
Using the Quantum Computer to Break Elliptic Curve

Cryptosystems

Jodie Eicher and Yaw Opoku∗

University of Richmond, VA 23173

July 29, 1997

Abstract

This article gives an introduction to Elliptic Curve Cryptography and Quantum Computing. It
includes an analysis of Peter Shor’s algorithm for the quantum computer breakdown of Discrete Log
Cryptosystems and an analog to Shor’s algorithm for Elliptic Curve Cryptosystems. An extended
example is included which illustrates how this modified Shor’s algorithm will work.

∗Thanks to Hewlett-Packard for their generous support

1

1. Introduction

The goal of this study is to develop an understanding of how a quantum
computer, when created, will be able to break the present day elliptic curve
cryptosystems. Elliptic curves are difficult to work with and very difficult ot
understand. According to Dr. Ronald L. Rivest, founder of RSA Data Security,

. . . the security of crypotosystems based on elliptic curves is not well
understood, due in large part to the abstruse nature of elliptic curves.
Few cryptographers understand elliptic curves, so there is not the same
widespread understanding and consensus concerning the security of el-
liptic curves that RSA enjoys. Over time, this may change, but for now
trying to get an evaluation of the security of an elliptic curve cryptosys-
tem is a bit like trying to get an evaluation of some recently discovered
Chaldean poetry. [5]

Thus, elliptic curve cryptosystems are not as widely used as other cryptosys-
tems. Some of the leaders in implementations of elliptic curve cryptosystems, so
far, are Matsushita (Japan), Certicom Corporation (Canada), NeXT Computer
(USA), Siemens (Germany), Thompson (France), and University at Waterloo
(Canada). The Certicom Corporation in Canada is a leading provider of cryp-
tographic technologies and information security products. It is their belief that
elliptic curve cryptosystems are the world’s most efficient public-key cryptosys-
tem. They are partnered with companies such as, Motorola, Sterling Commerce,
Inc., Schlumberger, Verifone, The Toronto-Dominion Bank, and NIST: National
Institute of Standards and Technology [1].

To help develop an understanding of elliptic curve cryptosystems, we will
begin with our studies of various present day cryptosystems. In Section 2, we
will describe and outline the workings of seven cryptosystems, from the simple
linear system to the more complex RSA and Discrete Log cryptosystems. In
Section 3, we will explain what elliptic curves are and how they function. In
Section 4, we will combine the concepts of Sections 2 and 3 to create and explain
three types of elliptic curve cryptosystems. The elliptic curve cryptosystems are
actually analogs of the Discrete Log cryptosystems described in Section 2 using
elliptic curves. In Sections 5 and 6, we will introduce the quantum computer.
Section 5 will explain the quantum mechanics that the quantum computer will be
using. Section 6 will explain how a quantum computer would work, if it existed.
Amazingly, many studies have already been done to figure out its possible capi-
bilities. Next in our research, we studied how quantum computers have already
been “used” to break other cryptosystems. Methods have been discovered for
breaking down both RSA and Discrete Log cryptosystems. It is our belief that
the breakdown of the elliptic curve cryptosystems will be analogous to the break-
down of the Discrete Log cryptosystems, since the elliptic curve cryptosystems
are merely analogs of the Discrete Log cryptosystems. Section 7 will explain
Peter Shor’s algorithm for breaking down the Discrete Log cryptosystems using
a quantum computer. Section 8 will explain our analog to Peter Shor’s algorithm
for elliptic curve cryptosystems. Section 8.1 is an explicit example of how we
think think the algorithm will actually work, on a smaller scale. Not all of the
details have been worked out. At the end, we will summarize the loose ends that
are still open to further research.

1

2. Cryptography Overview

Cryptography is the study of methods of sending messages in secret code
so that only the intended recipients can break the code and read the message.
The message we want to send is called the plaintext(P) and the coded mes-
sage we send is called the ciphertext(C). The process of converting plaintext
to ciphertext is called enciphering or encryption. The process of converting ci-
phertext back to plaintext is called decyphering or decryption. The use of these
two processes together forms a cryptosystem: see [2] for more information on
cryptosystems.

Plaintext and ciphertext are broken up into message units. A message unit
might be a single letter, a pair of letters (digraph), a triple of letters (trigraph),
etc. The first step in using a cryptosystem is to encode all possible plaintext for
mathematical usage. For example, to use the letters of the 26-letter alphabet we
could encode them using their “numerical equivalents,” the integers 0-25.

Linear Transformations:
The most basic cryptosystem is a linear shift transformation. To implement

this using an N-letter alphabet we would define an enciphering function f by the
rule C = f(P) ≡ P + b (mod N). To decrypt this we would use the formula
P ≡ C− b (mod N). The parameter b is called a key. Only intended recipients
of the message should know the key. Those who do not have the key, but want
to figure out the message have to break the encryption. The science of breaking
encryptions is called cryptanalysis.

