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The structure of a genetic network is uncovered by studying its
response to external stimuli (input signals). We present a theory of
propagation of an input signal through a linear stochastic genetic
network. We found that there are important advantages in using
oscillatory signals over step or impulse signals and that the system
may enter into a pure fluctuation resonance for a specific input
frequency.

systems biology � synthetic biology � stochastic processes

The nature of a physical system is revealed through its
response to external stimulation. The stimulus is imposed on

the system, and its effects are then measured (Fig. 1a). This
approach is widely used in biology: a cell culture is perturbed
with a growth factor, a heat shock, etc. The data measured
contain the initial information encoded into the stimulus and
the information about the intrinsic characteristics of the system.
The more parameters the experimentalist can adjust to craft the
perturbation stimulus, the more information about the system
can be revealed. In recent years we have witnessed a tremendous
increase in measurement capabilities (e.g., microarray and pro-
teomic technologies, better reporter genes). However, the suc-
cess of the systems approach to molecular biology depends not
only on the measurement instruments, but also on an effective
design and implementation of the input stimulus, which has not
been thoroughly explored. Traditionally, two types of time-
dependent stimuli are at work in molecular biological experi-
ments (1, 2). For example, a step stimulus is obtained when at
one instant of time a growth factor is added to the medium (Fig.
1a, graph a). The stimulus from graph b in Fig. 1a is a
superposition of two step stimuli. The investigator can control
the height of the step stimulus (the concentration of the growth
factor) or the time extension of the heat shock. The cells respond
to these stimuli only transiently. The response is dampened after
some time and becomes harder to detect because of noise. To
overcome the noise, the concentration of the stimulus is typically
increased to the point where the strength of the stimulus raises
far above its physiological range.

We propose to implement a molecular switch at the level of
gene promoter and use it to impose an oscillatory stimulus. In the
absence of experimental noise, any stimulus can be used to
determine the input-output properties of a genetic network.
However, in the presence of experimental noise, oscillatory input
has many advantages: (i) the measurements can be extended to
encompass many periods so the signal-to-noise ratio can be
dramatically improved; (ii) the measurement can start after
transient effects subside, so that the data become easier to
incorporate into a coherent physical model; and (iii) an oscilla-
tory stimulus has more parameters (period, intensity, slopes of
the increasing and decreasing regimes of the stimulus) than a
step stimulus. As a consequence, the measured response will
contain much more quantitative information. Experimental
results from neuroscience prove that oscillatory stimulus can
modulate the mRNA expression level of genes. For example, the
c-fos transcription level in cultured neurons is enhanced 400% by
an electrical stimulus at 2.5 Hz and reduced by 50% at 0.01 Hz

(3). Also, the mRNA levels of cell recognition molecule L1 in
cultured mouse dorsal root ganglion neurons change if the
frequency of the electric pulses is varied. The expression level of
L1 decreases significantly after 5 days of 0.1-Hz stimulation but
not after 5 days of 1-Hz stimulation (4). To extend the oscillatory
approach to other types of cells, a two-hybrid assay (5) can be
used to implement a molecular periodic signal generator (Fig.
1c). The light switch is based on a molecule (phytochrome in ref.
5) that is synthesized in darkness in the Q1 form. When the Q1
form absorbs a red light photon (wavelength 664 nm) it is
transformed into the form Q2. When Q2 absorbs a far red light
(wavelength 748 nm) the molecule Q goes back to its original
form, Q1. The transitions take milliseconds. The protein P
interacts only with the Q2 form, thus recruiting the activation
domain to the target promoter. In this position, the promoter is
open and the gene is transcribed. After the desired time has
elapsed, the gene can be turned off by a photon from a far red
light source. Using a sequence of red and far red light pulses the
molecular switch can be periodically opened and closed.

