Instructor: Dr. Laura Runyen-Janecky (Dr. R-J)
Office: Gottwald B213
Phone: 287-6390
Email: lrunyenj@richmond.edu
Lab: see lab syllabus

RJ Office hours: By appointment.
*For lab related questions, please contact your laboratory instructor directly.

BIOL201 Tutor hours: A tutor (Sarah Thomas) will be available through the Academic Skills Center Thursday 7-8:30 pm in Gottwald B207.

MATERIALS REQUIRED FOR THE COURSE:
- iGenetics: A Molecular Approach (3rd edition) by Peter Russell (solutions to the back of the book problems will be posted on BB)
- Blackboard access: http://blackboard.richmond.edu/ (You are responsible for consulting Blackboard for up to date information about this course).
- Calculator: for exams

COURSE GOALS:
Genetics is at the root of all life sciences and is used as a tool in many biological disciplines. The goal of this course is to introduce you to the fundamental concepts in genetics. We will explore how genes are organized and how they are transmitted from one generation to the next. We will examine the basic principles that govern how genes function at the molecular level. We will also study genomes, genetic engineering, as well as several other advanced genetics topics. You will then be able to use this fundamental information to explore the field of genetics in more detail in advanced courses and to apply genetic tools and approaches in other biological disciplines. Additionally, an aim of this course is to develop your analytical thinking skills through genetic problem solving and analysis. We will engage in problem-solving exercises to develop these skills and to illustrate specific concepts discussed in lecture. In addition, we will extend our exploration of the material from lecture with experiments in the laboratory. You will have the opportunity to think about experimental design, to analyze data sets, and to communicate your findings in reports. In summary, I hope that after you complete this course that you will:
- have an understanding of the fundamentals nature of genetics so that you can explore the field of genetics in more detail in advanced courses and/or apply genetic techniques and principles in other courses
- have developed your analytical thinking skills through genetic problem solving and analysis.
- understand that although a core set of information is important, biology is much more than just about memorization. “Just as houses are made of stones, so is science made of facts; but a pile of stones is not a house and a collection of facts is not necessarily science.” ~Henri Poincaré

COURSE AUDIENCE AND PREREQUISITES: BIOL201 is designed for students who have completed at least one year of high school Biology AND one semester of college Biology (i.e. any 100 level Biology courses at UR or the AP equivalent). If you have been allowed to take this class without this prerequisite, it is your responsibility to acquire the skills needed for this 200-level biology course. CHEM 141 is also a co- or prerequisite for this course.

COURSE SCHEDULE AND FORMAT: There will be a mixture of lecture, in class activities, and laboratory activities. The lecture schedule is attached as a separate document and you will receive the lab schedule in lab.
COURSE READING LIST: A list of the assigned reading is attached as a separate document. To learn genetics most effectively, it is essential that you read the material before coming to class. Advanced work assignments on the reading will be given (see attached document).

EVALUATION OF PERFORMANCE:
150 points exam 1
150 points exam 2
150 points exam 3
200 points cumulative final exam

Please remember that college is about learning, not just getting a certain grade. That being said, I still have to assign you a grade at the end of the semester that reflects what you have earned in the class. There are a total of 1000 points that you can earn in this course. The grading scale will be as follows:
A ≥ 93% of the points, A- = 90-92%, B+ = 87-89%, B = 83-86%, B- = 80-82%, C+ = 77-79%, C = 73-76%, C- = 70-72%, D+ = 67-69%, D = 63-66%, D- = 60-62%, F= < 60%

Also, note that an “A” grade is reserved for truly excellent (not just above average/good or above average) performance in the course.

