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"Cells do not care about mathematics" thus concluded a biologist friend after a
discussion on the future of biology. And indeed, why should they care? But if we
exchange the word "cell" with "rock", "Moon" or "electrons", do we have to change
the sentence also? Starting from this line of thought, we review some recent
developments in understanding the stochastic behavior of biological systems. We
emphasize the importance of a molecular Signal Generator in the study of genetic
networks.

1. Introduction

‘‘Cells do not care about mathematics’’

thus concluded a biologist friend after a

discussion on the future of biology. And

indeed, why should they care? But if we

exchange the word ‘‘cell’’ with ‘‘rock’’,

‘‘Moon’’ or ‘‘electrons’’, do we have to

change the sentence also? Why should

the Moon care about mathematics? We

know however, that the Moon navigates

around the Earth on a mathematical

orbit. If we think of how electrons are

described in Quantum Electrodynamics,

then we can say that electrons have a

special taste for sophisticated mathe-

matics. Today, life scientists and compu-

tational scientists are engaged in many

discussions of this type. In short, the

main theme of discussion is actually a

question: Is the future biology

Shakespearean or Newtonian?

Although far from perfect, a

Shakespearean play may serve as an

analogy of how biological phenomena

were described, studied and understood

until very recently. Each character from

Romeo and Juliet, for example, can be

envisioned to be a molecule which plays a

role in a complex cellular process. By

studying the process experimentally, we

hope to identify the characters in the play

and to observe how they interact as the

process proceeds. In the end we can

describe the complex process just as the

text of the play prescribes, for each scene,

what each character is supposed to say

and how to interact with the other

characters on the stage.

However, formatting the biological

knowledge in a Shakespeare-like drama

is no longer enough. Like in physics or

chemistry, the scientific drama must be

sustained and accompanied by mathe-

matical equations. The quantitative rela-

tions between players are as important as

the players themselves. For example, a

resistor is very important, but Ohm’s law

is important as well. The palpable

resistor and the abstract Ohm’s law

cannot be separated if we want to

understand an electric circuit.

Therefore, the aim of biological research

should be twofold: (1) to find the
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functional molecules that play a role in

biochemical pathways and (2) to describe

mathematically the interactions among

these molecules and to understand the

consequences of these interactions.

While much recent progress has been

made towards (1) under the rubric of

genome research, the study on (2) is still

in its infancy. The emerging field of

Systems Biology was borne with the

(Newtonian) belief that biology can be

described and understood in a mathema-

tical language.1,2 In our analogy, a

Newtonian science is not necessarily a

deterministic science; in a broader sense,

it is a science that recognizes that the

book of Nature is written in a mathema-

tical language, as Plato and Galileo

stated long ago. What is the nature of

this language for life sciences? And what

might be a plausible path towards the

Newtonian future for biology?

2. How to describe a system:
the importance of
stochasticity

Computers process information using

electrons that flow through billions of

semiconductor devices that are highly

packed in small areas. Each device can be

understood as a basic processing func-

tion. For example, a device will take as

an input a voltage, and output another

voltage that is one hundred times greater.

The function of the device is thus to

amplify. There are many other possible

functions, and the interconnections of so

many devices with so many different

functions make necessary the use of a

design scheme. The theory of electric

circuits is fundamental for creating

coherent design schemes and it covers

topics on positive and negative feedback,

oscillations and stability. The behavior of

receptors on a cell membrane, or calcium

pumps lead us to think of similarities

between the flow of information in

genetic pathways and electric circuits.