Example 2.1

Suppose we are using the 26-letter alphabet. We define our encryption
function f by the rule f(P) = P + 6 (mod 26). Thus, P = C − 6 (mod 26)
decrypts our message:

“YNOLZ”= 24 13 14 11 25 �→ 18 7 8 5 19 =”SHIFT”

Suppose we do not know b. One way to figure it out is by frequency analysis.
This works as follow. We know that “E” is the most frequently occurring letter in
the English language. So it is reasonable to assume that it is the most frequenly
occurring letter in our ciphertext. “T” is the second most frequently occurring
letter. And so on. (This works better for longer strings of ciphertext.)

Unfortunately, this type of cryptosystem is too simple to be much good.
And improvement is the more general type of transformation called an affine
cryptosystem. In this case, C ≡ aP + b (mod N) and P ≡ a′C + b′ (mod N)
where a′ = a−1 (mod N) and b′ = −a−1b.

Of course, if we do not know a and b, we will have to use frequency analysis
again and a system of equations. For example, if H and L are our most frequent
letters respectively. Then we can create the system:

9a′ + b′ = 4 (mod 26)
13a′ + b′ = 19 (mod 26)

to find a′ and b′.

Digraph Transformations:
Digraph transformations are linear systems where our plaintext and cipher-

text are split up into two-letter message units called digraphs. If our plaintext

2

has an odd number of letters, a blank can be added to the end, if our alphabet
contains the blank (letter # 26), or an extra letter such as Z or X in the 26-letter
alphabet may added to the end to make a whole number of digraphs. Each di-
graph is then assigned a numerical equivalent using the formula P = xN + y
(0 ≤ P ≤ N2 − 1). (x and y are the numerical equivalent to the two letters that
make up the digraph.) Then we can use the affine transformation, C = aP + b
(mod N2) to encrypt our message.

To decipher this cryptosystem, we use the formula P ≡ a′C+b′ (mod N2),
where a′ ≡ a−1 (mod N2), b′ ≡ a−1b (mod N2), and C = x′N + y′. (x′ and y′

are the numerical equivelants to the ciphertext digraph.) We then set P equal
to xN + y and find x and y.

To break a digraphic encryption system which uses an affine transformation,
we need to know the ciphertext corresponding to two different plaintext message
units. Using a frequency analysis of two-letter blocks, we can compare the most
frequently occuring plaintext and ciphertext digraphs. If we are using the 26-
letter alphabet, “TH” and “HE” are the two most frequenly occuring plaintext
digraphs respectively. With this information, we can set up a system of equations
to find a′ and b′. Then we can find P (P ≡ a′C + b′ (mod N2)), and then we
can find x and y (P = xN + y).

Matrix Transformations:
An alternative for the linear digraph transformation is a matrix transfor-

mation. Matrix transformation uses linear algebra (mod N) to encrypt mes-
sages. In a matrix transformation each digraph corresponds to a vector. (eg.
“NO”= (13

14)) To encipher this matrix we need a matrix A = (a b
c d) such that

the determinant of A has no common factors with N . Then each plaintext di-
graph P = (x

y) is taken to a ciphertext digraph C = (x′
y′) by the rule C = AP .

(ie. (x′
y′) = (a b

c d) (x
y)) to encipher a plaintext sequence of k digraphs P can

be a 2 × k matrix with the k vectors as its columns. To decipher the matrix
transformation we simply apply the inverse matrix: P = A−1C.

Example 2.2

C = AP =
(

2 3
7 8

) (
12 19 8
0 17 23

)
=
(

24 89 85
84 269 240

)
=
(

24 11 7
6 9 6

)
= “Y GLJHG′′

P = A−1C =
(

14 11
17 10

) (
24 11 7
6 9 6

)
=
(

402 253 164
468 277 179

)
=
(

12 19 8
0 17 23

)
= “MATRIX ′′

A more general way to encipher a digraph vector P is to use an affine
transformation, which would apply a 2× 2 matrix A and add a constant vector
B = (e

f) . The inverse transformation for this is simply P = A−1C − A−1B
(aka. P = A′C +B′)

To break this type of cryptosystem, we need to use known pairs of letters
of plaintext with their corresponding pairs of ciphertext to find A−1. Then we
apply that to the entire plaintext message. In the affine case, three digraph pairs
must be known, and a system of three equations must be used.

In the above cryptosystems, it would be safer to use larger blocks of k letters
which have numerical equivilents modNk. For k > 3 the frequency analysis is
harder to use, since the number of k-letter blocks is very large, and because it is
very difficult to determine the most frequently occuring k-graph.

