Triggered Drug Release from an Antibody–Drug Conjugate Using Fast “Click-to-Release” Chemistry in Mice

Raffaella Rossin, ‡ Sander M. J. van Duijnhoven, ‡ Wolter ten Hoeve, ‡ Henk M. Janssen, ‡ Laurens H. J. Kleijn, § Freek J. M. Hoeben, § Ron M. Versteegen, § and Marc S. Robillard* ‡

1Tagworks Pharmaceuticals, High Tech Campus 11, 5656 AE Eindhoven, The Netherlands
2Syncom, Kadijk 3, 9747 AT Groningen, The Netherlands
3SyMO-Chem, Het Kranenveld 14, 5612 AZ Eindhoven, The Netherlands

© 2016 American Chemical Society
DOI: 10.1021/acs.bioconjchem.6b00231

ABSTRACT: The use of a bioorthogonal reaction for the selective cleavage of tumor-bound antibody–drug conjugates (ADCs) would represent a powerful new tool for ADC therapy, as it would not rely on the currently used intracellular biological activation mechanisms, thereby expanding the scope to noninternalizing cancer targets. Here we report that the recently developed inverse-electron-demand Diels–Alder pyridazine elimination reaction can provoke rapid and self-immolative release of doxorubicin from an ADC in vitro and in tumor-bearing mice.

INTRODUCTION

Antibody–drug conjugates (ADCs) are highly potent bio-pharmaceuticals that use the targeting ability of antibodies (mAbs) to selectively bind to tumor cells where the conjugated drug is released.1 This allows the use of drugs that would normally be too toxic. Current clinically established ADCs have to bind to a tumor cell-specific membrane receptor and subsequently be internalized in the tumor cell for biological cleavage of the linker—and thus activation of the drug—to occur. As the number of tumor-specific receptors that ensure efficient internalization is limited, especially in solid tumors,2 a wide range of cancer targets remains out of reach of current ADCs. There are many noninternalizing receptors or extracellular matrix markers that are abundantly and selectively present in many solid cancers.3–6 These would be superb targets for ADC therapy if there were a way to selectively release the drug from the antibody extracellularly. Therefore, we set out to develop an ADC linker that can be chemically triggered to release its potent cargo. In this approach, after the ADC has bound to an extracellular cancer target and unbound ADC has cleared from blood, an activating probe is released drug will penetrate and kill surrounding cancer cells.1 It is expected that the released drug will penetrate and kill surrounding cancer cells.1,4 However, compared to biological release mechanisms, a bioorthogonal ADC activation approach may allow a more direct control over drug release in vivo.

We and others have demonstrated that the fastest click reaction, the inverse-electron-demand Diels–Alder (IEDDA) reaction,7,8 can be used for pretargeted radioimmunoimaging, treating tumor-bearing mice with trans-cyclooctene(TCO)-tagged mAb or mAb fragments, followed 1–3 days later by administration and selective conjugation of a radiolabeled tetratetrazine probe to the TCO tag of the tumor-bound antibody.6,9–13

Recently, we have developed a new reaction, which we termed the IEDDA pyridazine elimination, a “click-to-release” approach that affords instantaneous and selective release upon conjugation (Figure 1 and Scheme 1a).14 IEDDA reactions afford 4,5-dihydropyridazines (7), which usually tautomerize to 1,4-dihydropyridazines (8 and 9). We demonstrated that the 1,4-dihydropyridazine product 9 derived from a TCO containing a carbamate-linked doxorubicin (Dox) at the allylic position (1) and tetratetrazine (2–4) is prone to eliminate CO2 and DHA via a novel electron cascade mechanism affording pyridazine 10, which then rearranges to aromatic pyridazine 11 (Scheme 1a).

Owing to the increased electron density, 3,6-dimethyl-1,2,4,5-tetrazine (3) and 3-(2-pyridyl)-6-methyl-1,2,4,5-tetrazine (4) were approximately 100- and 10-fold less reactive than
3,6-bis(2-pyridyl)-1,2,4,5-tetrazine (2), which we used for pretargeting in vivo. Conversely, 2 gave almost no Dox release (7%), whereas 3 and 4 instantaneously afforded free drug in 55% and 79% yield, respectively, in PBS, serum, and cell culture. This unprecedented finding in a prodrug context holds great promise for a range of applications in medicine, chemical biology, and synthetic chemistry, including triggered drug release, biomolecule uncaging, and capture and release strategies. Since then the IEDDA pyridazine elimination reaction has been used for nanoparticle-based prodrug activation, intracellular uncaging of enzymes in vitro and in vivo, and the purification of solid-phase synthesized oligonucleotides.

