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ABSTRACT: We introduce a new reagent class, 2-azatrienes, as a
platform for catalytic enantioselective synthesis of allylic amines.
Herein, we demonstrate their promise by a diastereodivergent
synthesis of syn- and anti-1,2-diamines through their Cu−
bis(phosphine)-catalyzed reductive couplings with imines. With
Ph-BPE as the supporting ligand, anti-diamines are obtained (up to
91% yield, >20:1 dr, and >99:1 er), and with the rarely utilized t-
Bu-BDPP, syn-diamines are generated (up to 76% yield, 1:>20 dr,
and 97:3 er).

1. INTRODUCTION

Chiral 1,2-diols, amino alcohols, and diamines are important
targets for organic synthesis as these motifs are ubiquitous in
natural products and drugs, as ligands for metal-based catalysts,
and as catalysts themselves. Several approaches to these
scaffolds have been established;1−3 however, the invention of
carbon−carbon bond-forming reactions that directly set these
vicinal heteroatom-substituted stereogenic centers is under-
developed.
A recent elegant report from the Krische group utilizes their

hydrogen autotransfer technology to couple an allenimide with
a primary alcohol-derived aldehyde to afford 1,2-amino
alcohols where the amino group is allylic (Scheme 1).4−9

Allylic amines are important structural features in numerous
bioactive molecules and natural products.10 Furthermore, the
unsaturation may serve as a functional group handle for
downstream transformations.11 Although having excellent
scope in the alcohol partner, the reactions were limited to
terminal allenes, giving rise to terminal allyl groups; moreover,
the anti-amino alcohol was the only stereoisomer accessible.
Our group has investigated the synthesis of both 1,2-

diamines12 (Scheme 1) and amino alcohols13 by reductive
couplings of 2-azadienes.14,15 These transformations proceed
by means of a copper−hydride16 intermediate with the
bis(phospholane) Ph-BPE as the ligand. In both cases, the
product amines bear an α-alkyl group. Furthermore, the
diamines were generated solely as the anti diastereomer in
every case.17

These examples highlight an often encountered situation in
enantioselective reactions that afford more than one stereo-
genic center: the ability to access only one diastereoisomer.
One strategy that addresses this shortcoming is a dual catalyst
approach18 wherein each catalyst acts cooperatively but

independently to activate two reaction components individu-
ally, thereby enabling each to control stereochemistry at its
respective fragment.19,20 An alternative is the use of two related
single catalysts for transformations that individually afford
opposite diastereomers with high enantioselectivity. Such an
approach has recently been illustrated in copper−phosphine-
catalyzed borylative couplings (Scheme 1). Shimizu, Kanai,
and co-workers demonstrated Cu−B(pin) addition to styrene
followed by coupling with N-thiophosphinoylimines.21 β-
Arylamines are obtained as the syn-isomer with a Josiphos
ligand whereas Ph-BPE delivers the anti-diastereomer.
Similarly, the Ostreich group discovered that 2-substituted
dienes yield homoallylic alcohols as the anti-diastereomer with
Josiphos but the syn-diastereomer with a phosphoramidite
ligand.22,23 To our knowledge, no examples of diastereodi-
vergent behavior in copper-catalyzed reductive couplings of
olefins with electrophiles have been reported.24,25

We have developed 2-azatrienes26 as new reagents for the
synthesis of substituted allylic amines.27 Herein, we illustrate
their reductive coupling with N-phosphinoylimines to afford
1,2-diamines with high chemo-,28 regio-, diastereo-, and
enantioselectivity (Scheme 1). Cu−Ph-BPE promotes the
formation of anti-diamines. Unexpectedly, and in stark contrast
to our findings with azadiene reagents, we discovered that
several other ligands enable the cross-coupling and favor the
syn-diamine product. We disclose the first examples of
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reductive coupling using t-Bu-BDPP, an uncommon ligand in
catalysis,29 to achieve good to excellent levels of diastereo- and
enantioselectivity for syn-diamine production.30−32