Public Key:
The above cryptosystems are known as classical cryptosystems. Classical

3

cryptosystems are cryptosystems in which, once the enciphering information is
known, the deciphering transformation can be implemented in approximately
the same amount of time. The following cryptosystems will be called public
key cryptosystems. A public key cryptosystem has the property that someone
who knows only how to encipher cannot use the enciphering key KE to find the
deciphering key KD without a prohibitively lengthy computation. The reason for
the name “public key” is that the information needed to send secret messages, the
enciphering key KE , can be made public information without enabling anyone to
read the secret message. With a public key cryptosystem, it is possible for two
parties to initiate secret communications without ever having any prior contact
or having exchanged any preliminary information, since all of the information
needed to send an enciphered message is publicly available.

Note: From this point forth, the sender of the messages will be referred to as
Alice, the intended receiver of the message will be named Bob, and the eaves-
dropper, a member of the public trying to break the cryptosystem, will be named
Charlie.

RSA:
The first public key cryptosystem we will examine is known as the “RSA”

cryptosystem, named after its inventors Rivest, Shamir, and Adleman. In this
system Bob has publicly published the enciphering key (n, s), where n is the
product of two very large (approx. 100 digits) random prime numbers p and q
that he chooses and keeps private. Bob also publishes s, another number that
Bob chooses that is prime to both p and q. He then computes t from the formula
st = 1 mod (p− 1)(q − 1) and keeps it private.

If Alice wants to send Bob a message P , she can encrypt it using the formula
C = P s (mod n). Bob can then decrypt the message using the formula P = Ct

(mod n), since Ct = (P s)t = P st = P 1 (mod n).

Example 2.3 (Using smaller numbers for demonstration purposes.)

Bob chooses p = 15487903 and q = 179939723, and keeps them pri-
vate. He publishes n = pq = 2786888975670869. He also publishes s =
1223467907. Using the formula 1223467907t = 1 mod 2786888780243244, he
finds t = 1086249566652563, and keeps that private.

Alice wants to send the message P = 91256 to Bob. She sends the
encrypted message C = 172615924505195. Bob finds P = Ct mod n =
17261592450519108624956665256 mod 278688897567086 = 91256. Yay!

Charlie does not have access to t, so deciphering this cryptosystem is much
more difficult for him. First he must factor n to get p and q. This is practi-
cally impossible to do when n is approximately 10000 digits long. Even today’s
computers can not do it. However, if Charlie were able to find p and q, then he
would be able to compute t using the formula st = 1 mod (p − 1)(q − 1), and
then compute P = Ct mod n.

Discrete Log:
When working with real numbers, exponentiation (finding bx) is not signifi-

cantly easier than its inverse operation (finding logb x). However, when working
with finite groups, such as (Z/nZ)∗ or F ∗

q (with the group operation of mul-
tiplication), one can compute bx for large x fairly rapidly, but its inverse is
significantly more difficult. The problem of computing x = logb y (given y) is

4

known as the “discrete logarithm problem.” The word “discrete” distinguishes
the finite group situation from the classical continuous situation. Even today’s
computers can not do this.

Diffie-Hellman:
This system is merely a method for exchanging keys; no messages are in-

volved. Suppose that Alice and Bob want to agree upon a key, a random element
of F ∗

q, which they will use later to encrypt messages to one another. q is pub-
lic knowledge (ie. everyone knows what finite field the key is in). g is a fixed
element of F q and is also public knowledge. (Ideally, g should be a generator
of F ∗

q, but it is not absolutely necessary. This method for generating a key will
lead only to elements of F q that are powers of g; thus, if we want our random
element of F ∗

q to have a chance of being any element, g must be a generator.)
Alice chooses a random integer a between 1 and q − 1 and keeps it secret. She
then computes ga ∈ F q and makes that public. Bob computes and publishes gb

using his own secret random integer b. The secret key that they will use is gab.
Both Alice and Bob can compute this key. For example, Alice knows gb (public
knowledge) and her own secret a. Charlie, on the other hand, only knows ga and
gb. Without solving the discrete logrithm problem (finding a knowing g and ga),
there is no way for him to compute gab only knowing ga and gb.