CLASS POLICIES: LECTURE
1. Exam and quiz policy: There are no make-up exams or quizzes. This policy is reflective of how the “real world” operates. The only exceptions to this are as follows: (1) Conflict with a religious holiday observance (Note that this must be brought to my attention the FIRST week of class, otherwise this is not a valid exception), (2) Death of a family member or family emergency, (3) Severe illness (e.g. one that requires hospitalization or home-bound treatment; accompanied by a medical professional’s note), (4) Valid university activity.
2. Submission of work: Unless indicated otherwise, you must turn in a printed or written copy of all assignments; electronic copies are not acceptable. In the real world, generally there is no such thing as submitting late work (or if there is, there is a substantial penalty). Thus, late work will be assessed a 10% penalty per day after the due date and time. Work that is turned in after the time it is due (usually the beginning of class) is still considered late, even if it is turned in on the same day. Late work will not be accepted after 3 days. Please note that if we go over the answers to a homework problem in class the day it is due, you will not be able to turn that homework assignment in late. Quizzes and exams and advanced work can NOT be made up (see above for policy).
3. Attendance policy: I expect that you will be present during class both physically and mentally. You will learn the material better if you attend each class session. If you are absent for a graded in-class activity, you will not be able to make it up. You must attend the lecture section in which you are enrolled.
4. Laptop/smart phone policy: Please keep cell phones silenced and put away; in the rare event that you need to be available for phone calls (in the case of an emergency), please talk to me about it before class. Otherwise, I reserve the right to answer your phone for you! If you take notes on your computer, I respectfully request that you stick to course related work, so as not to distract your classmates.
5. Tardiness is not acceptable, as it disturbs your peers as well as your instructor. If you have to come to class late due to an unexpected event, please quietly slip in and sit in the back. If you arrive late, you will not be given extra time on quizzes or exams.
6. Asking questions and talking in class as part of discussion is definitely encouraged! However, please do not whisper to your neighbor in class, as it disturbs those around you and the instructor. If you have a question related to the class that you are discussing with your neighbor, chances are someone else has that question too. Please raise your hand and ask.
7. Technology failures are not acceptable excuses for late work. It is critical that you backup your work! If you do have a printing problem before class, email me the document before class, so that I can verify that the work was complete before class; then you must bring me a hard copy of the assignment by noon that same day. This lenience is meant to respect the fact that we all run into printing problems. However, if you abuse this privilege, it will be revoked. You should not wait until the last minute to print out files.
CLASS POLICIES: LABORATORY (SEE LAB SYLLABUS)

STUDYING FOR GENETICS EXAMS:
The majority of the questions will be either genetic problems to be solved or analysis and interpretation of genetic data. We also put several multiple choice questions on the exam, to keep your standardized test taking skills fresh. All of the questions are designed to test your comprehension and understanding of the material. Additionally, I strive to provide you with test questions that allow you to demonstrate your ability to make connections between the chapters and between lecture and lab. I try not to give simple memorization questions, because I do not think that these test your understanding of the material. However, you must know all the terms, definitions, etc to understand the material. You are responsible for all the material in the chapters, lecture notes, and laboratories unless otherwise indicated. Although each exam covers a different set of chapters, the exams are cumulative in the sense that you are responsible for understanding material covered in previous chapters.

SOME HINTS TO HELP YOU EFFECTIVELY LEARN/UNDERSTAND THE MATERIAL IN BIOL201:
• Come to class and be on time.
• Read the reading assignments before class and review them carefully after class.
• Ask questions in class and out of class.
• When in class, listen carefully to the lecture, participate in class discussions and write down key points. (Many students like to print out the powerpoint slides and take notes directly on them or take notes on them using a laptop).
• Do the suggested problem sets in the back of the book and all other assigned problems. You should try very hard to work the problem WITHOUT looking at the solutions in the back of the book first. Write down what you know, even if you can’t get the answer. After you have attempted the problem and think you have an answer – look at the solutions manual. I have found that students who go straight to the solutions manual and say “Oh, I see how to work that” are rarely able to work even a similar problem on an exam.
• Consult the BIOL201 tutors in the Academic Skills Center.
• Attempt to assimilate the information from lecture with that from lab.
• Join a study group. I will discuss this the first week of class.
• Assess how you best learn new information. For instance, some students learn best by rewriting concepts and information (written); others learn best by examining pictures (visual), and other may learn using auditory techniques. Many students learn using a combination of these techniques. The UR academic skills center (http://asc.richmond.edu) can help you assess which study skills are suited to you. Apply which ever approaches work best for you on a consistent basis.
• Consistently spend time on this class throughout the semester (not just the week before the exams/assignments). You should expect to devote 10-14 hours per week to this course (including the time you are in class and lab). So if you are in class and lab for 5.5 hours per week, you should still expect to devote another 4.5-8.5 hours to the course.
• Don't procrastinate. You will not be able to truly understand the material if you wait until the last minute to learn it. This means that you probably will not do well on the exams since they test your ability to solve problems and interpret/analyze data. These skills require practice and thorough comprehension, neither of which can be crammed into your brain the night before an exam.