There are four input parameters that can be varied: the period
(T), the time separation between the pulses (s), and the amplitude
(A) of the red and the far red pulses. The mRNA concentration
profile will depend on these parameters and can be measured with
high-throughput technology (6). Protein levels also will depend on
the input signal. The proteins can be recorded with 2D PAGE
analysis or MS. If one single gene product is targeted, than a
real-time luminescence recording can be used (7). A periodic
generator can be used to investigate biological systems for which the
mRNA and protein concentrations naturally oscillate in time. An
example of such a system is the circadian clock that drives a 24-h
rhythm in living organisms from human to cyanobacteria. The core
oscillator is a molecular machinery based on an autoregulatory
feedback loop involving a set of key genes (Bmal, Per1, Per2, Per3,
Cry1, Cry2, etc.) (8). Experimental procedures used to elucidate the
clock mechanism are based on measuring the circadian wheel-
running behavior of mice under normal light�dark cycles or in
constant darkness (dark�dark) conditions. Experimental evidence
demonstrates that laws of quantitative nature govern the molecular
clock. For example (9), the internal clock of Cry1 mutants have a
free-running (i.e., dark�dark conditions) period of 22.51 � 0.06 h,
which is significantly lower than the period of 23.77 � 0.07 h for WT
mice. In contrast, a Cry2 mutant has a significantly higher period of
24.63 � 0.06 h. In light�dark conditions, both mutants follow the
24-h period of the entrained light cycles. A double Cry1,2 mutant
is arrhythmic in dark�dark conditions and follows a 24-h rhythm in
light�dark conditions. To explain these experimental values we
suggest using a light-switchable generator to drive the expression
level of Cry1 and Cry2 and measure the dynamics of transcription
and the translation for the rest of the key clock genes. Another
application of the periodic generator is to modulate a constitutively
expressed gene by superimposing an oscillatory profile on top of its
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flat level. Then, the genes that show a modulation with a frequency
equal to the generator’s frequency will be detected by a microarray
experiment. Why is this approach different from the one where a
step stimulus is used? Because the frequency of the generator is not
an internal parameter of the biological system. The genes that
interact with the driven gene will be modulated by the input
frequency. The rest of the genes will have different expression
profiles dictated by the internal parameters of the biological system.
This point of view is supported by our findings (6) that the circadian
clock (which is an endogenous periodic signal generator) propa-
gates its output to only 8–10% of the transcriptome in mice
peripheral tissues (liver or heart). In contrast to the oscillatory
input, when a step stimulus is applied, all of the expression profiles
are dictated by the internal parameters of the biological system.
Except for the height of the step stimulus (the dose of the factor
applied) there is no external parameter implemented into the input
signal. As such, it is difficult to separate those genes that directly
respond to the input signal and consequently avoid artifacts. With
the applications described in mind, we study the propagation of an
input signal through a stochastic genetic network.

The Response of a Stochastic Genetic Network
to an Input Stimulus
The effects of an oscillatory input have been studied on specific
biological systems by using models based on differential equations
(10–12). The stochastic character is embedded into these equations
as an exterior additive term. In contrast, we compute the genera-
tor’s effects on the mean and fluctuation of the gene products with

a stochastic model (13–15). In this way, the generated stimulus and
the noisy nature of the cell are entangled in the stochastic genetic
model. For a network of n genes (Fig. 2) the state of a cell is
described by the mRNA and protein molecule numbers: q �
(r1, . . . , rn, p1, . . . , pn). We assume that, during any small time
interval �t, the probability for the production of a molecule of the
ith type is (�j�1

2n Aijqj � Gi(t))�t, i.e., qi is increased by 1 with the
above probability. The function Gi(t) represents the time-varying
input signal and modulates the mRNA production only: G �
(g1(t), . . . , gn(t), 0, . . . , 0)T (the superscript T is the transposition
operation that transforms G into a column vector for notational
convenience in what follows). The parameter Aij represents the
influence of the jth type of molecule on the production rate of a
molecule of the ith type. Similarly, there is a matrix of parameters
�ij governing the degradation rates of the molecules. For simplicity,
we assume that the input stimulus directly affects only the produc-
tion rates. The mean � � �q� and the covariance matrix � � ��q��
� ��(q 	 �q�)(q 	 �q�)T� of the state q are driven by the generator
G.