2. RESULTS AND DISCUSSION
2.1. Method Development. We began by examining the

coupling of terminal 2-azatriene 1 with imine 2a, employing
Cu(OAc)2 and Ph-BPE (L1) under the conditions established
for azadiene addition to these imines12 (Table 1, entry 1). The
transformation generates the anti-diamine 3a with 19.5:1 dr,
which was isolated in 90% yield and 99:1 er. Regioselectivity
for the 6,3-addition product over the isomeric azadiene 4a
(6,5-addition) is excellent. Furthermore, chemoselectivity for
reductive coupling over imine reduction (3a/4a:5a > 20:1) is
considerably greater than that in our previous azadiene−imine
coupling12 (coupling/reduction = 5:1), which might be
attributed to the LUMO-lowering effect of extra conjugation
in 1 plus its decreased sterics over an azadiene (cf. Scheme 1).
Unexpectedly, we discovered that syn-diamine 3a is the

major product (1:3.5 anti:syn-3a) with achiral DCyPE (L2,
entry 2) when attempting to prepare the authentic racemic
material for entry 1. This finding stands in contrast to azadiene
reductive couplings with imine 2a, where Ph-BPE and DCyPE
both preferentially furnish the anti-diamine product. Although
selectivity metrics were modest for DCyPE in the azatriene
reaction, this result prompted us to explore whether a chiral
ligand could be found that would lead to enantioselective
formation of the syn-3a diastereomer.
With Chiraphos (L3), the reaction is reasonably efficient but

poorly selective in all categories, generating syn-3a as a
racemate (entry 3). In contrast, spacing the phosphino groups
farther apart by turning to BDPP (L4) leads to markedly
improved stereoselectivity (1:6 anti:syn-3a, 83:17 er, entry 4).
Replacing the methyl groups of BDPP with phenyl substituents
(L5) significantly erodes stereoselectivity (1:1.5 dr, 50:50 er)
and leads to a large quantity of imine reduction (entry 5).
Similarly, changing the diphenylphosphino groups to dicyclo-
hexylphophino (L6) abolishes stereoselectivity (entry 6);
regio- and chemoselectivity are also poor. Fortunately,

Scheme 1. Catalytic Reductive and Borylative Processes that Set Vicinal Stereogenic Centers

Table 1. Ligand Choice in CuH-Catalyzed Coupling of 2-
Azatriene 1 and Imine 2a Leads to Diastereodivergencea

entry ligand conv of 2a (%)b 3a:4a:5ab anti:syn-3ab erc

1 L1 >98 (90)d 86:8:4 19.5:1 99:1
2 L2 >98 75:13:12 1:3.5 −
3 L3 80 58:14:28 1:2.5 50:50
4 L4 >98 60:18:22 1:6 83:17
5e L5 >98 28:6:66 1:1.5 50:50
6e L6 >98 27:31:42 1:1 52:48
7e L7 >98 64:12:24 1:6 94:6
8e,f L7 >98 66:12:22 1:8.5 94:6
9e,f,g L7 >98 (69)d 81:6:12 1:12.5 97:3

aReaction with 0.1 mmol imine 2a. bDetermined by 500 MHz 1H or
162 or 202 MHz 31P NMR spectroscopy of the unpurified mixture.
cDetermined by HPLC analysis of purified 3. dIsolated yield of
diamine 3a. e(L)Cu(OAc)2 complex formed from L·2BH3; see the
Supporting Information for details. f2.0 equiv TMDS. gIn CH2Cl2
with 10 mol % catalyst.
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modification of the aryl groups of the phosphine within the
BDPP structure proved more fruitful. Introduction of a tert-
butyl group at the arene’s para position (herein called t-Bu-
BDPP, L7, entry 7) restores diastereoselectivity (1:6 dr),
increases the proportion of diamine 3a, and significantly
improves the enantioselectivity (94:6 er). Switching the silane
to TMDS further increased the quantity of syn-diamine 3a
(1:8.5 dr, entry 8). Finally, changing the solvent to CH2Cl2 and
increasing the catalyst loading to 10 mol % (entry 9) allowed
for syn-3a to be obtained with considerably enhanced regio-
and chemoselectivity and isolated in 69% yield, 1:12.5 dr, and
97:3 er.33