If you experience difficulties in this course, do not hesitate to consult with me. There are also other resources that can support you in your efforts to meet course requirements.

Academic Skills Center (http://asc.richmond.edu or 289-8626) helps students assess their academic strengths and weaknesses; hone their academic skills through teaching effective test preparation, critical reading and thinking, information processing, concentration, and related techniques; work on specific subject areas (e.g., calculus, chemistry, accounting, etc.); and encourage campus and community involvement.

Career Development Center (http://cdc.richmond.edu/ or 289-8547) can assist you in exploring your interests and abilities, choosing a major, connecting with internships and learning experiences, investigating graduate and
professional school options, and landing your first job. We encourage you to schedule an appointment with a career advisor during your first year.

Counseling and Psychological Services (http://caps.richmond.edu or 289-8119) assists students in meeting academic, personal, or emotional challenges. Services include assessment, short-term counseling and psychotherapy, crisis intervention and related services.

Speech Center (http://speech.richmond.edu or 289-6409): Assists with preparation and practice in the pursuit of excellence in public expression. Recording, playback, coaching and critique sessions offered by teams of student consultants trained to assist in developing ideas, arranging key points for more effective organization, improving style and delivery, and handling multimedia aids for individual and group presentations.

Writing Center assists writers at all levels of experience, across all majors. Students can schedule appointments with trained writing consultants who offer friendly critiques of written work: http://writing.richmond.edu

Boatwright Library Research Librarians assist students with identifying and locating the best resources for class assignments, research papers and other course projects. Librarians also assist students with questions about citing sources correctly. Students can schedule a personal research appointment, meet with librarians at the library’s main service desk, email, text or IM. Link to http://library.richmond.edu/help/ask.html or call 289-8669.

HONOR CODE:

The School of Arts and Sciences, the Jepson School of Leadership Studies, and the Robins School of Business each operate under the University Honor Code Statute. Breaches of the code are cheating, plagiarism, lying, academic theft, disclosing honor council information, registration irregularity and failure to report an Honor Code Statute violation. Any person who violates these standards shall be subject to disciplinary action ranging from reprimand up to and including expulsion from the University. Determination of guilt or innocence and imposition of sanctions, when necessary, will be effected according to established procedures, with procedural fairness observed, and with appropriate appeal procedures available. The University Honor Code Statute is available from any dean’s office. (http://oncampus.richmond.edu/academics/catalog/academic_policies.html#studentlife)

How does the honor code apply in this course? While you are encouraged to discuss course material with others, all graded assignments must be your own work unless you are informed of an exception to this rule.

- Work that you are encouraged to do as a group for the lecture component of this course includes: Discussing lecture notes; Discussing the reading material; Working practice problems; Working Problems of the day. Please note that working in a group means that all members of the group participate. It is a violation of the honor code to simply copy the answers of a practice problem or problem of the day.

- Work that you are expected to accomplish on your own includes: All written assignments unless otherwise noted (exams, quizzes, homework assignments).

Please note that copying and pasting anything from another written source, including the web is plagiarism. DO NOT copy and paste text from the web.

