant
fraction (%)

WTP
($/Charge)

Participant
fraction (%)

More 28 More 33
$0.30 11 $0.80 9
$0.25 12 $0.60 9
$0.20 10 $0.40 9
$0.15 6 $0.30 10
$0.10 10 $0.20 6
$0.05 4 $0.15 1
$0.02 2 $0.10 1
$0.00 16 $0.05 1

$0.00 20

Table A.1
AC Level 2 renewable energy upgrade WTP statistics.

Survey method Mean WTP ($/h) 95% confidence interval ($/h)

AC Level 2
Direct Ask – Every Charge $0.20 $0.19–$0.23
Direct Ask - Optional $0.21 $0.19–$0.23
Choice Experiment $0.61 $0.51–$0.70

30 min DCFC
Direct Ask – Every Charge $0.54 $0.49–$0.61
Direct Ask - Optional $0.54 $0.49–$0.61
Choice Experiment $1.82 $1.51–$2.14
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Appendix B. Choice experiment – Supporting findings

See Table B.1.
Table B.1
Conditional choice models.

Mean and standard errors of coefficients Level 2 DC Fast

Price �4.464⁄⁄⁄ �1.397⁄⁄⁄

(0.514) (0.202)
Renewable fraction 4.820⁄⁄⁄ 4.565⁄⁄⁄

(0.161) (0.158)
Renewable fraction ⁄ Charge at this type of

commercial charging station
0.856⁄⁄⁄ 1.610⁄⁄⁄

(0.159) (0.386)

N 6090 6090
LR chi2(2) 2103.78 1474.48
Log likelihood �2824.4816 �3139.1294

Willingness to pay estimate
Mean 1.080 3.269
Lower bound for the 95% interval 0.863 2.433
Upper bound for the 95% interval 1.296 4.105
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