For a future application in ADC therapy we reasoned that it is necessary to first demonstrate tumor targeting of a model ADC comprising a TCO-linked model drug and quantify and optimize its tetrazine-induced activation and resulting drug release in vivo. For this proof of principle study we set out to use the anti-TAG72 mAb CC49 and link it via TCO to the intrinsically fluorescent Dox as a detectable model drug for the more potent toxins typically used in ADCs. TAG72 does not internalize, has slow shedding, and is highly overexpressed in a wide range of solid cancers. The TAG72/CC49 couple has been used in the clinic for (pretargeted) radioimmunotherapy and by us for preclinical IEDDA pretargeting, providing a strong rationale for developing chemically activated ADCs for this system. This present report is the first example of a click-chemistry activatable ADC and demonstrates high tumor uptake of the ADC, its direct chemically controlled activation and good tumor retention of the released model drug, setting the stage for future therapy studies.

RESULTS AND DISCUSSION

A suitable synthesis route toward an analog of TCO 1 that can be conjugated to a mAb should meet two requirements. It should afford facile isolation of diastereoisomers with the conjugation handle on the TCO in either the equatorial or the axial position and with an allylic hydroxyl in the axial position, as the equatorial hydroxyl-derived carbamate was previously shown to be 156-fold less reactive, due to steric hindrance and, possibly, electronic effects. In addition, it should allow subsequent orthogonal manipulation of the conjugation handle and the hydroxyl. We designed a route centering on the iodolactonization of 4-cyclooctene-1-carboxylic acid followed by hydrogen iodide elimination and lactone hydrolysis to

Scheme 1. (a) Proposed Mechanism for the IEDDA Pyridazine Elimination between a Doxorubicin-Functionalized trans-Cyclooctene (TCO) and a Tetrazine. (b) mAb-TCO-Doxorubicin and Activators Used in the Study

Figure 1. Antibody–drug conjugate activation with "click-to-release" chemistry on a tumor cell.
stereoselectively install the hydroxyl in the allylic position, eventually affording bis-NHS-activated linker 22a (Scheme 2).

We introduced a methyl group near the carboxylic acid of 15, affording 16, to prevent epimerization during lactone hydrolysis and to enable regioselective conjugation of 22a with Dox. Iodolactonization gave 17 as a single isomer, and subsequent hydrogen iodide elimination resulted in enelactone 18. Hydrolysis gave the desired ring-opened 19 with the hydroxyl positioned cis relative to the methyl ester. UV irradiation of 19 afforded a mixture of the two possible TCO isomers with the hydroxyl respectively in the axial (20a) and equatorial (20b) position and the methyl ester respectively in the equatorial (20a) and axial (20b) positions, as evidenced by NOESY NMR. We were pleased to find that only 20a underwent hydrolysis to carboxylic acid 21a, thus enabling a straightforward separation between both isomers. Activation to the bis-NHS derivative 22a and subsequent reaction with 1 equiv Dox afforded the desired selective reaction with the NHS-carbonate vs the sterically hindered NHS-ester, leading to axial NHS-TCO−Dox 23a.

To compensate for the steric hindrance imparted by the methyl group next to the NHS ester, we reacted an excess of 40 equiv 23a with CC49 via Lys residues to obtain >95% monomeric and immunoreactive CC49-TCO-Dox conjugate 12 with a drug-to-antibody ratio of ca. 2 (Scheme 1). TCO can isomerize to the unreactive cis-isomer due to several causes including contact with copper-containing serum proteins.3 The isomerization of 12 was followed in stock (PBS, 4 °C) over one year and the extrapolated data indicate an exceptionally long shelf life for the trans isomer (t_{1/2} = 2.6 years). Moreover, no spontaneous Dox release was observed in that time, as confirmed by fluorescence RP-HPLC analysis.

The in vivo behavior of 12 was assessed in biodistribution studies after labeling the protein directly with 125I. In mice the circulation in blood for 12 (t_{1/2} = 26.9 h) was similar to that of native CC49 (t_{1/2} = 26.3 h) (Figure 2a) and a similar biodistribution was observed 4 days post-mAb injection (Table S2) indicating that the 2 TCO–Dox moieties did not perturb the mAb. The serum protein induced isomerization and deactivation of the TCO linker comprised in 12 in circulation was assessed by reacting blood samples with an excess 177Lu-14 ex vivo followed by size exclusion purification and dual-isotope gamma counting to evaluate the change of reaction yield with time. Data represent the mean with one SD (n = 3).