Please include the following signed Honor Pledge, when appropriate, on all work that is handed in: “I pledge that I have neither given nor received unauthorized assistance during the completion of this work.”
<table>
<thead>
<tr>
<th>Week 1</th>
<th>Session</th>
<th>Topics Covered</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (01/09)</td>
<td>Mon.</td>
<td>Introduction; Basic genetics primer (Central Dogma and general characteristics of a gene)</td>
</tr>
<tr>
<td>Wed.</td>
<td>DNA as genetic material (identification and structure);</td>
<td></td>
</tr>
<tr>
<td>Fri.</td>
<td>Catch up and DNA replication activity</td>
<td></td>
</tr>
<tr>
<td>2 (01/16)</td>
<td>Mon.</td>
<td>Genes and protein function</td>
</tr>
<tr>
<td>Wed.</td>
<td>Genes and protein function / Possible activity</td>
<td></td>
</tr>
<tr>
<td>Fri.</td>
<td>Prokaryotic Transcription</td>
<td></td>
</tr>
<tr>
<td>3 (01/23)</td>
<td>Mon.</td>
<td>Regulation of Prokaryotic Transcription 1</td>
</tr>
<tr>
<td>Wed.</td>
<td>Regulation of Prokaryotic Transcription 2</td>
<td></td>
</tr>
<tr>
<td>Fri.</td>
<td>Regulation of Prokaryotic Transcription 3/Catch up and Activity</td>
<td></td>
</tr>
<tr>
<td>4 (01/30)</td>
<td>Mon.</td>
<td>Eukaryotic Transcription/ mRNA processing 1</td>
</tr>
<tr>
<td>Wed.</td>
<td>Eukaryotic Transcription/ mRNA processing 2</td>
<td></td>
</tr>
<tr>
<td>Fri.</td>
<td>Catch up</td>
<td></td>
</tr>
<tr>
<td>5 (02/06)</td>
<td>Mon.</td>
<td>Exam 1</td>
</tr>
<tr>
<td>Wed.</td>
<td>Regulation of Eukaryotic mRNA production 1 (transcriptional regulation)</td>
<td></td>
</tr>
<tr>
<td>Fri.</td>
<td>Regulation of Eukaryotic mRNA production 2 (chromatin and epigenetics)</td>
<td></td>
</tr>
<tr>
<td>6 (02/13)</td>
<td>Mon.</td>
<td>Regulation of Eukaryotic Transcription 1: The Genetic code</td>
</tr>
<tr>
<td>Wed.</td>
<td>Translation 1: The Genetic code</td>
<td></td>
</tr>
<tr>
<td>Fri.</td>
<td>Translation</td>
<td></td>
</tr>
<tr>
<td>7 (02/20)</td>
<td>Mon.</td>
<td>Snow</td>
</tr>
<tr>
<td>Wed.</td>
<td>Translation</td>
<td></td>
</tr>
<tr>
<td>Fri.</td>
<td>Translation (Feb. 24 last day to withdraw from course)</td>
<td></td>
</tr>
<tr>
<td>8 (02/27)</td>
<td>Mon.</td>
<td>Regulation of Translation</td>
</tr>
<tr>
<td>Wed.</td>
<td>DNA replication 1</td>
<td></td>
</tr>
<tr>
<td>Fri.</td>
<td>Exam 2</td>
<td></td>
</tr>
<tr>
<td>9 (03/05)</td>
<td>Mon.- Fri.</td>
<td>SPRING BREAK</td>
</tr>
<tr>
<td>10 (03/12)</td>
<td>Mon.</td>
<td>DNA replication 2 (telomeres)</td>
</tr>
<tr>
<td>Wed.</td>
<td>DNA mutation 1</td>
<td></td>
</tr>
<tr>
<td>Fri.</td>
<td>DNA mutation 2</td>
<td></td>
</tr>
<tr>
<td>11 (03/19)</td>
<td>Mon.</td>
<td>DNA repair</td>
</tr>
<tr>
<td>Wed.</td>
<td>Genomics</td>
<td></td>
</tr>
<tr>
<td>Fri.</td>
<td>Application of genetics 1 (DNA finger printing activity)</td>
<td></td>
</tr>
<tr>
<td>12 (03/26)</td>
<td>Mon.</td>
<td>Application of genetics 2</td>
</tr>
<tr>
<td>Wed.</td>
<td>Application of genetics 3</td>
<td></td>
</tr>
<tr>
<td>Fri.</td>
<td>Transmission genetics 1: Meiosis and nondisjunction, concept of linkage introduced</td>
<td></td>
</tr>
<tr>
<td>13 (04/02)</td>
<td>Mon.</td>
<td>Transmission genetics 2: Dominance and recessiveness; multiple alleles; codominance/incomplete dominance; lethal alleles</td>
</tr>
<tr>
<td>Wed.</td>
<td>Transmission genetics 3: Dihybrid crosses; pedigrees</td>
<td></td>
</tr>
<tr>
<td>Fri.</td>
<td>Transmission genetics 4: Basic transmission genetic problem solving</td>
<td></td>
</tr>
<tr>
<td>14 (04/09)</td>
<td>Mon.</td>
<td>Exam 3</td>
</tr>
<tr>
<td>Wed.</td>
<td>Transmission genetics 5: Sex chromosomes; sex-linked inheritance; X-chromosome inactivation</td>
<td></td>
</tr>
<tr>
<td>Fri.</td>
<td>Transmission genetics 6: More transmission genetics problem solving</td>
<td></td>
</tr>
<tr>
<td>15 (04/16)</td>
<td>Mon.</td>
<td>Transmission genetics 7: Epistasis I</td>
</tr>
<tr>
<td>Wed.</td>
<td>Transmission genetics 8: Epistasis II and problem solving</td>
<td></td>
</tr>
<tr>
<td>Fri.</td>
<td>Gene mapping and linkage</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Final Exam: Friday 04/27/12 from 9 am-noon</td>
<td></td>
</tr>
</tbody>
</table>