Thus it is no surprise that the theory of

feedback control circuits in biochemical

pathways started not long after the

operon concept was introduced by

Jacob et al. in 1960.3 Goodwin,4 gave

the first mathematical analysis of operon

dynamics followed by Griffith,5,6 with a

more complete analysis. As with the

theory of electric circuits, the early

theories of biochemical pathways were

based on deterministic ordinary differ-

ential equations and address questions

regarding feedback, stability, hysteresis

effects, etc. These deterministic theories

were ahead of their time, and it is only

now, as a result of a speed up in

biotechnology discoveries, that we wit-

ness the dawn of their importance. But

how precise is a response of a cell to a

stimulus so we can use deterministic

mathematical laws? Can we still believe

in a deterministic point of view, from

which a biochemical pathway is precise

machinery and thus our measurements

are inaccurate only because of experi-

mental error? The deterministic point of

view fails when we recall that the players

in a biochemical pathway are molecules.

These molecules bounce one on each

other and form complexes, which are

more or less stable. We cannot say that

with a probability of 1 a complex will be

formed. Thus, living systems are not

deterministic but inherently noisy and

are optimized to function in the presence

of stochastic fluctuations. For example,

the number of a specific protein varies

from cell to cell in a population of cells

with an identical genetic background

kept under the same environmental con-

ditions. Although noise is usually per-

ceived as being undesirable, some

organisms can use it to introduce diver-

sity into a population, like is the case for

lysis–lysogeny bifurcation in phage l.

This system was studied by Arkin, Ross

and MacAdams,7 where they used a

Monte Carlo simulation to study it. The

simulation algorithm used by Arkin,

Ross and MacAdams was developed by

Gillespie in 1976,8 and was designed for

sequences of coupled chemical reactions.

The mathematical foundation of this

algorithm is the theory of Markov

processes, the basic ingredient being the

probability of a chemical reaction to

proceed in a specified direction. Such

processes are well studied in the context

of chemical reactions (Van Kampen9).

However, the importance of an analytical

mathematical approach to study the

biological noise present in a genetic

network is a recent development.10 For

example, the simplest system to be

considered consists of one gene only.

This system is specified at any time t by

the total number of mRNA molecules r

and protein molecules p. The state of the

system q = (r,p) changes due to four

random transitions: increase or decrease

of r by one molecule and likewise for p.

Each of these changes can be described

by a transition probability rate, which

depends on the state q. The mathematical

dependence of the transition probability

rates on the state q are suggested by the

biological system. Once the transition

probability rates are known, the prob-

ability of the system to be in the state q

at time t, P(q,t), is the solution of

an equation which is known as the

Master Equation.9 Thattai and van

Oudenaarden10 studied the steady state

of this one gene system, a limiting

situation when P(q,t) is time indepen-

dent. They find the mean values for the

mRNA, protein and their standard

deviation from the mean as a function

of the parameters of the system. To

experimentally test the theoretical results,

the same group11 used the green fluor-

escent reporter gene (gfp) in the chromo-

some of Bacillus subtilis. The

transcriptional efficiency was regulated

using an isopropyl-b-D-thiogalactopyra-

noside (IPTG)-inducible promoter

upstream of gfp and by varying the

concentration of IPTG in the growth

medium. Translational efficiency was

regulated by constructing a series of

Bacillus subtilis strains that contained

point mutations in the ribosome binding

site and initiation codon of gfp. From

flow cytometry measurements, the mean

value and the standard deviation for the

protein molecule were computed. As

IPTG was varied, the protein noise

strength remained constant, confirming

the theoretical prediction that the protein

noise strength was independent of tran-

scriptional efficiency. From one gene, the

next step is to study a gene regulatory

network which is composed of many

genes in interaction. Consider a particu-

lar gene of interest. The noise strength

for the protein product of this gene

should have two sources: one coming

from its transcription and translation, as

we discussed above (referred to as

‘‘intrinsic’’ noise), and a second one

coming from the surrounding molecules

that interact with our gene of interest

(referred to as ‘‘extrinsic’’ noise). These

intrinsic and extrinsic contributions to

stochasticity in gene expression were

studied in 2002 by Swain, Elowitz and

Siggia.12 They demonstrate theoretically

that simultaneous measurement of two
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identical genes per cell enables discrimi-

nation of these two types of noise.