A number of aryl aldimines of varying substitution patterns
may thus be coupled with azatriene 1 to deliver either anti- or
syn-diamines (Scheme 2). Diamines with a variety of arene
functional groups, such as methoxy (3b), halide (3c−d, 3i,
3k), trifluoromethyl (3e), ester (3f), nitrile (3g), and alkyl (3j)
were prepared. Additionally, several heterocyclic aldimines
were investigated and are tolerated by the copper-based
catalysts, including pyridine (3l), pyrrole (3m), pyrazole (3n),
indole (3o), and thiophene (3p). Yields range from 33% to
91% for the major diastereomer of any isolated product,
demonstrating the broad potential of the method to prepare
both vicinal diamine diastereomers with a diverse chemical
landscape.34

In general, the reactions we explored with Ph-BPE deliver
anti-diamines 3 in >20:1 dr and ≥98:2 er. In contrast,

stereoselectivity for syn-diamine formation with t-Bu-BDPP is
considerably more variable, showing a wide range of both dr
(1:3 to 1:>20) and er (86.5:13.5 to 97:3). Still, couplings favor
syn-diamines over the anti isomers and with good enantiose-
lectivity (≥7:1 syn:anti and ≥94:6 er for the syn).
Regioselectivity for the allylic diamine is also greater with
Ph-BPE as the supporting ligand (≥15:1 rr in most cases) and
more variable with t-Bu-BDPP (3:1 to >20:1 rr), which is one
factor in the higher yields obtained for the anti diastereomer.
Chemoselectivity for reductive coupling versus imine reduction
is tied to imine electronics with both catalysts: more electron-
rich imines deliver a higher proportion of C−C bond
formation. The copper complex derived from t-Bu-BDPP was
more greatly influenced in this regard. For example, p-chloro
syn-3d is obtained in 53% yield but p-CF3 syn-3e in just 33%
yield despite the reactions having similar regio- and
diastereoselectivity. Intriguingly, the reaction of 2-iminopyrrole
2m with either catalyst affords an appreciable quantity of the
(Z)-olefin isomer35 (ca. 2−3:1 E:Z) although only (E)-alkenes
are obtained in all other cases.
From this initial data set, several differences in trends, in

reaction metrics, from transformations involving Ph-BPE (L1)
and t-Bu-BDPP (L7) are notable. Whereas more electron-rich
aldimines lead to greater diastereoselectivity when L7 is
employed (compare syn-3b−g, ranging from 1:4.5 to 1:13 dr),
the reaction of p-methoxy imine 2b in the presence of L1 leads
to only 7.5:1 dr. In contrast, anti-3c−e are generated in >20:1