Massey-Omura:
In this system the finite field F q has been made public. Alice and Bob

both select a random integer e between 0 and q − 1 such that gcd(e, q − 1) = 1.
They also compute their inverses d = e−1 mod q − 1 (ie. de ≡ 1 mod q − 1) and
keep everything secret. If Alice wants to send message P to Bob, she first sends
him the message P eA. This means nothing to Bob, since he does not know dA.
However, he can raise it to the eB power and send the message P eAeB back to
Alice. Then Alice can help unravel the message by raising this new message to
the dA power which sends P eAeBdA = P eB back to Bob. Then Bob can raise this
message to the dB power to get the original message (P eBdB = P). During this
process Charlie sees P eA, P eAeB , and P eB . Without solving the discrete logarithm
problem (eg. finding eB (and then its inverse) knowing P eA and P eAeB), there is
no way for him to find P .

ElGamal:
In this system the finite field F q and an element g ∈ F ∗

q (preferably, but
not necessarily, a generator) are public information. Bob randomly chooses an
integer b (0 < b < q − 1) and keeps it secret. However, he does publish the
element gb ∈ F q. If Alice wants to send message P to Bob, she will choose a
secret random integer a and send (ga, P gab) to Bob. Bob will then raise ga to the
b-th power and divide Pgab by gab to find P . In the meantime, Charlie has only
seen gb and ga. Without solving the discrete logarithm problem (eg. finding a
knowing ga and then finding gab), there is no way for him to find P .

5

3. Elliptic Curves Overview

Elliptic Curves are not ellipses. So, what are they and where do they come
from? Elliptic curves are cubic equations in the general form y2 = f(x) =
x3 + ax2 + bx+ c with distinct roots. They arose when studying the problem of
how to compute the arc length of an ellipse. To compute the arc length of an

ellipse, one integrates a function involving y =
√
f(x), and the answer is given

in terms of certain functions on the “elliptic” curve y2 = f(x).

Different Forms of Elliptic Curves:
Let K be a finite field of characteristic �= 2 or 3. An elliptic curve over

K, EK , is the set of points (x, y) with x, y ∈ K which satisfy the equation
y2 = x3 + ax+ b (where the cubic on the right has no multiple roots), together
with a single element denoted O and called the “point at infinity” (discussed
below). If K is a finite field of characteristic 2, then an elliptic curve over K,
EK , is the set of points satisfying the equation y2 + y = x3 + ax+ b (where the
cubic may or may not have multiple roots), together with a “point at infinity”
O. If K is a finite field of characteristic 3, then an elliptic curve over K, EK , is
the set of points satisfying the equation y2 = x3 + ax2 + bx+ c (where the cubic
on the right has no multiple roots) together with a “point at infinity” O.

Points on Elliptic Curves:
We will use the geometric principle that a line intersects a cubic at three

points to do our compositions. If we have two points (both rational, real, com-
plex, or finite) on the curve, then we can find a third point on the curve of the
same kind.

0.2 0.4 0.6 0.8 1

-1

-0.5

0.5

1

Figure 3.1

Adding: (Figure 3.1)
Starting with two points P and Q, we draw the line through P and Q and

let P ∗Q denote the third point of intersection of the line with the cubic. If we
only have one point P, we can find another point by drawing the tanget line to
the cubic at P. This is essentially the line through P and P and will result in the
point P ∗ P . Now we will designate a point O on the curve as the zero element.
There is nothing special about our choice of O. To add P and Q, we join the

7

point P ∗ Q to the point O and take the third intersection point to be P + Q.
(ie. P +Q = O ∗ (P ∗Q)) This is commutative, since clearly P +Q = Q+ P .

Identity Element: (Figure 3.1)
Now we want to prove that the pointO is the Zero Element. (ie. P+O = P)

First we will draw the line through P and O and find the point P ∗O. Then we
will join the point P ∗O to the pint O and find that the third intersection point
is P . Thus, P +O = P .

Inverse: (Figure 3.1)
Now we want to find negatives. First we will draw the tangent line to the

cubic at O and call the third point of intersection S. Then we will join P and
S to find the third point P ∗ S which we will call −P . To prove this is the
inverse we want to make sure P + (−P) = O. To do this we will find the third
intersection of the line through P and −P , (P ∗ P), which is S. Then we will
find the third intersection of line through S and O, (S ∗O), which is O since the
line is tangent to the curve at O. Thus, P + (−P) = O.

Figure 3.2

Associative Law: (Figure 3.2)
Let P,Q,R be three points on the curve. We want to prove that (P +Q)+

R = P + (Q+R). To get P +Q, we find P ∗Q and then find the third point of
intersection of the line through P ∗Q and O. To add P +Q and R, we draw the
line through R and P +Q and find the third point of intersection at (P +Q)∗R.
To find (P + Q) + R, we would have to find the third point of intersection of
the line through (P +Q) ∗R and O. This does not show up well in the picture,
but to prove that (P + Q) + R = P + (Q + R), it will be enough to show that
(P +Q) ∗R = P ∗ (Q+R). (When you connect the same point with O you will
get the same third point of intersection.) To find P ∗ (Q+ R), we first have to
find Q ∗R, join it to O, and then find the third point of intersection at Q+ R.
Then we draw the line between P and Q+R to find the third intersection point
P ∗ (Q+R), which should be at the same location as (P +Q) ∗R.
Note: Now that we have proven that the points on the curve are associative,
have an inverse, and have an identity element, we have also proven that the

8

operation + makes the points on the curve form a group. Thus, we can now use
group law. Later, we will give explicit formulas for adding points.