Measurements of these two types of

noise were performed by Elowitz and

collaborators in Escherichia coli,13 and

by Raser and O’Shea in Saccharomyces

cerevisiae.14 These measurements and

theoretical results show that genes must

be studied as part of a network. The

emerging discipline of Systems Biology

aims to understand the gene interactions

from a global perspective. Levine and

Davidson15 discuss gene regulatory net-

works for development. To explain

spatio-temporal localization of different

components of the network they use

diagrams that resemble an electric circuit.

The conceptual similarity between

genetic circuits and electrical circuits is

more apparent in studies that aim to

construct biomolecular devices. Gardner,

et al.16 describe a toggle switch circuit

that can be switched between two

stable states by transient external

signals. An oscillatory circuit, called a

repressilator, was designed and con-

structed by Elowitz and Leibler.17 We

conclude by noting that, at present, a

large amount of work on genetic net-

works deals with biological noise and

ideas from electric circuits guide the

thoughts in the effort to understand the

molecular interactions.

3. How to study the system:
the need for a signal generator

From these studies we also realize that

the steady state regime is not appropriate

for modeling gene circuits. The main

reason is that in a living system, signals

that vary in time propagate through the

system, keeping the system away from a

steady state. Also, the need for departing

from the steady state is imposed by the

desire to find the genetic network con-

nectivity. The analogy with an electrical

system helps to illustrate the problem.

There, the properties of an unknown

system are revealed by applying an input

signal generator at one port and then

output signals are measured in different

points of the electrical system. If suffi-

cient input–output pairs of data are

collected, then we can find a network

configuration that best explains the data

and predicts the outputs for a new set of

input signals. The idea of operating with

a signal generator upon a stochastic

genetic network was proposed by Lipan

and Wong.18 The idea is useful if we can

experimentally construct a molecular

signal generator. Fortunately, a signal

generator can be implemented using a

molecular switch based on a two-hybrid

assay proposed in 2002 by Quail and

collaborators.19 The main component of

this switch is a molecule (phytochrome19)

which is synthesized in darkness in a

form which we will denote by Q1. When

the Q1 form absorbs a red light photon

(wavelength 664 nm) it is transformed

into the form Q2. When Q2 absorbs a far

red light photon (wavelength 748 nm) the

molecule Q goes back to its original

form, Q1. These transitions take milli-

seconds. The targeted promoter is

opened by the Q2 form and the gene is

transcribed. After the desired elapsed

time, the gene can be turned off by a

photon from a far red light source. Using

a sequence of red and far red light pulses,

the molecular switch can be periodically

opened and closed and thus a perturba-

tion can be inserted into the biological

system. Another promising method that

enables the generation of time-variable

data is through the use of microfluidics

devices.20 A Signal Generator is thus an

indispensable tool for Systems Biology.

We believe that in the near future

different types of Signal Generators will

appear on the market.

4. The study of linear networks

Suppose now that we have implemented

a signal generator somewhere in a

biochemical pathway and we collect

data over a period of time. We measure,

using flow cytometry, the responses of

10 000 cells (a number taken just for

convenience). The data will reveal the

time changes of different enzymes and

products, for example. Because of the

stochastic nature of the biochemical

interactions, the measured data will look

like Fig. 1, and will reflect the noisy

biological nature of the systems plus

experimental errors, and not only a mean

value plus experimental errors. Each of

the 10 000 cells will have a different

response and thus we have to explain an

entire histogram, not only its mean value.