Scheme 2. Aldimine Scope in Diastereodivergent Couplings with 2-Azatriene 1a,b

aReactions run under standard conditions shown; isolated yields and er of the major diastereomer. bRegiomeric ratio (rr) is the ratio of 6,3-
addition to 6,5-addition and was determined by 500 MHz 1H or 162 or 202 MHz 31P NMR spectroscopy of the unpurified mixture; dr, listed as
anti:syn, was determined by 500 MHz 1H or 162 or 202 MHz 31P NMR spectroscopy of the unpurified mixture. cIsolated product contains 9% syn-
3b and 7% 4b. d3.0 eq 1. e2.0 eq 1. fConversion of imine 2f, 3:2 3f/4f:5f. gConversion of imine 2g, 1:1.3 3g/4g:5g. hIsolated product contains 10%
syn-3j and 10% 4j. iConversion of imine 2k; 4k is the major product (see Figure 2). jIsolated product contains 7% anti-3l and 19% 4l. kIsolated
product contains 9% syn-3m and 20% (Z)-3m. lIsolated product contains 19% anti-3m and 19% (Z)-3m. mIsolated product contains 12% anti-3n.
nd = not determined.
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dr.36 Likewise, regioselectivity (3:4) is greatest for reaction of
2b versus other imines with L7 and poorest with L1. Aryl
aldimines bearing ortho substituents (2j−k) lead to perfect
regio- and diastereoselectivity for syn-3j−k with L7. At the
same time, this ortho substitution engenders the lowest
enantioselectivity observed for syn-diamines with L7 (91:9 er
for syn-3j and 86.5:13.5 er for syn-3k). With L1, however, anti-
3j, with its ortho-methyl group, is obtained in only 6:1 dr and
2.5:1 rr. ortho-Bromo anti-3k is the minor isomer from the
reductive coupling (1:5.5 3k:4k); it is formed in only 6:1 dr
and was not isolated.
2-Azatrienes bearing alkyl substituents at the 6-position (6)

enable diamines (7) with longer chain olefin substituents to be
obtained (Scheme 3). With the greater chemoselectivity for
cross-coupling shown by Cu−Ph-BPE in azatriene couplings,
anti-7a−h are isolated in good yields (51−89%) even with
electronically neutral imine 2a. This contrasts with trans-
formations with substituted azadienes,12 which required
electron-rich imines to avoid reduction. Both diastereo- and
enantioselectivity are excellent (12:1 to >20:1 dr and 95:5 to
99:1 er), but in most cases, regioselectivity is more modest
than with terminal azatriene 1 (7:1 to 12:1 rr for anti-7a−g).
Triamine anti-7h, however, is formed as a single regioisomer.
The Cu−t-Bu-BDPP catalyst is more prone to imine

reduction, and with the greater sterics of substituted azatrienes
6, more electron-rich imines are required to achieve
appreciable yields of syn-diamines (Scheme 3). Within these
confines, a number of azatriene−imine combinations afford
syn-diamines in good yields (39−76% for 7i−l). Diastereo- and
regioselectivity are good (1:7 to 1:>20 dr and 9.5:1 to >20:1
rr), and enantioselectivity remains high (93.5:6.5 to 97:3 er).
Ph-BPE also permits azatriene couplings with an aliphatic

aldimine and a ketimine (Scheme 4). Diamine anti-9 is formed
with 9.5:1 dr and 88:12 er from aldimine 8 and azatriene 1; the
product was isolated as an 8:1 mixture of E/Z isomers.
Ketimine 10 undergoes a highly diastereoselective addition,

forming anti-11 in 20:1 dr, although regio- (6:1 rr) and
enantioselectivity (85:15 er) are moderate. Intriguingly, the
allylation reaction leads to only 2.5:1 E/Z selectivity for the
olefin within 11. Cu−t-Bu-BDPP is ineffective in these
couplings, generating a complex mixture of products.35

For preparative scale diamine synthesis, we employed lower
catalyst loadings and higher reaction concentrations (Scheme
5). Excellent yields of the two diamine diastereomers are
thereby obtained within a few hours. For instance, anti-3a was
generated in 86% yield with just 1.2 mol % Ph-BPE. Similarly,
2a was converted to syn-3a (61% yield) in the presence of just
3.3 mol % of the Cu−t-Bu-BDPP catalyst. Regio- and

Scheme 3. Scope of 6-Substituted 2-Azatriene Couplings with Iminesa

aSee Scheme 2.

