
Tropospheric Air Quality

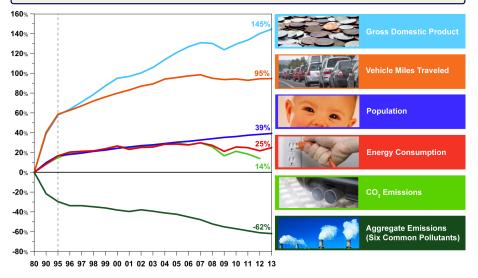
Smog, Particulate Matter, Acid Deposition

Outline of Topics

Overview

- Introduction
- Air Quality Standards
- Criteria Pollutant Trends
- Generation of Primary and Secondary Pollution

Photochemical Smog


- Killer Smog
- Photochemical (LA) Smog
- Smog Formation

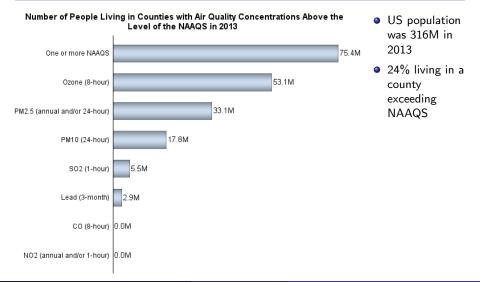

Particulate Matter

- Size and Composition
- Formation of PM
- Effect of Pollution on PM

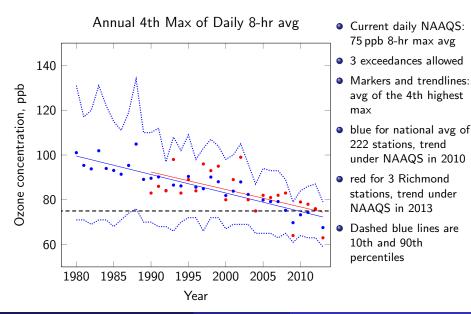
US Air Quality

Has the Clean Air Act improved air quality?

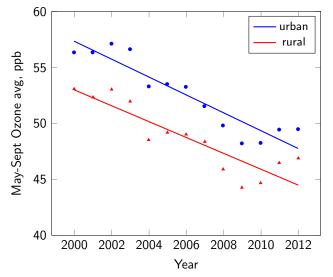
- WHO 2012: air pollution caused 7 million premature deaths
- Outdoor 3.7 million, indoor 4.3 million (some overlap)
- Acute lower respiratory infection: children under 5
- MIT study: 90,000-362,000 premature deaths in US in 2005


Lecture Question

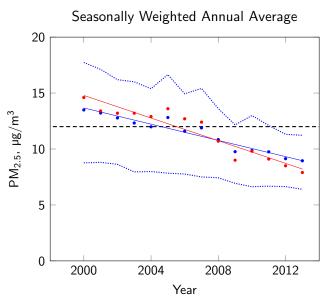
What are the US *National Ambient Air Quality Standards* (NAAQS)? How do they work?


Pollutant	Averaging Time	US NAAQS	WHO	• WHO stds
O ₃	8-hr	75 ppb	47 ppb	 converted from
NO ₂	1-hr	100 ppb	93 ppb	μg/m ³ when
NO ₂	annual	53 ppb	20 ppb	necessary EPA considering
PM-2.5	annual	12 μg/m ³	$\begin{array}{c} 10\mu g/m^{3}\\ 25\mu g/m^{3}\\ 20\mu g/m^{3}\\ 50\mu g/m^{3} \end{array}$	 EPA considering
PM-2.5	24-hr	35 μg/m ³		new O ₃ std
PM-10	annual	n/a		65–70 ppb EPA has primary
PM-10	24-hr	150 μg/m ³		and secondary stds
$\begin{array}{c} SO_2\\SO_2\\SO_2\\SO_2\end{array}$	1-hr 24-hr 10-min	75 ppb n/a n/a	n/a 7 ppb 175 ppb	 (primary shown here) What EPA considers a violation
СО	8-hr	9 ррт	n/a	can be complicated
СО	1-hr	35 ррт	n/a	
РЬ	3-month	0.15 µg/m ³	n/a	

Lecture Question


Based on NAAQS violations, which air pollutants are the biggest health risk in the US?