The transfer of the signal from the generator through the
genetic network to the output measured data is encapsulated in
a set of transfer matrices. Specifically, let H � A 	 � and denote
the Laplace transforms of � and G by L� and LG. Here and in
what follows, � and G are represented as column vectors. The
connection between the mean and the generators is given by
formula 1, which is typical for a deterministic linear system.
However, the genetic system is stochastic and the measure of the
intrinsic noise is quantified by the covariance matrix �. The effect
of the stimulus generators is most transparent if we split � in a
Poisson and a non-Poisson component: � � diag(�) � X. Here
diag(�) represents a matrix with the components of the vector �
on its diagonal, with all of the other terms being zero. For a
Poisson process, X � 0 and thus the term diag(�) is called the
Poisson component of �. The non-Poisson component X � � 	
diag(�) can be expressed in terms of the generators (Appendix
and Supporting Text, which is published as supporting informa-
tion on the PNAS web site):

L� �
1


s � H�
LG, [1]

Lvec
X� �
1

s � 1 � H � H � 1

��
1 � H � H � 1�L � 2L�
1

s � H
LG. [2]

Fig. 1. Genetic networks stimulated by signal generators. (a) Genetic net-
work response depends on the type of the applied stimulus. (b) An autoreg-
ulatory network. The gene G is under the influence of a cofactor C that
rhythmically modulates the activity of the promoter P. The matrix H contains
the parameters that dictate the transition probabilities of the stochastic
model. The transition probability per unit time from r to r � 1 mRNA mole-
cules, T(D, r, p; D, r � 1, p; t), is modulated by the oscillatory signal generator.
The DNA, D, and the protein, p, do not change in this transition. (c) The gene
is turned on with a red light pulse of wavelength � � 664 nm. With a far red
light of wavelength � � 748 nm the gene is turned off. Adapted from ref. 5.
AD, activation domain; BD, binding domain; Q, a protein that changes its form
upon light exposure, from Q1 to Q2 and back; P, a protein that interacts only
with form 2 of protein Q (Q2).

Fig. 2. Response of a stochastic genetic network to an oscillatory input. The
Laplace transform L changes the dynamic variable from time to frequency. In
the vec(X) all of the elements of matrix X are arranged in a column vector.
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The vec(X) is a vector constructed from the matrix X by stripping
the columns of X one by one and stacking them one on top of
each other in vec(X). We emphasize here that the time variation
of the generators G in 2 can take any form and is not bounded
to be periodic or a step stimulus.

There are three matrices that transfer the information from
the generators to the non-Poisson component, Lvec(X) �
M3M2M1LG. The first, M1 � (s 	 H)	1, is the same as the transfer
matrix for the mean. The second, M2 � (1 R H � H R 1)L � 2L�,
breaks the symmetry between the degradation and production
parameters that are otherwise hidden in the matrix H � A 	 �.
The R is the Kronecker product of two matrices. The matrix L
(with elements 0 and 1) is the lifting matrix from dimension of
the mean (2n values) to the dimension of vec(X) (4n2 values). The
third matrix is M3 � (s 	 1 R H 	 H R 1)	1. If �i is the eigenvalue
of H then all combinations �i � �j are the eigenvalues of 1 R H
� H R 1. Thus M3 represents the analog of M1 in the space of
covariance variables.