FIGURE 2. (a) Blood clearance of 125I-CC49-TCO-Dox (solid line) and 125I-CC49 (dashed line, from Rossin et al.11) and (b) in vivo stability of the TCO linker in 125I-CC49-TCO-Dox in tumor-free mice (obtained by taking blood samples containing 125I-CC49-TCO-Dox and reacting ex vivo with an excess of 177Lu-DOTA-tetrazine, followed by size exclusion purification and dual-isotope gamma counting to evaluate the change of reaction yield with time). Data represent the mean with one SD (n = 3).

Bioconjugate Chemistry Article
DOI: 10.1021/acs.bioconjchem.6b00231
Bioconjugate Chem. 2016, 27, 1697–1706
In vitro drug release was evaluated either by detecting the amount of residual Dox attached to the mAb (SEC-HPLC with UV measurements at 480 nm for Dox and 260 nm for the protein, Figure S4) or by quantifying the amount of free Dox in solution (fluorescence RP-HPLC with Daun as internal standard, Figures 3, S5 and S6, and Table S1) at various times post-activation. The Dox release from 12 upon reaction with tetrazines 3 and 4 showed a similar trend to that observed with the model TCO–Dox 1 in our earlier study.14 We detected fast and high Dox release after reacting 12 (3 μM) and 3 (100 equiv to TCO) in PBS at 37 °C, affording 73.5 ± 2.6% and 76.1 ± 0.2% release at 1 and 24 h, respectively (Figure 3a). The amount of free Dox in solution after reaction with 4 was approximately 2/3 of what was released by 3. Slightly lower apparent release was observed in serum (Table S1) due to the fact that liberated Dox was unstable in that medium (Figure S6). Both reactions ran to completion with only ca. 2% of the initial TCO present after 1 h (Table S1). As demonstrated previously,14 the difference in release yields is due to the difference in electron density of the tetrazines, most likely resulting in a different distribution between the two tautomers 8 and 9, which do not readily interconvert at pH 7 and of which 8 does not release the drug (Scheme 1). The rate of tautomerization from 7 to 8 and 9 and the resulting instantaneous drug release rate appear to depend strongly on the medium. In MeCN the release was previously shown to take several hours, while in PBS it was complete within 1 h.14

Indeed, when we examined the release reaction between 12 and 3 at shorter time points in PBS, the release was incomplete at 1 min and almost complete at 2 min (63.8 ± 4.3%, Figure 3b), corresponding to findings in other studies.16 Interestingly, in serum the release is ca. 2-fold slower, possibly due to a slower tautomerization in this medium (Figure 3b).

The tumor targeting and Dox release from 12 upon reaction with activators 3–4 was tested in mice bearing colon carcinoma xenografts (LS174T). A 5 mg/kg dose of 12 gave a high tumor uptake of 30−40%ID/g 30 h post-injection (Table S4). To prevent triggered drug release in blood we used a previously validated albumin-based clearing agent,11,21 comprising liver-directing galactose residues and tetrazines 2, which enables rapid reaction with and removal of a TCO-tagged antibody from blood. Importantly, the use of tetrazine 2 does not induce significant drug release. The clearing agent was administered 24 h after ADC 12, followed by the activator 3 or 4 at 26 h. To account for the lower reactivity of 3 and 4 and to achieve complete reaction with the tumor-bound TCO, an excess of the activators (10× dose = 33.5 μmol tetrazine/kg; 100× dose = 0.335 mmol tetrazine/kg) was injected either intravenously (iv) or intraperitoneal (ip) with no signs of acute toxicity (post-injection discomfort, stress, behavioral changes, etc.). Similarly, no decrease in body weight over time was found by Chen and co-workers when injecting higher doses of 3 (1.25 mmol tetrazine/kg, three times a week) in mice to achieve tetrazine-mediated protein uncaging in vivo.17 To precisely evaluate the in vivo performance of this novel ADC system in this first in vivo study we chose to directly measure the on-tumor reaction between the ADC linker and the tetrazines as well as the resulting drug release instead of evaluating tumor response as a readout of CC49-TCO-Dox activation (Figure 4).