Now we are going to move O. You will now have to accept the idea of the
existence of a point at infinity. If we draw a line at infinity, it would intersect our
graph three times at the point O (it is an inflection point). To make everything
work, we have to make the convention that the points on our cubic consist of the
ordinary points in the xy plane together with one other point O that you cannot
see. Every vertical line meets the cubic at two points in the xy plane and also
at the point O. Every non-vertical line meets the cubic in three points in the xy
plane. To add points on a curve, we now find the point P ∗ Q, and then draw
the line through P ∗Q and O, which is just the vertical line through P ∗Q. To
find the negative of a point, we simply reflect it about the x axis; if P = (x, y),
then −P = (x,−y).
Note: The point at infinity O and the point (0, 0) are not the same. They are
two different points on an elliptic curve.

Order:
When working with elliptic curves the product nP is interpreted to mean

the addition of P to itself n times (eg. 3P = P + P + P). A point P is said
to have order m if mP = P + P + ...+ P︸ ︷︷ ︸

m summands

= O. In other words, the number of

times you have to add P to itself to get O is the called the order of P .

Example 3.1

Suppose P is an inflection point. Then P + P = (P ∗ P) ∗ O = P ∗ O = −P ,
which implies that P + P + P = −P + P = (−P ∗ P) ∗ O = O ∗O = O. Thus,
P has order 3.

Note: For the rest of this article we will be dealing with elliptic curves over
finite fields F q(q = 2r). They will be in the form y2 + cxy + dy = x3 + ax + b
(characteristic 2, general form).

Adding Formulas:
Remember that the points on EK form a group with an identity element the

point at infinity. And the negative of a point P ∈ EK is the second point on EK

having the same x-coordinate as P . Suppose that P1 = (x1, y1) and P2 = (x2, y2)
are two points on EK ; not the point at infinity and not the negatives of one
another. There are algebraic formulas that can be applied to find a third point,
P3 = (x3, y3). If EK has the equation for characteristic 2, then

x3 = −x1 − x2 + α2 + cα, y3 = −cx3 − d− y1 + α(x1 − x3),

where

α =

{
(y2 − y1)/(x2 − x1), if P1 �= P2;
(3x2

1 + a− cy1)/(2y1 + cx1 + d), if P1 = P2.

To make things easier there are duplication formulas to compute the value of
2P . For large numbers you can simplify the process by reducing it down to a
series of doublings and fewer additions using the method of repeated doubling.

9

Example 3.2

100P = 2(2(1 + 2(2(2(1 + 2P)))))

N:
Let N be the number of F q-points on an elliptic curve defined over F q

(q = 2r). To find N, we use the formula:

Nr =

{
2r + 1, if r is odd;
2r + 1− 2(−2)r/2, if r is even.

This number N includes the point at infinity O. The order of a point on the
elliptic curve will be equal to N or a divisor of N.

The addition of points on an elliptic curve and the number of points on an
elliptic curve over a finite field will be used to make elliptic curve cryptosystems
in the next section.

10

4. Elliptic Curve Cryptosystems

Imbedding Plain Text:
Before we can use elliptic curves to encrypt our messages, our messages

must be encoded to make mathematical sense. In this case, we must imbed our
plaintext message, m, as a point Pm on our elliptic curve, E, over the finite field,
F q. The x-coordinate of the point Pm is a simple relationship to the integer
equivilant of m. The corresponding y-coordinate on the elliptic curve will then
be used. For all of the cryptosystems in this article, the message, m, will already
be imbedded into the point Pm.

Elliptic Curve Discrete Log:
As we mentioned in the cryptography overview, the term “discrete” dis-

tinguishes the finite group situation from the classical continuous situation. In
the cryptography overview, we discussed public key cryptosystems based on the
discrete logarithm problem in the multiplicative group of a finite field. Now we
will do the same in the group (under addition of points) of an elliptic curve E
defined over a finite field F q. If E is an elliptic curve over F q and B is a point
on E, then the discrete log problem on E (to the base B) is the problem: given
a point Pm ∈ E, find an integer x ∈ Z such that xB = P . Special methods
for solving the discrete log problem in F 2r make it relatively easy to break the
discrete log cryptosystems in finite fields, unless r is rather large. The analo-
gous systems using elliptic curves defined over F 2r is secure wit! h significantly
smaller values of r. We would like to remind you that even today’s computers
can not solve the discrete logarithm problem.