For a step stimulus, these eigenvalues are of primal impor-
tance: the measured signal is a superposition of components with
different eigenvalues and has a complicated mathematical ex-
pression. However, for a periodic stimulus, the frequency of the
external generator is the important parameter. This frequency is
fixed by the experimentalist not by the biological system. Only
the phase and the amplitude of the output signal depends on the
system’s eigenvalues and the mathematical form is less cumber-
some then for the step stimulus. The input-output relations, 1
and 2, were derived from the master equation written for the
probability of the states of the genetic network. Thus, we must
specify the initial conditions for the probability of the states.
These conditions refer here to states for which one molecular
component vanishes (qi � 0, for one i). The input-output
relations, 1 and 2, are independent of these boundary states if the
� matrix is diagonal. A diagonal � matrix was used in ref. 13, and
we will use it also in the example that follows. Tools developed
in the field of system identification can be used to create models
for the networks under study (16). The difference between the
system identification classical models and a genetic network is
that the latter is a stochastic process by nature, whereas the
former are deterministic models with a superimposed noise from
external sources. However, the formulas that describe the rela-
tions between the mean and covariance of the stochastic process
and the input signals, 1 and 2, are of the same general nature as
those used in system identification theory (16). In the next
section we will use 1 and 2 to analyze one of the most funda-
mental regulatory motifs in a genetic network: an autoregulatory
gene that acts upon itself through a negative feedback (17–19).
The fluctuation can drive this biological system out of its
equilibrium state (20).

Fluctuation Resonance
Four parameters characterize the system: the feedback strength
A12 � 	h, the translation rate A21 � kp, and two degradation
rates, �11 � �r,�22 � �p. The gene regulation is under the control
of its own protein product and the protein activity is modulated
by a cofactor. The cofactor is driven by a periodic light-
switchable generator g(t) � k0 � acos(�t) (Fig. 1a). Before the
generator is applied, the transcription rate is equal with k0 and
the system is in a steady state. Through the transfer matrices, 1
and 2, the light generator will impose a periodic evolution of the
mean and covariance matrix for mRNA and protein product. We
denote the mean mRNA by �r(t)� and the mean number of
protein by �p(t)�. We will concentrate on the protein number
in what follows. After the transients are gone, �p(t)� � P0 �
P1ei�t � P*1e	i�t, that is the protein number will oscillate with an
amplitude P1 on top of a baseline P0; here * represents complex
conjugation. The fluctuation of the protein number, � �p(t)��,
differs from the mean number by a quantity that we denoted by

Xpp(t): ��p(t)�� � �p(t)� � Xpp(t). For a pure Poisson process,
��p(t)�� � �p(t)�. Thus the term Xpp(t) represents the deviation
from a Poisson process. If there is some information about the
genetic system that can be uncovered by measuring not only the
mean but also the covariance matrix, then this information is
hidden only in the non-Poisson component Xpp(t). The quantity
Xpp(t) is not interesting only from a statistical point of view but
also from a dynamical one. The equation for the time evolution
of � �p(t)�� takes its most simple form if it is written for Xpp(t).
That is, the time dependence of the mean value must be
subtracted from the time evolution of � �p(t)��. Similar to the
mean value, the non-Poisson component of the fluctuation will
oscillate in time, Xpp(t) � Xp,0 � Xp,1ei�t � X*p,1e	i�t with
complex amplitude Xp,1. The relative strength of the fluctuation
versus the mean value can be described by using the Fano factor
(13): ��p(t)����p(t)� � 1 � Xpp(t)��p(t)�. For oscillatory inputs,
the response of the network is best described in frequency
domain rather than in time. In frequency domain, as an analog
of the Fano factor we consider the ratio of the amplitude of
Xpp(t) versus the amplitude of � p(t)�.

�Xp,1�
�P1� � � 4kp

2

�2 � 
h � �p�

2�
�2 � 4� r
2�



�2 � 4�0
2�2 � 4�2�1

2�
�2 � �1
2�
� 1/2

.

[3]

Here �1 � �r � �p. The complex amplitudes Xp,1 and P1 depend
on the input frequency, and therefore resonance phenomena can
be detected in the system. If the light-switchable generator
oscillates with double the natural frequency �0

2 � hkp � �r�p, that
is, � � 2�0 we find a state of resonance for fluctuation and not
for the mean (Fig. 3).