Scheme 4. Cu−Ph-BPE-Catalyzed Additions of Azatriene 1
to an Aliphatic Aldimine and a Ketiminea

aSee Scheme 2. cRatio of 6,3:6,5-addition not determined; isolated
product contains 8% syn-9 and 8% (Z)-9. dDiamine 11 isolated as an
E/Z mixture and contains 6% 6,5-addition isomer.
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stereoselectivity are largely unaffected by the scale up and
modified conditions.
2.2. Mechanistic Studies. In order to gain a better

understanding of factors governing the stereochemical out-
come of the reductive couplings with the two optimal catalysts,
we carried out a number of additional experiments. Having
qualitatively observed a relationship between aryl aldimine
electronics and the diastereoselectivity of diamine formation,
we first initiated a more detailed study to determine if there
were a true correlation and, if so, its magnitude. The results are
shown as Hammett plots in Figure 1.37

Each ligand shows a linear dependence for the reaction
diastereoselectivity upon the imine’s electronic character,

although this tie is greater for Ph-BPE (L1). For both ligands,
the ratio of the normally observed major diastereomer to the
minor isomer increases as the imine becomes more electron-
deficient. With Ph-BPE, the selectivity morphs from a reaction
that slightly favors the syn-diamine with a p-NMe2 group (1:1.2
dr) to a highly anti-selective process (66:1 dr) with the p-CF3
imine (ρ = 1.4, R2 = 0.98, Figure 1A). For t-Bu-BDPP (L7),
however, the p-NMe2-substituted imine still leads to a fairly
syn-selective reaction (1:7 dr) but the diastereoselectivity
increases to a maximum of just 1:13 with a p-fluoro group (ρ =
0.30, R2 = 0.99, Figure 1B). For each ligand, there is a break in
the plot where diastereoselectivity then decreases as the imine
becomes even more electron-poor.38 The break is indicative of
a change in the diastereodeterming step in the reactions.39−41

For Ph-BPE, the erosion does not significantly impact the
synthetic utility, with the p-nitro imine delivering the
corresponding diamine in 22:1 dr (ρ = −0.63, R2 = 0.97,
Figure 1A); with t-Bu-BDPP, the p-cyano syn-diamine 3g is
modestly favored (1:4.5 dr, ρ = −0.73, R2 = 0.98, Figure 1B).35

It should be noted that product regioselectivity shows a poor
correlation with imine electronics.
We next investigated how stereochemistry of the azatriene

may play a role in the chemo-, regio-, and stereoselectivity of
the imine couplings (Table 2). Under their respective

optimized conditions, the copper catalysts bearing L1 or L7
show little difference in regio- (3a:4a) or chemoselectivity
(3a/4a:5a) for the addition of either (E)-1 or (Z)-1 to imine
2a (compare entry 1 with 3 and entry 2 with 4). The same
major enantiomer of anti-3a is formed with L1 regardless of
azatriene geometry (>99:1 er, entries 1 and 3). Likewise, the
L7-derived catalyst leads to 97:3 er in favor of the same major
enantiomer of syn-3a beginning with either azatriene stereo-
isomer (entries 2 and 4). Diastereoselectivity is largely
unaffected. We also measured the er of the minor diastereomer
of the reactions. Somewhat surprisingly we discovered that it is

Scheme 5. Larger Scale Diamine Synthesis

Figure 1. Hammett plots for diastereoselectivity dependence of aryl
aldimine electronics with each Cu catalyst. (A) Reactions with Ph-
BPE. (B) Reactions with t-Bu-BDPP. Diastereomer ratios measured
by 500 MHz 1H or 202 MHz 31P NMR spectroscopy of the
unpurified mixture. See the Supporting Information for additional
details.