A histogram is characterized by its

moments: the first moment equals the

mean value and the standard deviation

can be computed from the first two

moments. Moreover, the asymmetries of

the histogram are captured by the third

moment and so on. Closely related to

moments are a set of parameters known

as cumulants. We can describe a histo-

gram using moments or cumulants, just

as we can describe a space using

Cartesian or polar coordinates. The

simplicity of the mathematical descrip-

tion dictates which type of description is

preferred; we found that factorial cumu-

lants are suited for describing stochastic

genetic networks.18,21

From the perspective that the signal

generator creates an input signal, these

measured factorial cumulants obtained

from the flow cytometry data are to be

considered the output signals. Because

the biochemical processing function can

be inferred from the input–output data

pair, the key problem is to find a

mathematical description of these

input–output relations. For a genetic

network with transition probability rates

having a linear dependency on the state q

(linear genetic network) the Laplace

transform of the input–output relations

Fig. 1 A histogram from a flow cytometry measurement. FITC-A represents the intensity of a

reporter gene, like the green fluorescent protein.
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were given in ref. 18 (, vec and fl denote

respectively the Laplace transform

operator on functions, the vectorize and

Kroneker product operators on

matrices22):

Lm~
1

s{Hð Þ LG: (4:1)

Lvec Xð Þ~ 1

s{16H{H61

16HzH61ð ÞLz2LC½ � 1

s{H
LG:

(4:2)

Here G represents the signal generators

and H is a matrix that encapsulates the

genetic network’s parameters. The above

relations tell us that inversion and

product of matrices are all that we need

to find the mean value and the factorial

cumulants X. A similar problem was also

studied in ref. 23. The advantage of

having an analytical expression for a

biochemical processing function is that

measured data can be fitted to a math-

ematical model much more easily than

using Monte Carlo simulations.

Moreover, even if at present the mea-

sured data are not informative enough to

fit a complex biochemical pathway, at

least we can draw semi-quantitative

conclusions from the biochemical proces-

sing function. In ref. 18 we studied also

the advantage of exciting a biochemical

pathway with an oscillatory signal. It is

well recognized that a periodic pattern

programmed into the input signal can be

recognized in the output measurements

even in the presence of a strong noisy

background. One last advantage to be

noticed is that the theory for linear

biochemical pathways in ref. 18 and

ref. 23 is not a mathematical approxi-

mation of the biochemical stochastic

process. Usually, the Master Equation

for the biochemical stochastic process

being hard to solve, is transformed into a

partial differential equation for which

many methods are available. Diverse

schemes of approximations are known:

Fokker–Plank, Langevine, and V-expan-

sion.9 However, many molecules are

present in a cell in low numbers.13,24 To

cover such cases the Master Equation

should not be approximated which is

possible for linear genetic networks. In

conclusion, an advantage of the linear

theory is that it is exactly solvable and

easy to work with. However, it can be

applied only to special situations or as

a linear approximation to nonlinear

phenomena.

5. The study of nonlinear
biochemical pathways

The rate of formation of a biochemical

complex depends on the mathematical

product of the concentrations of the

components that participate in that

complex formation. The presence of the

mathematical product of concentrations

requires the use of nonlinear polynomial

functions. Moreover, many biological

processes become active only when the

concentration of some molecules

increases above a threshold. A detailed

study of such nonlinear biochemical

pathways, under the influence of input

generators, was presented in ref. 21. A

simple, but fundamental example (Fig. 2)

is the enzymatic (E) catalytic process of

transforming a substrate (S) into a

chemical product (P) through the forma-

tion of a complex (C). This type of

process is ubiquitous in biology and we

can imagine that the enzyme is modu-

lated by some signaling pathway. If the

signal that modulates the enzyme is

oscillatory in time and it starts at time

0, then the chemical product will be

periodically modulated (Fig. 3).

This process is nonlinear because the

probability for complex production is

proportional to the mathematical pro-

duct of substrate and enzyme concentra-

tion. To illustrate the nature of the

equation for the factorial cumulants, we

present here the equations for the first

order factorial cumulant Xp (which

equals the mean value of P) and the

second order factorial cumulant Xpp.