For � � 2�0 the system will be in a pure fluctuation resonance.
In such a situation the molecular noise can drive the cell out of
its equilibrium state, which can have dramatic consequence on
the cell fate. Our model being linear cannot cover the entire
phenomena that accompanies a system whose state is close to
resonance. However, a linear model suggests the existence of
pure fluctuation resonance. At fluctuation resonance, the devi-
ation from a Poissonian process is high. The oscillation ampli-
tude for protein fluctuation is much greater then the amplitude
of the mean. Experimental results (21) show that typical values
for the ratio kp��r are 40 for lacZ and 5 for lacA. These values

Fig. 3. Fluctuation resonance. The amplitude Xp,1 of the non-Poisson com-
ponent is much higher than the amplitude of the mean protein number, P1, at
� � 2�0.
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suggest that there are natural conditions for a strong height
fluctuation resonance (Fig. 3). However, for a sharp fluctuation
resonance (small half width), we need h � �r or �p, a condition
that does not appear in all genetic networks. It is through the
experimental study that we will clarify how some biological
systems can sustain fluctuation resonance and others can not.
Besides resonance, the frequency response provides other in-
sights into the structure of the autoregulatory system. The
parameters of the system can be read from the measured data.
The frequency response of the mean values behave like the
response of a classical linear system to input signals. The new
aspects are those related to fluctuations. Like Xpp(t) and Xrr(t),
the correlation coefficient between the mRNA and protein
number will oscillate in time: Xrp(t) � Xrp,0 � Xrp,1ei�t �
X*rp,1e	i�t with amplitude Xrp,1. Taking the ratios of the ampli-
tudes �Xrp,1�2��Xr,1�2 � (1�4h2)�2 � �r

2�h2, �Xrp,1�2��Xp,1�2 �
(1�4kp

2)�2 � �p
2�kp

2, we observe that all four parameters of the
system can be estimated from the slopes and the intercepts of the
above ratios as a function of �2. Detail formulas for each
amplitude are given in Supporting Text.

The Spectrum, the Experimental Noise, and the Importance
of the Input Stimulus
We described the use of a periodic signal to decipher a genetic
network. Traditionally, a step stimulus is used in biology for
pathway detection (i.e., adding a growth factor to the culture).
From the response to a step stimulus we can extract, in principle,
the parameters of the system. The natural question is then: why
should we generate a periodic stimulus when there is already a
step stimulus in use? Seeking an answer, we notice that the
measured data in our studied example can be expressed as a sum
of exponentially decaying functions, e	�t, if a step stimulus was
used (Supporting Text). For a periodic input, the response
contains only exponentials with imaginary argument, ei�t. Math-
ematically, the main difference between exponentials with real
arguments, e	�t, and those with imaginary arguments, ei�t, is that
with the former we cannot form an orthogonal basis of functions,
whereas such a basis can be formed with the latter. If we depart
from our example, we can say that, in general, the response of
the network to a step input will be a sum of components that are
not orthogonal on each other. The time dependence of these
nonorthogonal components can be more complex than an ex-
ponential function; they can contain polynomials in time or
decaying oscillations, depending on the position in the complex
plane of eigenvalues of the transfer matrix H. In constrast, the
permanent response obtained from a periodic input is a sum of
Fourier components that form an orthogonal set. Orthogonal
components are much easier to separate than nonorthogonal
ones. This mathematical difference explains the advantage of
using oscillatory inputs. However, an argument can be made that
increasing the number of replicates will be enough to separate
the step response from noise. In what follows we study how many
replicates are needed to successfully fight the experimental
noise. We will show that fewer replicates are needed if the
genetic network is probed with an oscillatory generator rather
than a step signal. To keep the argument simple, we will study
the difficulty of separating nonorthogonal components for a
network for which the response to a step stimulus is a sum of
decaying exponentials. The argument can be extended to other
types of nonorthogonal components, but this line of thought falls
outside the scope of this article. The measured data being a
superposition of exponential terms can be written as:

f
t� � �
x1

x2

S
x�K
xt�dx, [4]

with K(xt) � e	ixt for the periodic response and K(xt) � e	xt for
the step stimulus. The spectral function S(x) depends on the
network’s parameters and the type of the input signal. For
example, the spectrum of the autoregulatory system for a
periodic input is S(x) � S0	(x) � S1	(x 	 i�) � S1*	(x � i�),
where 	(x) is the Dirac delta function. The coefficients S0, S1
take specific values if the spectrum refers to mean mRNA,
proteins, or their correlations. For example, for the protein
fluctuation:

S0 � Xp,0 �
kp

2k0
�p � h�� r

�0
4�1

, [5]

S1 � Xp,1 �
ia
	i�p � � � ih�
� � 2 i� r�kp

2


�2 � �0
2 � i��1�
�2 � 2 i��1 � 4�0

2�
� � i�1�
.

[6]

A detailed description of the spectrum for an autoregulatory
network is given in Supporting Text. For oscillatory inputs that
are not pure cosine function and for more complicated networks,
the spectrum is more complex, but is still connected with the
measured data like in 4. The spectrum S(x) carries information
about the parameters of the genetic network and can be recov-
ered from the data f(t). The network’s parameter can be
estimated from the spectrum once a model of the network is
chosen. Our goal is to show that the spectrum obtained from an
oscillatory input signal is much less distorted by the experimental
noise than the spectrum obtained from a step input. Laboratory
measurements are samples of f(t) at N discrete time points. Given
a finite number N of measured data points, f1, . . . , fN, the
spectrum for the periodic case S(x) can only be approximated as
a weighted sum of N terms (Supporting Text): S(x) � �k�1

N (sk �

k��k)�k(x). Each term, (sk � 
k��k)�k(x), contains a function
�k(x) that does not depend on the measured data and the weights
sk � 
k��k that are computed from the measured data f1, . . . , fN.
In the absence of experimental noise, 
k � 0, all N coefficients
sk can be computed from the measured data. When experimental
noise is present, 
k � 0, what we compute from measured data
is sk � 
k��k, and we cannot separate sk from it because we do
not know the actual value for 
k. The best we can do is to use only
those terms for which sk � 
k��k, so the effect of the distortion
on sk is not large. Unfortunately, the distortion increases as �k
gets smaller, which actually happens when k increases. A term
can be recovered from noise if �k

	1 � sk�
k. Usually, this relation
is valid for k � 1 . . . Jp, with Jp being the last term that can be
recovered. A similar relation holds for the exponential case, with
�k instead of �k and Je instead of Jp. It is desirable that both
cutoffs (Jp, Je) be as close as possible to the number of sampled
points, N. The striking difference between the two cases is that
the cutoff Jp is much larger then the cutoff Je. This difference is
a consequence of the fact that the numbers �k decrease expo-
nentially to 0 (22), whereas �k stays close to 1 for many k before
eventually dropping close to zero (23). This huge difference
between �k and �k has its origin in the fact that the set of
functions of time, exp(	�t), indexed by �, do not form an
orthogonal set, whereas the functions exp(i�t), indexed by �, are
orthogonal.

In theory, however, we can still hope that a step stimulus can
deliver good estimates if the noise 
k is reduced by using r
replicates (
k 3 
k��r). This is not the case. Fig. 4 represents
the number of replicates needed to recover the component Je or
Jp if the signal-to-noise ratio (SNR) is 10 (SNR � sJe

�
Je
�

sJp
�
Jp

� 10). The number of replicates grows very fast in the
exponential case (for SNR � 10 and N � 20 we need 269
replicates for the fourth spectral component), whereas in the
periodic case, the number of replicates stays low for many
spectral components (only for the 17th component it raises to 14,
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with SNR � 10 and N � 20). See also Fig. 5, which is published
as supporting information on the PNAS web site.