Compare trends in ground-level ozone to the NAAQS.



What is the trend in 'typical' (average) summer-time ozone concentration?

- Avg values, rather than 4th-highest
- Data adjusted to 'typical' weather conditions
- NAAQS is 75 ppb
- WHO guideline: 47 ppb
- Urban: -0.80 ppb/yr
- Rural: -0.71 ppb/yr

Compare trends in $PM_{2.5}$ to the NAAQS.

- Current NAAQS: 12 µg/m³ (annual avg)
- WHO guideline: $10 \, \mu g/m^3$
- Markers and trendlines: rolling 3-yr annual avgs
- Blue for national avg of 537 stations, trend under NAAQS in 2005
- Red for 4 Richmond stations, trend under NAAQS in 2006
- Dashed blue lines are 10th and 90th percentiles

Primary and Secondary Pollution

What is the difference between *primary* and *secondary* pollution? Give examples.

Problem	Primary Pollutant	Secondary Pollutant	
Photochemical smog	NO _x , VOCs	O ₃ , partially oxidized organics, NO ₂ , HNO ₃ , nitrate PM, or- ganic PM	
Acid Deposition	NO_x , SO_2	HNO ₃ , H ₂ SO ₄ , acidic PM	
Fine PM (PM _{2.5})	NO _x , SO ₂ , VOCs	nitrate PM, sulfate PM, organic PM	

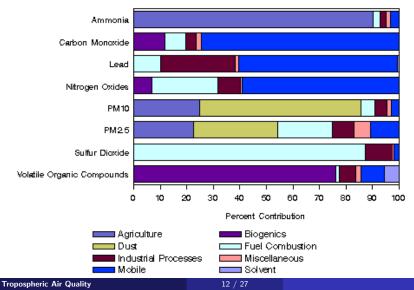
- Primary (or *precursor*) pollutants are discharged into the air
- They react to form *secondary* pollutants
- A common theme in table above: photochemical oxidation of primary pollutants to form secondary pollutants
- PM also formed by reaction of NH_3 with acids to form (acidic) salts

Lecture Questions

How are NO_x and SO_2 pollutants generated?

• SO_2 formed by burning anything that has sulfur in it

$$S + O_2 \longrightarrow SO_2$$


- Coal-fired power plants a common source
- $\bullet~{\rm NO_x}$ formed by ANY combustion process hot enough to break the triple bond in atmospheric ${\rm N_2}$
- Mostly formed as NO

$$N_2 + O_2 \longrightarrow 2 NO$$

• NO and NO₂ are rapidly interconverted (draw this)

What activities generate the criteria pollutants and/or its precursors?

National Multipollutant Emissions Comparison by Source Sector in 2011

Overview

What activities generate the criteria pollutants and/or its precursors?

Agriculture

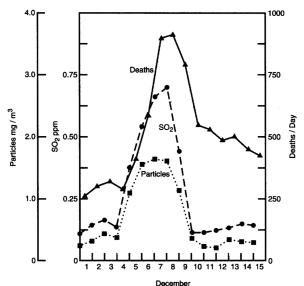
- Crops and livestock dust
- Fertlizer application
- Livestock waste
- Dust: fugitive emissions
 - Construction dust
 - Paved road dust
 - Unpaved road dust
- Fuel combustion, mostly for heat and electricity
 - Biomass, coal, natural gas, oil and other organic materials

Industrial processes

- Cement manufacturing
- Chemical manufacturing
- Ferrous and non-ferrous metal mills
- Mining; oil and gas extraction
- Petroleum refineries
- Pulp and paper mills

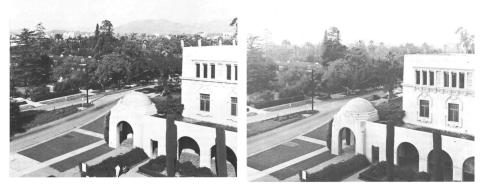
- Mobile emission sources
 - Aircraft
 - Commercial maring vessels
 - Locomotives
 - Non-road equipment (diesel and gasoline)
- Solvent use
 - Consumer and commercial use
 - Degreasing
 - Dry cleaning
 - Graphics arts
 - Industrial surface coating and solvent use
 - Non-industrial surface coating
- Miscellaneous sources
 - Bulk gasoline terminals
 - Commercial cooking
 - Gas stations
 - Waste disposal

Killer Smog Episodes


So, smog: how bad can it be?