Analog of Diffie-Hellman:
Once again, this is merely a system for exchanging keys; no messages are

involved. Alice and Bob first publicly choose a finite field F q and an elliptic
curve E defined over it. Then they publicly choose a point B ∈ E to serve as
their “base.” (B is preferably, but not necessarily the generator of the group of
points on E. It is a generator of the key.) To generate a key, Alice chooses a
random integer a of order of magnitude q (which is approximately the same as
N) and keeps it secret. She then computes aB ∈ E and makes that public. Bob
chooses his own secret random integer b and makes public bB ∈ E. The secret
key is then abB ∈ E. Both Alice and Bob can compute this key. For example,
Alice knows bB (public knowledge) and her own secret a. Charlie, on the other
hand, only knows aB and bB. Without solving the discrete logarithm problem
(finding a knowing B and aB), there is no way for him! to compute abB only
knowing aB and bB.

Analog of Massey-Omura:
In this system the finite field F q and the elliptic curve E have been made

publicly known. The number N of points on E has been computed and is also
publicly known. Alice and Bob both select a random integer e betweeen 1 and N
such that gcd(1, N) = 1. They also compute their inverses d = e−1 mod N (ie.
de ≡ 1 mod N) and keep everything secret. If Alice wants to send the message
Pm to Bob, she first sends him the message eAPm. This means nothing to Bob,
since he does not know dA. However, he can multiply it by his eB and send
the message eAeBPm back to Alice. Then Alice can help unravel the message
by multiplying this new message by dA which sends eAeBdAPm = eBPm back
to Bob. Then Bob can multiply this message by dB to get the original message

11

(eBdBPm = Pm). During this process Charlie sees eAPm, eAeBPm, and eBPm.
Without solving the discrete logarithm problem (eg. f! inding eB (and then its
inverse) knowing eAPm and eAeBPm), there is no way for him to find Pm.

Example 4.1

We will use the elliptic curve (characteristic 2): y2 + y = x3

We will use the finite field: F 8 = F 23 = {0, 1, α, α2, α3, α4, α5, α6}
where α3 = α + 1 and α is the generator.

N = 2r + 1 = 23 + 1 = 9
The nine points that satisfy this equation are:

(0, 0), (0, 1), (α2, α6), (α3, α4), (α5, α2), (α5, α3), (α6, α), (α6, α3),O
To add two different points, P1 and P2, on this curve, we will use the equations

that we’ve seen before, modified to work in the finite field F 8 with α as the
generator:

P1 + P2 = P3 = (x3, y3)
x3 = −x1 − x2 + A2 + cA (c = 0) ⇒ x1 + x2 + A2

y3 = cx3 − d− y1 + A(x1 − x3) (c = 0, d = 1) ⇒ 1 + y1 + A(x1 − x3)
A = (y2 − y1)/(x2 − x1) ⇒ (y2 + y1)(x2 + x1)

6

This equation has a special duplication formula: (2P) = (x4, y4 + 1) found by
substituting x1 = x2 = x, a = b = c = 0, and d = 1 into the formulas for
adding two points, and by using the equation y2 + y = x3 to simplify.

Alice’s random point and its inverse: eA = 2, dA = 5
Bob’s random point and its inverse: eB = 4, dB = 7

Message Point: Pm = (α3, α4)

eAPm = 2(α3, α4) = (α5, α6) (Alice’s encrypted message)

eAeBPm = 4(α5, α6) = 2(2(α5, α6)) = 2(α6, α) = (α3, α5)

eAeBdAPm = 5(α3, α5) = 1 + 2(2(α3, α5)) = 1 + 2(α5, α2) = 1 + (α6, α3)
= (α6, α)

which equals eBPm = 4(α3, α4) = 2(2(α3, α4)) = 2(α5, α6) = (α6, α)

eBdBPm = 7(α6, α) = 1 + 2(1 + 2(α6, α)) = 1 + 2(1 + (α3, α5)) = 1 + 2(0, 1)
= 1 + (0, 0) = (α3, α4) (Bob’s encrypted message)

which equals Pm. Yay!

Analog of ElGamal:
In this system the finite field F q, the elliptic curve E, and the base point

B ∈ E (preferably, but not necessarily a generator of the curve) are public infor-
mation. Bob randomly chooses an secret integer b (1 < b < N) and publishes the
point bB. If Alice wants to send the message Pm to Bob, she will choose a secret
random integer a (1 < a < N) and send (aB, Pm + abB) to Bob. Bob will then
multiply the first point in the pair by b and subtract abB from Pm + abB to find
Pm. In the meantime, Charlie has only seen aB and bB. Without solving the
discrete logarithm problem (eg. finding a knowing aB and then finding abB),
there is no way for him to find Pm.