Conclusions and Discussions
We studied the response of a linear stochastic genetic network
to an input stimulus (signal). We provide a general formula that
relates the mean and covariance matrix of mRNAs and proteins
to the input generators. The particular type of periodic signals
was studied in detail for an autoregulatory system. We found that
fluctuation resonance can manifest in such systems. Besides
interesting physical phenomena that can be detected with a
periodic signal, the oscillatory input is useful for experimental
noise rejection. We compared two experimental designs: one
that uses a step stimulus as a perturbation and another that uses
a periodic input. We concluded that the response of the genetic
network to a periodic stimulus is much easier to detect from
noise than the response of the same network to a step stimulus.
This conclusion applies whenever the response of the network to
an oscillatory input is a sum of Fourier components and can be
the case for many nonlinear networks. However, the input-
output relations, 1 and 2, apply only to a linear stochastic model.
A linear model is a good approximation around a steady state of
the genetic network. A genetic network is a nonlinear system and
can have several steady states. If the signal generator does not
vary in time, the genetic network will be characterized by one of
these steady states. When the signal generator starts to oscillate
with an amplitude that doesn’t drive the network faraway from
its steady state, the linear model is a good approximation. For
large amplitudes, the nonlinear effects start to be important, and
at some values of the generator’s amplitude, the network will
jump close to a different steady state. Such nonlinear behaviors
cannot be described by a linear model. Also, the parameters that
describe the network are supposed to be constant in time. This
approximation is valid if the changes in the network parameters
are slow with respect to the changes produced by the oscillatory
input signals. The input frequency should be chosen so that the
system can be considered with constant coefficients for the
elapsed time of measurements. Also, the period of oscillations
must be less than the trend effects caused by growth, apoptosis,
etc. Besides biological effects that span large intervals of time,
experimental artifacts, like medium evaporation, can superim-
pose a trend on the measured profile. The input period should
be less than the time characteristics of these trends. These trends
will impose a limit for the lower range of the input frequencies.
The response to oscillations also depends on the time charac-
teristics of the system under study. If the system has a high

damping factor, the high frequencies will be strongly attenuated
and the output signal is not measurable. With all of these
restrictions, the experimentalist still has the freedom to work in
a frequency band, a freedom not present in the step stimulus.

A different line of thought emerges when it comes to analyzing
whether the oscillatory method can be scaled to large networks.
Experimentally, using high-throughput measurements (microar-
ray and proteomic tools), a large set of gene products can
simultaneously be measured. The experimentalist is searching
for a pathway that is controlled by a gene. Using oscillatory
signals to stimulate the desired gene, the time variation of the
downstream genes will contain in its spectrum the input fre-
quency, so these genes will be detected. Moving the signal
generator along the pathway, more and more local patches of the
network will be uncovered. The global view of the network will
consist of all of these patches connected together. The theoret-
ical framework for connecting a set of patches is unclear at
present. Experimentally, however, we verified that a source of
oscillations propagates into a large genetic network (6). Specif-
ically, a microarray experiment was conducted on mice entrained
for 2 weeks on a 24-h period of light�dark signals. The periodic
input signal was not implemented at the level of gene promoter;
it was an exterior periodic source of light that entrained the
internal clock of the cell. After entrainment, and in complete
darkness, the output signals (mRNA) were measured every 4 h
for 2 days with an Affymetrix (Santa Clara, CA) platform. From
�6,000 expressed genes in heart, �500 showed a mRNA that
oscillates within a 24-h period. The same results were reported
in ref. 24. The next step is to implement the generator at the gene
promoter level and measure the spread of the input signal into
the network.

Given the advantages of a periodic stimulus presented above,
we believe that the experimental implementation of a periodic
generator at the promoter level will prove fruitful in the study of
genetic networks.