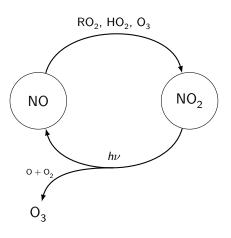
- 1930: 63 die in Meuse Valley, Belgium
- 1948: 20 die in Donora, PA
- The Great Smog of 1952: 4000 die in London
- 1962: 700 die in London
- These are sulfurous ("London") Smogs

The Great Smog and Environmental Epidemiology


How do we know that 4000 died due to the 1952 smog in London?

- Examine correlation between pollutant level and some health-based indicator
- Expect to see a lag
- Should be supported by biological plausibility and other toxicological studies (animal, clinical, biochemical)

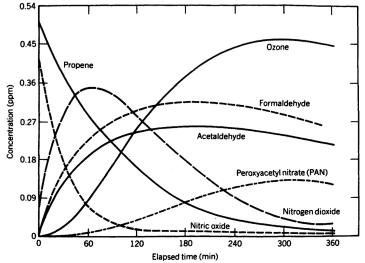
Tropospheric Air Quality


How does photochemical smog manifest?

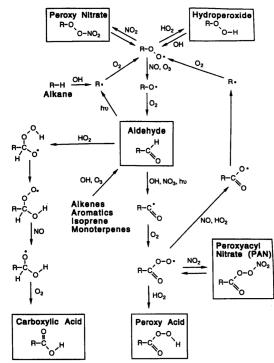
- Left: morning view; right: afternoon view (same day)
- Different from sulfurous (London) smog:
 - favored by sunny, warm days
 - strongly oxidizing, eye-watering
 - air pollution peaks in the afternoon

Oxidation of Hydrocarbons

Explain how hydrocarbon oxidation in the presence of NO can lead to smog formation.


• Each cycle produces ozone by NO₂ photodissociation

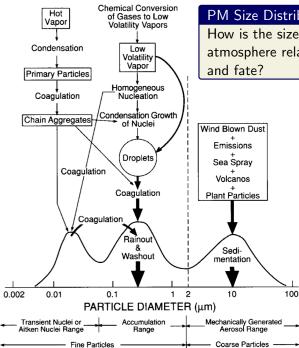
$$\begin{array}{c} \mathsf{NO}_2 \xrightarrow{h\nu} \mathsf{NO} + \mathsf{O} \\ \mathsf{O} + \mathsf{O}_2 \longrightarrow \mathsf{O}_3 \end{array}$$


- Cycling rate (ie, O₃ production) accelerated by O₃, RO₂ and HO₂
- Cycling via $NO + O_3 \longrightarrow NO_2 + O_2$ produces no net O_3
- Oxidation of hydrocarbons (RH) produces RO₂
- Oxidation of CO produces HO₂

Evolution of Photochemical Smog

Why does ground-level ozone peak in the afternoon?

- Precursors: propene (a reactive HC) and NO, generated in morning traffic
- O₃ peaks after about 6 h
- One reason: reactive VOCs are emitted in rush hour traffic
- Another: OH generation starts when sun rises

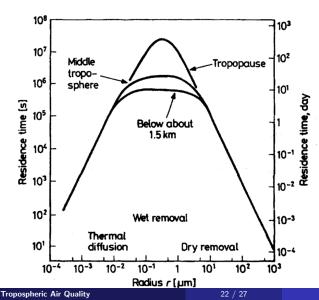

How complicated is smog formation?