![Figure 3](image)

Figure 3. Dox release from (a) CC49-TCO-Dox 12 (1−3 μM) upon reaction with activators 3−6 in PBS at 37 °C: solid lines from RP-HPLC, dashed line from SEC-HPLC. (b) 12 (1 μM) upon reaction with 3 in PBS (solid line) and 50% mouse serum (MS; dashed line) at 37 °C, from RP-HPLC. RP-HPLC analysis: change in Dox and Daun internal standard, Figures 3, S5 and S6, and Table S1) at various times post-activation. The Dox release from 12 upon reaction with tetrazines 3 and 4 showed a similar trend to that observed with the model TCO–Dox 1 in our earlier study.14 We detected fast and high Dox release after reacting 12 (3 μM) and 3 (100 equiv to TCO) in PBS at 37 °C, affording 73.5 ± 2.6% and 76.1 ± 0.2% release at 1 and 24 h, respectively (Figure 3a). The amount of free Dox in solution after reaction with 4 was approximately 2/3 of what was released by 3. Slightly lower apparent release was observed in serum (Table S1) due to the fact that liberated Dox was unstable in that medium (Figure S6). Both reactions ran to completion with only ca. 2% of the initial TCO present after 1 h (Table S1). As demonstrated previously,14 the difference in release yields is due to the difference in electron density of the tetrazines, most likely resulting in a different distribution between the two tautomers 8 and 9, which do not readily interconvert at pH 7 and of which 8 does not release the drug (Scheme 1). The rate of tautomerization from 7 to 8 and 9 and the resulting instantaneous drug release rate appear to depend strongly on the medium. In MeCN the release was previously shown to take several hours, while in PBS it was complete within 1 h.14

![Figure 4](image)

Figure 4. Tumor uptake of 177Lu-DOTA-tetrazine 14 in mice pretreated with CC49 (no ADC), CC49-TCO-Dox (no activator), or CC49-TCO-Dox followed by activators 3–6, administered at 1× (33.5 μmol tetrazine/kg) or 10× (0.335 mmol tetrazine/kg) dosage, intravenous (iv) or intraperitoneal (ip). One-way ANOVA: P < 0.0001; Dunnett’s post-test: * P < 0.05, comparison with “no ADC” group; # P < 0.005, comparison with “no activator” group. Data represent the mean with one SD (n = 3−6).

While relatively few studies have been reported on the quantification of in vivo drug release for the current ADC systems,16,27 the nature of the chemically activatable ADC linker makes it well suited for in vivo monitoring of activation through click-chemistry with a radiolabeled probe. After ADC and activator administration, at 27 h we therefore injected the mice with the highly reactive but poorly releasing tetrazine 177Lu-14 (0.335 μmol tetrazine/kg), which is an analog of 2 and
has been extensively validated in our pretargeting studies.11,12,21,22 We then compared the 177Lu uptake in tumor with a minimum (complete blocking) and maximum (no blocking) value. The minimum tumor uptake (0.08 ± 0.02% ID/g), corresponding to the scenario where all tumor-bound TCO has reacted with the activator and is therefore not available for reaction with 177Lu-14, was obtained by injecting 17Lu-I4 in mice pretreated with native CC49 ("no ADC" group). The maximum tumor uptake (1.23 ± 0.34%ID/g) was obtained from mice pretreated with 12 followed only by 177Lu-I4 ("no activator" group).

No significant tumor blocking was observed when the least reactive activator 3 was administered iv at 1X or 10X dosage, probably because of fast clearance leading to insufficient tumor concentrations (Figure 4). Indeed, when the systemic distribution of 3 (10X dose) was slowed down by ip administration, significant but incomplete blocking was observed. Similar results were recently obtained by Chen and co-workers by using a 2-fold higher iv dose of 3 for in vivo intracellular enzyme activation.17 On the contrary, the more reactive activator 4 produced significant blocking at both dosages already with iv injection, while ip administration did not further improve the reaction yield on tumor. However, the 177Lu-I4 tumor uptake was still above baseline, proving that the on-tumor reaction between TCO and 4 was still incomplete.