A list of the assigned reading for each session is posted on BB. To learn genetics most effectively, it is essential that you read the material before coming to class. Advanced work assignment on the reading assignments will be given. Please note that the topics covered may shift slightly as we proceed through the semester, but the exams will remain on the dates scheduled.
To learn genetics most effectively, it is essential that you read the material before coming to class. The reading list is given below. The readings are all from iGenetics: A Molecular Approach by Russell (3rd edition) or from supplemental readings posted on BB. You are responsible for all the information in the reading unless I note otherwise. Before each class section, I will solicit comments from students on the reading in the form of feedback assignments called “Advanced Work”. From that information, I will guide the discussion of the material, focusing class time on the more complicated aspects of the reading material and on material that needs more clarification.

Week of 01/09 (Week 1)

Monday
Genetics Introduction: Ch. 1: all except genetic maps on page 4
The Central Dogma and The Elements of a Gene: Supplemental Readings on BB (file names “Central Dogma Supplemental Reading” and “Genes Supplemental Reading”)
Characteristic of the genetic code: Ch. 6 pages 108-109 (don’t worry about #7 “Wobble yet)

Note: from here on out you are expected to do the reading BEFORE class.

Wednesday
DNA as genetic material: Ch. 2 pages 9-21; 23 (starting at Euk Chomosomes) – 27; Ch. 12 page 327 (just 1st three paragraphs under Eukaryotic chromosomes)

Friday
DNA replication (general): Ch. 3 pages 36-41

Week of 01/16 (Week 2)

Monday and Wednesday
Background information on proteins: Ch. 6 pages 102-106 (stop after Keynote)
Gene Function and genetics as a tool to understand protein function: Ch.4 (pages 60-61 stop before “Isolation of Neurospora mutants”; 65 (start at first full paragraph) -74).

Friday
Prokaryotic transcription: Ch. 5 (pages 81-86)

Week of 01/23 (Week 3)

Monday
General principles of regulation of Prokaryotic Transcription: Supplemental reading for Gene Regulation on BB (file name on BB “Gene Regulation Supplemental Reading”)
The lac operon model part 1 (negative control by LacI): Ch. 17 pages 491-493; 495 (start at Jacob and Monod’s model) - 496 (stop at effect of lacO³) and animation on BB

Wednesday
The lac operon model part 2 (positive control by CAP): Ch.17 pages 499-503

Friday
The lac operon model (experimental data to support the model): Ch.17 pages 494-495; 496 (start at effect of lacO³) -499. Not that the textbook reading had a concept called partial diploids on page 495. You can simply think about this as follows: A partial diploid bacteria would have a set of the genes on the chromosome and then a second set of genes on another piece of DNA called an F factor or plasmid.
The trp operon: Ch 17. pages 503-505 (just through the end of the first paragraph on page 505)

Week of 01/30 (week 4)
Monday and Wednesday
Eukaryotic transcription/mRNA processing: Ch.5 pages 87-95 (up to self-splicing introns). End of material for exam 1

Friday
None

Week of 02/06 (Week 5)

Monday: Exam 1

Wednesday
Regulation of Eukaryotic mRNA production 1 (transcriptional regulation): Ch.18 518-521; 523-526 (including Fig 18.8)

Friday
Regulation of Eukaryotic mRNA production 2 (chromatin and epigenetics): Ch.18 529 (starting at “Role of Chromatin”) - 534

Week of 02/13 (Week 6)

Monday
Regulation of Eukaryotic Processing: Alternative splicing reading on BB

Wednesday
The genetic code (Supplemental Reading from Brown pages 119-126; Review Ch. 6, pg. 102-105; 108-109 (assigned during week 1), if necessary

Friday
Case study

Week of 02/20 (Week 7)

Monday SNOW!!!!!!!!!!!!!!!