12

5. Quantum Mechanics Overview

Our general information on quantum mechanics was taken from the textbook
[4].

Its Origin

At the turn of the nineteenth century, physics was in a state of turmoil;
and that was due to the numerous experimental observations which were totally
inexplicable on the grounds of the firmly established classical physics. One of
such observations was the photoelectric effect (light hitting a metal surface and
ejecting electrons). In terms of classical physics, light of a higher intensity will
eject more electrons; but this could not be supported by experiment. And to
make things more confusing, it was discovered experimentally that only certain
frequencies of light could cause the photoelectric effect; and below a certain
threshold no electrons were ejected no matter how high the intensity of light.

Another crucial experimental observation was the emmision spectrum of
hydrogen (that is, the glowing of hydrogen gas in a tube when a potential dif-
ference is applied across the ends of the tube). According to classical physics,
there should be an infinite number of colors in the emmision spectrum of the
hydrogen gas. But experiments consistently revealed that the spectrum of the
hydrogen gas is discrete.

These two observations, as well as several others, led to the conclusion that
when light is isolated, it behaves as a wave; but on the other hand, when light
interacts with matter, it behaves as particles (called photons) and its energy
can exist only in discrete chunks. Each chunk of energy is called a quantum
of energy and its value is hν where h is the Planck’s constant and ν is the
frequency of the light. This extraordinary discovery called for a new type of
physics to describe matter at the microscopic level and this is what gave birth
to Quantum Mechanics

Basic Postulates of Quantum Mechanics

There are four postulates that serve to formalize the rules of quantum
mechanics. These are:

Postulate I
To any well-defined observable in physics (call it A), there corresponds an

operator (call it Â) such that measurement of A yield values (call the values a)

which are are eigenvalues of Â. In other words, measurement of the observable
A can be expressed mathematically as

Âφ = aφ

where φ (called the eigenfunction of Â) is a function representing the state of
the system at the time of the measurement. Examples of physical observables
are momentum, velocity and energy. Two examples of operators are:

Momentum: −ih̄∆ = −ih̄
(

∂
∂x
, ∂

∂y
, ∂

∂z

)
= p̂

Energy: Ĥ =
p̂2

2m
+ V (r)

Postulate II
Measurement of an observable A which yields the value a leaves the system

in the state φa (where φa is the eigenfuction of A which corresponds to a).

14

Postulate III
The state of a system at any time can be represented by a state function

ψ which is finite, single valued, continous and differentiable. Moreover, every
information regarding this syetem can be obtained from ψ. In particular, the
average value of any physical observable A is

〈A〉 =
∫
ψ∗Âψ d*r

where ψ∗ denotes the complex conjugate of ψ

Postulate IV
The state function ψ of a system evolves in time according to the equation

ih̄
∂

∂t
ψ(*r, t) = Ĥψ(*r, t)

This equation is known as the time-independent Schrödinger’s equation.

The Dirac Notation
In this notation, the state function ψ is represented as |ψ〉 (called the “ket”

vector) and ψ∗ is represented by 〈ψ| (called the “bra” vector). Also the inner
product of two functions ψ and φ is represented by

〈ψ|φ〉 =
∫
ψ∗φ d*r

and the average value of the observable A is represented by

〈ψ|Â|ψ〉 =
∫
ψ∗Âψ d*r

The Superposition Principle
Consider a system in a state ψ. Let A be an observable and Â the operator

corresponding to A. Then the set of all possible eigenfunctions of Â form a
vector space known as the Hilbert space. Suppose that the basis of this vector
space is {φ1, φ2, φ3, . . . , φn}, then every possible state ψ of the system can be
written expressed in the form

ψ = a1φ1 + a2φ2 + · · ·+ anφn

=
n∑

i=1

aiφi

This is known as the superposition principle. When a reversible operation is
applied to the state ψ, all the terms of the superposition are preserved. But
when a measurement is made on ψ, it projects the state to one of the elements
of the superpostion, say φk and the probabilty of obtaining φk is given by

Pk =
b∗kbk
n∑

i=1

b∗i bi

and all the other eigenfunctions in the superposition are irreverisbly destroyed.
If the basis form an orthonormal set, then the probability is simply given by

Pk = b∗kbk = |bk|2

15

This interpretation of the meaning of the state function is known as the Copen-
hagen interpretation because it was first advocated by Neils Bohr who is a native
of Copenhagen.