To improve the reaction yields, we aimed to further increase the on-tumor reaction time and turned to the use of a slow clearing dextran carrier for the tetrazines.23 Compounds 5 and 6 (Scheme 1), carrying an average of 2.3 tetrazines per molecule, were obtained by conjugating derivatives of 3 and 4 to amine-functionalized 10 kDa dextran. Despite reduced release yields in vitro (Figure 3 and Table S1), possibly due to steric hindrance and microenvironment changes caused by the dextran, we were pleased to find that complete blocking could be achieved without signs of acute toxicity with iv administered 5 (10X dosage) and 6 (1X dosage) (Figure 4), signifying complete on-tumor click reactions. Next, the tumors of these mice were homogenized and extracted to completely recover the total amount of 5 and 6 (100 mL 2 N hydrochloric acid). The aqueous phases were separated and the organic phase was washed with 500 mL dilute hydrochloric acid. The residue, followed by 500 mL 100 mL toluene. The combined organic phases were dried over 15 min, then cooled to −50 °C. (Z)-Cyclooct-4-ene-1-carboxylic acid (15) (54.0 g, 0.351 mol), dissolved in 150 mL THF, was added over a 20 min period at a temperature between −50 and −25 °C. The mixture was stirred for an additional 40 min, allowing the temperature to rise to −5 °C, and was subsequently heated for 3 h at 50 °C, after which it was cooled to −50 °C. Iodomethane (195.5 g, 1.377 mol) was added over a 20 min period at a temperature between −50 and −30 °C. The mixture was stirred overnight, heated for 1 h at 40 °C, and then concentrated in vacuo. Toluene (250 mL) was added to the residue, followed by 500 mL dilute hydrochloric acid. The phases were separated and the organic phase was washed with 100 mL 2 N hydrochloric acid. The aqueous phases were extracted with 2 × 250 mL toluene. The combined organic phase was concentrated in vacuo. The residue was purified by Kugelrohr distillation to yield 59.4 g of the methylated acid 16 as a colorless oil (0.353 mol, 100%), which was used as such in the next step.1H NMR (CDCl3): δ = 5.75–5.60 (m, 1H), 5.55–5.40 (m, 1H), 2.4–1.5 (m, 10H), 1.27 (s, 3H). 13C NMR (CDCl3): δ = 185.5 (C=O), 131.9 (═CH2), 126.5 (═CH).
The TBME/10% methanol, and 500 mL TBME/20% methanol.

axial/equatorial isomers (with respect to the hydroxy group) of

continuous silver nitrate). Then, the silica column was successively impregnated silica column (213.6 g, containing ca. 126 mmol = 178.8 (C

puriﬁcation by Kugelrohr distillation to yield 38.9 g of the bicyclic olein 18 as a colorless oil (0.234 mol, 94%). 4H NMR (CDCl3): δ = 5.95–5.85 (m, 1H), 5.45–5.35 (dm, 1H), 5.05 (bs, 1H), 2.5–2.3 (m, 1H), 2.2–2.0 (m, 1H), 1.95–1.6 (m, 5H), 1.27 (s, 3H). 13C NMR (CDCl3): δ = 177.2 (C=O), 129.1 (═CH), 127.9 (═CH), 79.2 (CH), 45.2, 43.0, 31.9, 29.5 (CH3), 26.6, 24.0. HRMS (ESI, m/z): Calcd for C10H15O2+ ([M+H]+): 167.1067, Found: 167.1065.

Methyl (Z)-6-hydroxy-1-methylcyclooct-4-ene-1-carboxylate (19). Compound 18 (40.4 g, 0.243 mol) in 250 mL methanol and potassium bicarbonate (100.0 g, 1.0 mol) was stirred for 18 h at 28 °C, followed by ﬁltration, washing with methanol, and rotary evaporation. The residue was chromatographed on 200 g silica using dichloromethane and methanol, and rotary evaporation. The residue was stirred for 18 h through a silver nitrate solution of the pure axial isomer 21a of the trans-cyclooctene acid as a colorless oil. 4H NMR (CDCl3): δ = 6.15–5.95 (m, 1H), 5.6 (d, 1H), 4.45 (bs, 1H), 2.4–1.7 (m, 7H), 1.6 (dd, 1H), 1.18 (s, 3H). 13C NMR (CDCl3): δ = 185.4 (C═O), 134.8 (═CH), 130.7 (═CH), 69.8 (CH), 44.8, 38.2, 31.0, 29.8 (CH3), 18.1 (CH3). Due to its limited stock stability compound 21a was converted to 22a and stored for further use.