_XXP~k2XC{cPXP{

k{2 XEPzXEXPð Þ
(5:1)

_XXPP~2k2XCP{2cPXPP{

2k{2 XEPXPzXEXPPð Þ
(5:2)

The equations depend on factorial

cumulants related to the other compo-

nents E, C and S. The k’s are the

coefficients of the transition rates for

the corresponding chemical process,

presented in Fig. 2. In Fig. 3 we super-

impose a series of Monte Carlo simula-

tions of the catalytic process and the

numerical solution of the equations for

the nonlinear catalytic process.21 The

mean value and standard deviation

obtained directly from the simulated

data, match very well the ones obtained

from numerical solution of the model.

Like in the linear case, we can thus use

directly the mathematical model to fit

experimental data, without using Monte

Carlo simulations. The same approach

can be applied to many other examples

of nonlinear biochemical pathways,

driven by signal generators.21

6. Challenges in the estimation
of complex genetic networks

Newton developed the calculus as the

mathematical language for the study of

physical systems in continuous space and

time. However, the language by itself

does not represent scientific knowledge

until the exact laws (Newton’s laws,

Maxwell equations etc.) are specified.

Fig. 2 A catalytic process.

Fig. 3 The transient built up of the chemical product (P). The mean and mean +/2 standard

deviation are obtained as solutions of a system of equations.21
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The formulation of these laws is guided

by the criterion that they should provide

explanation and understanding of

observed phenomenon and data, and

should generate testable predictions.

Likewise, in the case of biological sys-

tems, Markov processes only provide the

mathematical language for their descrip-

tion, and we must rely on experimental

data to specify the equations for any

concrete system. A general approach that

had worked well in electronics and other

engineering systems, called the systems

approach, can be adapted to study

biological systems.

Fig. 4 illustrates the main idea. The

general approach is to select some input

signal to the system and then measure the

response of the system by collecting

suitable output data. We assume that

the behavior of the biological system can

be well represented by a model M that is

a member of a given class C of mathe-

matical models. For each model M in the

class, we can compute a ‘‘goodness of fit’’

score to assess how well the model fits the

data—by using M to predict the

responses of the system given the parti-

cular input signals, and then compare the

predictions to the observed output

response data. We then use this as the

score for M to search for high-scoring

models within the model class C. The

works discussed in the above sections are

useful in several ways. First, they help us

to specify the model class C, for example,

C may be the class of linear stochastic

gene regulatory networks. Second, they

provide the mathematical relation

between certain key features of the

output response and the input signal.

For example, it is possible to find the

mapping from the factorial moments of

the input to the factorial moments of the

joint distribution of a subset of variables

measured at the output. This then allows

us to compute the goodness-of-fit for the

model as a function of the parameters in

the model, without having to resort to

time consuming simulations. Third, the

network topology is implicitly captured

in the parameter values. For example, in

the case of a linear stochastic gene

regulatory network, if the evolution of

each species of RNA or protein depends

on the current values of only a small

number of other proteins and RNAs,

then the network will assume a sparse

network topology.

Although the general approach is

clear, the successful implementation of

this approach will not be easy. Currently,

our ability to monitor the simultaneous

responses of many variables at the single-

cell level is very limited. The success of

this approach, however, depends criti-

cally on the availability of output

response assays at single-cell level that

can provide measurements on a large

number of genes or proteins simulta-

neously (high parallelism). Ideally the

assays should monitor real time signals,

or at least it should be feasible to

perform these assays at high time-sam-

pling rates (high time resolution). Table 1

lists some possible output assays and

their advantages and disadvantages.

It is clear that current response assays

do not satisfy the requirements of the

systems approach. We believe that the

development of better assays should be

given high priority.

The final ingredient in the systems

approach is the computational identifica-

tion of the set of networks that are

consistent with the observed data. For a

system with N genes, the number of

possible network topologies is in the

order of 2 raised to the power N2. Thus

even for a small network with only

30 genes, it is already beyond the

capability of current supercomputers to

search the space exhaustively. Progress in

this direction may require close interac-

tion between computational biologists

who develop the search and sampling

algorithms for this task, and high-per-

formance computing researchers who

develop new hardware architecture and

programming models tailored for this

problem.
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