Table 2. Comparison of (E)- and (Z)-Azatrienesa

aReaction with 0.1 mmol imine 2a. Entries 1 and 3 run under the
conditions of Table 1, entry 1; entries 2 and 4 run under the
conditions of Table 1, entry 9. bDiastereomer ratios measured by 500
MHz 1H NMR spectroscopy of the unpurified mixture. cDetermined
by HPLC analysis of purified 3a.
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formed with poor enantioselectivity in each case. Additionally,
we stopped the reactions of both (E)- and (Z)-1 after 30 s with
the Cu−Ph-BPE catalyst. There was approximately 60%
conversion to anti-3a but none of the recovered azatriene
had undergone stereochemical inversion in either case,
suggesting CuH insertion is irreversible.
To examine the azatriene aryl groups’ influence upon

product distribution and stereoselectivity, we prepared o-tolyl
containing 12 and carried out reductive coupling with imine 2a
(Table 3). In both cases, 6,5-addition product 14 is favored

over 1,2-diamine 13, significantly so with t-Bu-BDPP (1:9.5
13:14, entry 2). Diamine 13 is obtained in low dr and 14 with
modest selectivity.
We were able to obtain an X-ray crystal structure of the

major stereoisomer of 4k (Figure 2), which is the major

product of azatriene (1) reductive coupling with the o-bromo
imine (Scheme 2). The observed stereochemistry indicates
that the allyl−copper that leads to 4 has copper bound to the
same face as that which leads to 3 and that imine facial
selectivity is the same in both instances.
The stereoconvergence of the (E)- and (Z)-azatriene

isomers with each catalyst might be explained by several
mechanistic possibilities, while the diastereodivergence ob-
served for the two catalysts suggests a mechanistic dichotomy
in the C−C bond-forming step. Furthermore, the profound
diamine diastereoselectivity dependence on the imine elec-
tronics observed with the Ph-BPE-derived catalyst is
significantly different from our prior azadiene additions to N-

phosphinoyl imines with the same catalyst, where the anti-
diamine was obtained with >20:1 dr in all cases.12

We propose that although both azatriene isomers 1 may
undergo migratory insertion to the CuH species derived from
either ligand with olefin facial selectivity, that is irrelevant as all
possible stereoisomers of allyl−copper I can equilibrate
through (E,E)-III via intermediates II (Scheme 6, left).
These equilibria are likely faster than the addition of any
species to the imine (Curtin−Hammett conditions) and, with
the allyl−copper formation irreversible, provides the most
likely explanation for the data in Table 2.
The mechanism for C−C bond formation with each catalyst

is less certain. In both instances, we propose a closed transition
state, and our working hypothesis is shown in Scheme 6
(right). With Ph-BPE (L1), we suggest that reaction takes
place through O-coordination of the imine30c (IV) but with t-
Bu-BDPP (L7) via coordination of the imine’s nitrogen atom
(V). Therefore, the stereochemical outcome with L1 can be
explained by α-addition of (S,E)-II to the imine’s Re face (IV),
whereas the L7-promoted reaction takes place by γ-addition of
(R,E)-I to the same face of the imine (V).
From the phosphine ligands we have examined for this

transformation, it is clear that Ph-BPE is an outlier in favoring
the anti-diamine to any degree.33 The product stereoisomer
observed is the same as that in our previous Cu−Ph-BPE-
catalyzed azadiene couplings with this class of imines, which
deliver α-alkyl diamines,12 suggesting a similar addition mode;
however, in the earlier chemistry, there was no dr dependence
on imine electronics. These data indicate a mechanistic
pathway toward syn-diamines available to Cu−L1 with
azatrienes but not azadienes, likely a γ-addition mode via N-
coordination of the imine (i.e., V). The significant, positive ρ
observed at lower σ values in the Hammett plot (Figure 1A)
implies that C−C bond formation is the diastereodetermining
step, with addition through IV becoming more stabilized
compared to the alternative as the imine becomes more
electrophilic.39−41 At higher σp− values, the negative ρ is
consistent with imine coordination becoming diastereodeter-
mining. Therefore, the most electrophilic imines become less
discriminating in their coordination with and subsequent
addition to the myriad allyl−copper species available.
The t-Bu-BDPP reactions display a similar electronic trend