Note: The hydrolysis of the axial/equatorial ester appears to be extremely selective. Whereas the equatorial ester in 20a hydrolyzes surprisingly easily at RT, the axial ester in 20b

Bioconjugate Chemistry

DOI: 10.1021/acs.bioconjchem.6b00231
Bioconjugate Chem. 2016, 27, 1697–1706

1702
remains unaffected, thus enabling a straightforward separation between both isomers. The axial ester hydrolyzes upon overnight heating at ca. 60 °C.

rel-(1R,4E,6R,pS)-2,5-Dioxopyrrolidin-1-yl-6-(((2,5-dioxopyrrolidin-1-yl)oxy)carbonyl)-1-methylcyclooct-4-ene-1-carboxylate (axial isomer 22a). To a solution of compound 21a (375 mg, 2.04 mmol) in 10.1 g MeCN was added DIPEA (1.95 g, 15.07 mmol), followed by N,N'-disuccinimidyl carbonate (2.25 g, 8.79 mmol). The mixture was stirred for 3 days at RT, and subsequently evaporated in vacuo at 55 °C. The residue was chromatographed on 20 g silica, with dichloromethane containing an increasing amount of TBME (5–20%). The product fractions were combined and dried in vacuo. The resulting residue was stirred with TBME until a homogeneous suspension was obtained. Filtration and washing gave 400 mg resulting residue was stirred with TBME until a homogeneous suspension was obtained. Filtration and washing gave 400 mg. This procedure a total volume of 330 μL PBS/propylene glycol/DMF (70:20:10% v/v). The pH was adjusted to 9 with 1 M sodium carbonate buffer. The reaction was carried out under agitation for 2 h at RT in complete darkness. Subsequently, the TCO-Dox-modified mAb (12) was washed with PBS/propylene glycol/DMF (three times) and PBS/propylene glycol (75:25% v/v, three times) using an Amicon Ultra-15 centrifugal device (50 kDa MW cutoff). This procedure afforded an average 2.0–2.6 TCO–Dox groups per antibody, as determined by UV-absorbance at 280 and 480 nm and with a tetracene titration. SEC HPLC and SDS-PAGE of solutions of 12 showed the presence of a monomeric species with minimal aggregates. The solutions were stored at +4 °C in complete darkness. At various times the amount of reactive TCO present in solution was assayed with a tetracene titration (4 different batches of 12 for over one year). At various times solutions of 12 were analyzed by SEC-HPLC with UV detection at 260 nm (proteins) and 480 nm (Dox) and no free Dox was found.

Doxorubicin Release from CC49-TCO-Dox in Vitro. The absolute Dox release from 12 upon addition activator 3 was measured by SEC-HPLC. Construct 12 (150 μg) was mixed with 3 (100 equiv tetracene to TCO) in PBS (200 μL total) and incubated at 37 °C on a thermomixer (350 rpm) in complete darkness. At 1, 3, and 24 h an aliquot of the reaction mixture was analyzed by SEC with UV detection at 260 nm (protein) and 480 nm (Dox). The % release Dox was estimated from the A480/A260 ratio for the mAb peak. Native CC49 (corresponding to 100% release) and unreacted 12 (0% release) were used as controls. The experiment was performed in triplicate.

The extent of Dox release in the presence of the activators 3–6 was evaluated by RP-HPLC. Construct 12 (75 μg) was mixed with a fixed amount of activator (100 equiv tetracene to TCO) and daunorubicin (Daun, 200 ng, as internal standard) in PBS or 50% MS in PBS (0.5 mL total volume). Solutions containing 12 and Daun but no activator were used as controls. The mixtures were incubated at 37 °C in complete darkness and, at various times, aliquots were withdrawn, 2-fold diluted with ice-cold MeCN, and vortexed (10 s). After centrifugation (5 min, 12 000 rpm), the supernatants were 4-fold diluted with PBS and analyzed by RP-HPLC using a fluorescence detector. All experiments were carried out in triplicate. The % Dox released at each time point was calculated from the Dox/Daun peak area ratio in the fluorescence chromatogram and the mAb/Daun concentration in each mixture. Calibration curves were obtained using PBS/MS solutions containing known amounts of Dox and Daun which were incubated at 37 °C and analyzed by RP-HPLC at various times. Only the peaks of intact Dox (Rr = 5.8 min) and Daun (Rr = 11.0 min) were used for the calculations.

The amount of residual free (unreacted) TCO in the 12/activator mixtures was evaluated after 1 and 3 h incubation in PBS at 37 °C. Aliquots of the reaction mixtures were added with a known excess (10 equiv to initial TCO) of the highly reactive 177Lu-Lu-14 and further incubated at 37 °C for 20 min. After incubation, the mixtures were analyzed by SDS-PAGE on 4–15% gradient gels followed by phosphor imager. The amount of free TCO in each solution at the time of 177Lu-Lu-14 addition was estimated from the % radioactivity in the mAb region of each lane. Each experiment was performed in triplicate. A solution of 12 in PBS incubated for 1 h at 37 °C without activator and then reacted with 177Lu-Lu-14 was used to determine the 100% unreacted TCO.