- Boxed molecules are non-radical: more stable
- They are semi-volatile, can condense to form organic PM
- PAN is characteristic of smog, releases NO_x downwind
- Oxidation of HCs in presence of NO_x is somewhat self-catalytic
- There is an NO_x 'switch' of about 10 pptr

Significance of Atmopsheric Aerosol (PM)

What is the atmospheric aerosol (PM) and why is it an important part of the atmosphere?

- Atmospheric composition and reactions
- Cloud formation and properties
- Absorption and light scattering (radiative energy balance)
- Climate
- Human and ecosystem health
- Visibility

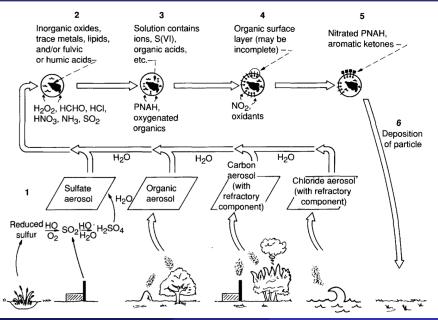


PM Size Distribution

How is the size of a particle in the atmosphere related to its formation

PM Removal Processes

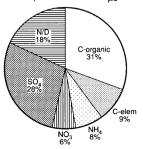
How long does a particle last in the atmosphere?

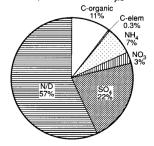

- Ultrafine PM (Aitken nuclei) are rapidly removed by coagulation
- Coarse PM are rapidly removed by sedimentation
- PM in accumulation range last the longest (weeks to months)

PM Composition

Chemically, what are the types of (non-biological) PM?

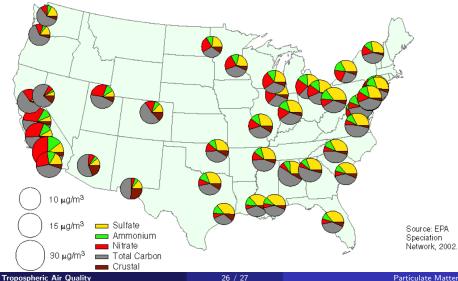
- Carbonaceous aerosol
 - Elemental carbon (soot) directly emitted by combustion processes
 - Organic aerosol: direct emission of condensed phase organic material (combustion, biogenic), and some condensation of secondary organic formed by atmospheric oxidation
- Nitrate aerosol
 - Formed from dissolution/neutralization of atmospheric HNO₃
- Sulfate aerosol
 - $\bullet\,$ Formed from dissolution of gaseous ${\rm SO}_3$ or aqueous-phase oxidation of dissolved ${\rm SO}_2$
- Crustal material
 - Mechanical formation (wind erosion)
 - Consists of Si, O, Al, Fe, Mn, etc
- Chloride aerosol (sea-spray)
 - Mechanical formation in oceans (waves, bubbles)
 - Consists of Cl, Na, K, Mg, SO₄²⁻, others


Describe a 'day in the life' of a fine particulate.

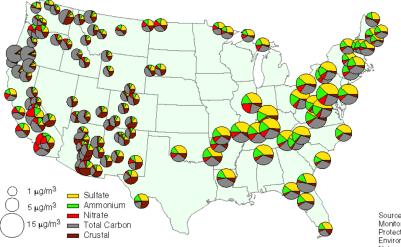

Effect of Pollution on Fine PM

How does pollution affect the concentration and composition of fine PM?

Average Urban Fine Particle Composition (by mass) Total Suspended Mass: 33 µg m⁻³


Average Remote Fine Particle Composition (by mass) Total Suspended Mass: 4.8 µg m⁻³

Note that more polluted urban air has (a) more PM (7-fold) and (b) greatly increased sulfate and carbon PM fractions.


Urban Fine PM

Describe the geographic distribution of the concentration and composition of urban fine PM.

Rural Fine PM

Describe the geographic distribution of the concentration and composition of rural fine PM.

Source: Interagency Monitoring of Protected Visual Environments Network, 2002.

27 / 27