Wednesday
Case study

Friday
Translation: Ch. 6 pg. 110-116 (stop at “Initiation in Eukaryotes”)
Translation continued: Ch. 6 pg. 117-121 (starting at “Initiation in Eukaryotes”)

Week of 02/27 (Week 8)

Monday
Regulation of translation: Ch. 18 pg. 536 (mRNA Translation Control); Supplemental Reading on RNAi on BB (file name RNAi on BB); Ch 18 pages 540-541 (Control of mRNA/protein degradation). End of material for exam 2

Wednesday
Finish up translation regulation (see reading from Monday); introduction to DNA replication (can read ahead for week 10, if you’d like)

Friday: Exam 2

Week of 03/05 (Week 9): SPRING BREAK
None
Week of 03/12 (Week 10)

Monday
DNA replication: Ch. 3 pg. 39-46 (stop before “Rolling Circle Replication”), pg. 48 (start at “DNA replication in eukaryotes”) -50 (stop before “Eukaryotic Replication Enzymes”)

Wednesday
DNA mutation 1: Ch.7 pages 130-138

Friday
DNA mutation 2: Ch.7 pages 139-144 (except site-specific in vitro on page 143)

Week of 03/19 (Week 11)

Monday
DNA repair: Ch. 7 pages 146-149

Wednesday
Genomics: Ch. 8 and 9: much of this will be covered in lab; pages 198-199 (Identification of genes by computation); pages 199-202 (Insights from Genome Analysis); pages 205-206 (Future Directions in Genomics)

Friday
Application of genetics 1 (DNA finger printing activity); Ch. 10 pg. 269-272 (“Uses of DNA polymorphisms in Genetic Analysis” section); pages 277-280 (“DNA typing” section) – 280

Week of 03/26 (Week 12)

Monday
Application of genetics 2: pages. 273-276 (1st column) (DNA molecular testing for Human Genetic Diseases)

Wednesday
Application of genetics 3: pages 280-282 (Gene Therapy and Biotechnology Sections) and pg. 284 (Applications of Plant Genetic Engineering)

Friday
Transmission genetics 1 (Meiosis and nondisjunction): Either Ch. 12 pages 333-336 and 343-344 or Supplemental Reading on Meiosis on BB (file name Meiosis on BB)

Week of 04/02 (Week 13)

Monday
Transmission genetics 2 (Dominance and recessiveness; codominance/incomplete dominance; multiple alleles; lethal alleles): Ch. 11 and 13, pages 297-305; 364-365; 367-370

Wednesday
Transmission genetics 3 (Dihybrid crosses and pedigrees): Ch. 11 pages 307-311; 314-317

Friday
Basic transmission genetic problem solving: Problems will be assigned to work

Week of 04/09 (Week 14)

Monday: Exam 3
Wednesday
Transmission genetics 5 (Sex chromosomes; sex-linked inheritance; X-chromosome inactivation; Genes and environment; Nature and nurture)
Ch. 12, pages 339-343 Sex chromosomes and sex linkage
Ch.12, pages 348-350 X-chromosome inactivation
Ch. 12, pages 351-353 Analysis of Sex-linked traits in humans
Ch. 13, pages 370-374 Genes and environment (read but will not cover in class unless questions)
Ch. 13, pages 375-376 Nature vs Nurture (read but will not cover in class unless questions)

Friday
Transmission genetics 6 (More transmission genetics problem solving): Problems will be assigned to work

Week of 04/16 (Week 15)

Monday
Transmission genetics 7 (Epistasis I): Ch. 13, pages 377-378 Determining the number of genes involved; Ch.13, pages 378-384 Gene Interactions and Modified Mendelian ratios

Wednesday
No reading

Friday
Gene Mapping: pages 157-162 of the supplemental reading on BB (Reading Assignments ⇒ Supplemental Readings) called Linkage (from Essential of Genetics by Klug and Cummings)