Radiochemistry and Immunoreactivity. The DOTA-tetracene 14 and CC49-TCO-Dox 12 were labeled with 177Lu and 125I, respectively, as previously described.21 Carrier-added 177Lu-Lu-14 was used in vitro while noncarrier-added 177Lu-Lu-14 was used for animal experiments. After radio labeling and size exclusion purification (125I–12), all radiolabeled species showed >99% label incorporation and >95% radiochemical purity, as confirmed by ITLC, HPLC, and SDS-PAGE.

Bioconjugate Chemistry

Article

DOI: 10.1021/acscbiconjchem.6b00031
Bioconjugate Chem. 2016, 27, 1697–1706
CC49-TCO-Dox (12, 10 μg) was labeled directly with 125I (Bolton-Hunter procedure, statistically labeling the entire mAb population) or indirectly with 177Lu (reaction with 1 equiv 177Lu-14, labeling only the TCO-functionalized mAb) and then reacted with 20 equiv bovine submaxillary mucin (BSM, a soluble TAG72 positive mucin; ca. 4000 kDa MW) in 1% bovine serum albumin (BSA) in PBS solution (60 μL total). 125I/177Lu-12 incubated in 1% BSA in PBS was used as control. After 30 min incubation at 37 °C, SEC-HPLC analysis of the 125I/177Lu-12/BSM mixtures showed a shift of the radioactive peak at lower retention time with respect to that observed for the 125I/177Lu-12/BSA mixtures, thus confirming binding of 12 to BSM, i.e., complete retention of immunoreactivity upon CC49-TCO-Dox conjugation and radiolabeling.

Note: 125I and 177Lu emit ionizing radiation (β^+ and/or γ); researchers must handle them according to the guidelines set forth by their institution and national nuclear regulatory commission and follow ALARA (As Low As Reasonably Achievable) protocols to minimize exposure.

Animal Experiments. All animal experiments were performed according to the principles of laboratory animal care (NIH publication 85–23, revised 1985) and the Dutch national law “Wet op de Dierproeven” (Stb 1985, 336). The in vivo experiments were performed in tumor-free or tumor-bearing nude female Balb/C mice (20–25 g body weight, Charles River Laboratories). The human colon cancer cell line LS174T was obtained from the ATCC and maintained in Eagle’s minimal essential medium (Sigma) supplemented with 10% heat inactivated fetal calf serum (Gibco), penicillin (100 U/mL), streptomycin (100 μg/mL), and 2 mM GlutaMax. Mice were inoculated subcutaneously with 3 × 10⁶ cells in 100 μL sterile PBS and were used 7–10 days after tumor inoculation, when the tumors reached approximately 70–200 mm³ size. At the end of each experiment the mice were anesthetized and euthanized by cervical dislocation. Blood was withdrawn by heart puncture and selected organs and tissues (including full stomachs and intestines) were harvested, blotted dry, and weighed. The tumors were counted immediately for radioactivity and then frozen at −80 °C for Dox extraction. The remaining organs and tissues were added with 1 mL PBS and then measured for radioactivity. The sample radioactivity was counted in a gamma counter (Wizer 1480, PerkinElmer) along with standards to determine the % injected dose per gram (%ID/g) and the % injected dose per organ (%ID/organ). The tissues from single-isotope experiments were measured using 10–80 keV energy window for 125I. All other samples were measured using dual-isotope protocol (10–80 keV and 155–380 keV energy windows for 125I and 177Lu, respectively) with cross-contamination correction.

CC49-TCO-Dox Blood Kinetics and in Vivo TCO Stability. One group of 3 tumor-free mice was administered 100 μg 125I-12 (ca. 0.35 MBq/100 μL per mouse) and at selected time points (5 min, and 3, 6, 24, 48, and 72 h) blood samples (ca. 20 μL) were withdrawn from the vena saphena. Four days post-mAb injection the mice were euthanized, blood was withdrawn by heart puncture and organs and tissues of interest were harvested and counted in a gamma-counter. One more group of 3 tumor-free mice was administered 300 μg 125I-12 (ca. 0.65 MBq/100 μL per mouse) and at selected time points (1, 3, 6, 24, 48, 72, and 96 h) 50–60 μL blood samples were withdrawn and transferred into vials containing heparin (5 μL). These blood samples were used to assess the TCO stability in vivo, as previously described. At the end of the evaluation, the mice were euthanized, and the 125I-activity in stomachs and thyroid was measured. The low values found in these organs (0.14 ± 0.02%ID in stomachs and 0.43 ± 0.07% ID in thyroid) confirms the absence of 125I-12 in vivo dehalogenation.