Appendix
The genetic network is described by a linear stochastic network
(13–15). The network is driven by using signal generators placed
inside the promoters of a subset of genes that are part of the
network. For a gene we will denote by D, r, and p the number of
DNA, mRNA, and protein molecules, respectively, per cell. We
consider r, p to be variables but D to be a constant, and we normalize
it to D � 1. The state of a cell that contains n active genes is specified
by: q̃ � (D1, D2, . . . , Dn, r1, r2, . . . , rn, p1, p2, . . . , pn). The ge-
netic state is changing in time; for a short transition time, dt, only
one q̃i changes its value, and this new value can be either q̃i � 1
or q̃i 	 1. We consider in this article a linear stochastic genetic
network characterized by the following transition probabilities:
T(q̃; q̃ � 1i; t) � �j�1

M Ãijq̃jdt, T(q̃; q̃ 	 1i; t) � �j�1
M �̃ijq̃jdt. Here

q̃ is the initial state and 1i is a vector of length M with all elements
0 except the one in the position i that is 1. The time variation of
the generators that drives gene expression is encapsulated in the
matrix Ãij, which governs the production of different molecules.
The matrices Ãij and �̃ij consist of four submatrices, correspond-
ing to splitting the state q̃ into two subgroups. One subgroup
contains only the DNA states (D1, . . . , Dn) and the other
subgroup contains the protein and mRNA states q � (r1,
r2, . . . , rn, p1, p2, . . . , pn),

Ã � � 0 0
Gen A� , �̃ � � 0 0

0 ��. [7]

The generator submatrix Gen has a special form. It is a 2n �
n matrix and locates the position of the generators in the
genetic network: Genij � gi(t)	ij, i � 1 . . . 2n, j � 1, . . . n. Each
gene promoter is driven by one generator gi(t), i � 1, . . . , n,
which will inf luence the mRNA production of gene i. The same

Fig. 4. The number of replicates needed to recover a given spectral compo-
nent is shown.
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mRNA production can be inf luenced by the protein concen-
tration, and this feedback effect is described by the elements
of the 2n � 2n matrix A (7). The structure of the matrix A is
a consequence of the topology of the genetic network. The
equation for the probability P(q̃, t) of the network to be in the
state q̃ at time t is: P(q̃, t)�t � �i�1

M (Ei
	 	 1)�k�1

M Ãikq̃kP(q̃,
t) � �i�1

M (Ei
� 	 1)�k�1

M �̃ikq̃kP(q̃, t), where the shift operators
Ei

� are given by Ei
�P(q̃, t) � P(q̃, . . . , q̃i � 1, . . . , q̃M).

We need the time evolution equations for mRNAs and
proteins: �i � �qi� and �ij � �qiqj� 	 �qi��qj�, i, j � 1, . . . , 2n. In
matrix notation, for the column vector � and for the matrix X
with elements given by Xij � �ij 	 	ij�i we obtain:

d
dt

� H� � G, [8]

d
dt

X � HX � HTT � H diag
�� � diag
��HT � 2diag
��� .

[9]

Here HT is the transpose matrix of H � A 	 � and diag(�) has
nonzero elements only on the principal diagonal: diag(�)ij �

	ij�i. Using the Laplace transform, the solution to 8 is 1. Eq. 9
is a matrix equation. To solve this equation we first transform it
to an equation where the unknown is a column vector. The
transformation needed is X3 vec(X), where the column vector
vec(X) contains the columns of the matrix X one on top of the
other, starting with the first column and ending with the last
column. The vec mapping has the useful property that vec(HX) �
(1 R H)vec(X), vec(XH) � (HT R 1)vec(X), where 1 is the unit
matrix and A R B is the tensor product of matrices A and B. The
column vector vec(diag(�)) can be expressed in terms of the
column vector �: vec(diag(�)) � L�, were L is a lift matrix from
a space of dimension of � to the square of this dimension: L �
(P1, . . . , P2n)T, (Pk)ij � 	ik	jk. The solution to 9 takes the form 2.
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