although the break in the plot occurs with electron-neutral
imines (Figure 1B). Furthermore, although the right-hand half
of the plot has a comparable negative ρ value to the Ph-BPE
reactions, the correlation at small σ values shows a significantly
smaller positive ρ. It may be that the anti-diamines formed
with t-Bu-BDPP also arise through intermediate IV although
several possibilities exist. For example, the path to the anti-
diamine may not involve O-coordination of the imine but
rather a different γ-addition mode, such as that from (S,Z)-I to
an N-coordinated imine. It should be noted that since the
minor diastereomer of 3 with each ligand is racemic, the
stereodetermining step for the minor three stereoisomers in
the coupling have similar free energies.
Further evidence in support of these two addition models

can be found in the imine coupling of azadiene 15 with the
Cu−t-Bu-BDPP catalyst (Scheme 7). Under our previously
established conditions for this transformation with Ph-BPE,12

anti-diamine 16 is obtained as the major isomer (5:1 anti:syn),
with similar selectivity to DCyPE (3:1 anti:syn). Thus, without
the possibility of N-coordination of the imine, the major

Table 3. Couplings with 1,1-Di(o-tolyl)azatriene 12a

entry ligand 13:14b dr 13b dr 14b

1 L1 1:2.5 1:1 4.5:1
2 L7 1:9.5 2.5:1 7.5:1

aReaction with 0.1 mmol imine 2a. Entry 1 was run under the
conditions of Table 1, entry 1; entry 2 was run under the conditions
of Table 1, entry 9. bDetermined by 500 MHz 1H NMR spectroscopy
of the unpurified mixture.

Figure 2. X-ray structure of 6,5-addition product 4k obtained by
reductive coupling with Ph-BPE (L1).
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pathway funnels the azaallyl−copper species through an O-
coordination/α-addition mode.
The majority of couplings lead to products that exclusively

contain an (E)-alkene; however, pyrrolo imine 2m (Scheme
2), alkyl aldimine 9 (Scheme 4), ketimine 11 (Scheme 4), and
the p-NMe2 and p-NHPh aryl aldimines utilized in the
Hammett study (Figure 1) all afford measurable quantities of
the (Z)-isomer.35 Although the reason for alkene stereo-
chemical erosion is unclear, the phenomenon appears to be
tied to imine electrophilicity as these five partners are among
the least electrophilic we examined.
The shift in regioselectivity with di(o-tolyl)azatriene 12

(Table 3) toward 6,5-addition product 14 with both catalysts
and the poor diastereoselectivity observed for 1,2-diamine 13
implies a disruption in the allyl−copper equilibria due to added
steric hindrance in II and III (Scheme 6) compared to
azatriene 1. The stereochemistry of amine 4k (Figure 2),
obtained with Ph-BPE, can be explained either by γ-addition of
(S,E)-II to the imine (versus α-addition IV) or by an α-
selective addition of (S,E)-I. The high selectivity for 14 with t-
Bu-BDPP is somewhat puzzling as hindered ortho-substituted
N-phosphinoyl imines lead to syn-diamines 3j−k (Scheme 2)
as the exclusive products (reaction through V). It may be that
(R,E)-I is less accessible when employing 12 (versus 1)
because irreversible CuH insertion to the azatriene initially
occurs to furnish (S,E)-I.

3. CONCLUSION
We have developed the first examples of Cu-catalyzed
diastereodivergent and enantioselective reductive coupling
reactions. Through the use of a new umpolung reagent, 2-
azatrienes, we have successfully prepared both syn- and anti-

diamines through addition to N-phosphinoylimines. The
synthesis of the syn-isomers was enabled by the bis(phosphine)
t-Bu-BDPP, the first use of this ligand in CuH processes.
Ongoing work is dedicated to uncovering more details of the
mechanism of this reaction and to the development of other
transformations with 2-azatrienes.
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