Tumor Blocking Experiments. Groups of LS174T xenografted mice (n = 3–4) were injected with 125I-12 (5 mg/kg, corresponding to 36–47 μg Dox/kg; 0.2–0.4 MBq per mouse; t = 0) followed by a clearing agent13 (8 mg/kg; t = 24 h). Twenty-six hours post-mAb injection, the mice were administered activators 3–6 (1x dose = 33.5 μmol tetrazine/ kg; 10x dose = 0.335 mmol tetrazine/kg) via different routes (bolus injection through the lateral tail vein or intraperitoneal injection) followed 1 h later by 177Lu-14 (0.335 μmol tetrazine/kg; ca. 1.5 MBq per mouse). One group of mice (no ADC group; n = 4) received 125I-CC49 (t = 0) followed by 177Lu-14 (t = 27 h). Another group of mice (no activator group; n = 6) received 125I-12 (5 mg/kg) followed by clearing agent (t = 24 h) and 177Lu-14 (t = 27 h). Three hours after 177Lu-14 administration all mice were anesthetized with isoflurane and euthanized and blood and tissue samples were collected. One group of mice (n = 3) received only 125I-12 and was euthanized 30 h post-mAb injection for control Dox release (tumor extraction).

Dox Extraction from Tissue Samples. To determine the amount of antibody-released Dox present in tumors, tumor samples were spiked with Daun as internal standard and subsequently homogenized and extracted following a published procedure with minor adaptations.30 Specifically, the tumor samples were combined with 1.2–1.5 mL water, 15 ng Daun, and a 5 mm stainless steel bead (Qiagen). The samples were subsequently homogenized at 4 °C at 30 Hz for 20 min using a tissue lyser (Qiagen). Tumor homogenates were incubated with 600 μL of a 33% w/v stock AgNO₃ in water for 10 min and subsequently extracted with 9 mL chloroform:isopropanol (2:1 v/v) in glass culture tubes (DURAN), by vigorous mixing for 2 min. The samples were centrifuged at 1800 × g for 10 min at RT and the organic phase was isolated using a phase separation column (Chromabond PTS) and subsequently evaporated at 40 °C in a glass test tube (DURAN) in a block heater under a gentle nitrogen flow. The dried residue was dissolved in 140 μL 25% MeCN in water (with 0.1% TFA) and centrifuged at 12,000 rpm for 10 min at RT. The supernatant (100 μL) was analyzed by RP-HPLC with fluorescence detector. A calibration curve was prepared with samples containing known amounts of Dox and Daun in water which were extracted following the same procedure used for tumors. Only the peaks of intact Dox and Daun were used for the calculations.

Data Analysis. The data are presented as mean %ID/g or % ID/organ ± one standard deviation (SD). Curve fitting, area-under-the-curve calculations, one-way ANOVA and Dunnett’s post-tests were performed with GraphPad Prism v 5.01. The difference between two data points was considered statistically significant when P < 0.05.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: [10.1021/acs.bioconjchem.6b00231](http://dx.doi.org/10.1021/acs.bioconjchem.6b00231).
General procedures, additional syntheses, LC-MS, RP-HPLC, SEC-HPLC and SDS-PAGE analyses, NMR spectra, and biodistribution data (PDF)

AUTHOR INFORMATION

Corresponding Author
E-mail: marc.robillard@tagworkspharma.com. Phone: +31402748264.

Notes
The authors declare the following competing financial interest(s): Co-founder of Tagworks Pharmaceuticals.

ACKNOWLEDGMENTS

We thank Caren van Kammen and Carlijn van Helvert (Maastricht University) for support with animal experiments and Ellen M. H. Schmitz and Xianwen Lou (Technical University Eindhoven) for support with MS analysis. This research was supported by NanoNextNL (The Netherlands, Grant 03C.3).

ABBREVIATIONS

%ID/g, percent injected dose per gram; %ID/organ, percent injected dose per organ; ADC, antibody–drug conjugate; BSA, bovine serum albumin; BSM, bovine submaxillary mucin; Daun, daunorubicin; DOTA, 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid; Dox, doxorubicin; IEDDA, inverse-electron-demand Diels–Alder; MS, mouse serum; TCO, trans-cyclooctene

REFERENCES