6. Quantum Computing

Each unit of the memory of a classical computer is made up of a two-state
device the state of which is denoted by the binary digits 0 and 1 (called bits).
The Quantum Computer maintains this binary feature by using a device whose
state is represented by the quantum states |0〉 and |1〉. These “quantum bits”
are called qubits. But the quantum computer has the additional capability of
expressing the registers of its memory as a complex superpostion of all possible
classical inputs.

In order to illustrate the idea of quamtum computation we will use a specific
example. This example involves the calculation of a function of a variable x.
Suppose that x ranges from 0 to 2m − 1 and that f(x) ranges from 0 to 2n − 1,
then the computer (classical or quantum) will need a register of size (m + n)
for the computation. As far as computation is concern we can let m bits of the
register represent the input part of the register (denoted by the subscript (i))
and n bits represent the output part of the register (denoted by the subscript

(o). Let F̂ denote the operation corresponding to the calculation of f . Then the
function calculation can be represented in quantum mechanics notation as:

F̂ |x〉i|0〉o = |x〉i|f(x)〉o
The calculation is done as follows:

The output register is initialized to 0. The logic gate corresponding to
F̂ goes to the input part of the register, calculates f(x) and stores it in the
output register, leaving x in the input part of the register to ensure reversibility
of the computation. The classical computer will compute f(x) for each of the
2m possible value of x.

On the other hand the quantum computer expresses the initial state of
the input part of the register as a superposition of all the 2m clasical inputs .
Therefore, prior to the computation of f , the register of the quantum computer
is in the state:

|ψ〉i|0〉o = 1

2m/2

2m−1∑
x=0

|x〉i|0〉o

The computation of f is done by applying the operator F̂ to the above state and
this is represented in quantum mechanics notation as

F̂ |ψ〉i|0〉o = 1

2m/2

2m−1∑
x=0

|x〉i|f(x)〉o (1)

Thus all the 2m possible values of f(x) have been calculated simultaneously!

It must be noted that even though all possible values of f(x) have been
obtained in one run, measurement on the final state will yield only one of the
superposition state (1) at random with a probabilty of 1/2m and all the others
are irreversibly destroyed. This is because, measurement (which is the only way
of obtaining information from a quantum computer) is an irreversible operation.

16

Therefore we cannot have an access to all the possible values of f(x) in one
measurement. Nevertheless, this idea can be used to attack certain problems
which are deemed impracticable to solve with classical computer. The strategy
here is that sometime the problem we want to solve may involve only one or
a few values of f . Therefore if we can manipulate the amplitudes of various
terms in the state (1) to increase our chances of obtaining the right answer, then
obviously the quantum computer can solve the problem in fewer number of steps
than a classical computer.

7. Shor’s algorithm for solving the Discrete Logarithm problem

For every prime p, the multiplicative group (mod p) is cyclic, that is, there
exists an element g such that every element x, of the group can be expressed as
x = gi, where 0 ≤ i ≤ p − 2. As an example take the prime p = 7, then the
multiplicative group can be chosen as U(7) = {1, 2, 3, 4, 5, 6}. It can be observed
that {30, 31, 32, 33, 34, 35} = {1, 3, 2, 6, 4, 5} = U(7). The discrete logarithm of
a number x with respect to p and g is the integer r with 0 ≤ r ≤ p − 2 such
that gr ≡ x mod(p). The following algorithm, discovered by Peter Shor, shows
how a quantum computer finds discrete logarithms by the use of two modular
exponentiations coupled with two discrete Fourier transforms.

This algorithm requires the use of three registers. We first find an integer q
such that q is a power of 2 and p < q < 2p. We prepare the first two registers as
a uniform superposition of all possible classical imputs |a〉 and |a〉 (mod (p−1)),
and initialize the third register to 0. This leaves the quantum computer in the
state:

1

p− 1

p−2∑
a=0

p−2∑
b=0

|a〉|b〉|0〉

We then create a gate or a series of gates that receives the contents of the first
two registers as inputs and computes gax−b and puts it in the third register. Let
F̂ be the operator corresponding to the computation of gax−b, then the process
can be represented by:

F̂
1

p− 1

p−2∑
a=0

p−2∑
b=0

|a〉|b〉|0〉 = 1

p− 1

p−2∑
a=0

p−2∑
b=0

|a〉|b〉|gax−b mod p〉

We then use the reversible quantum Fourier transforms

|a〉 −→ 1

q1/2

q−1∑
c=0

exp(
2πiac

q
)|c〉

and

|b〉 −→ 1

q1/2

q−1∑
d=0

exp(
2πibd

q
)|d〉

to effect the transformation

|a〉|b〉 −→ 1

q

q−1∑
c=0

q−1∑
d=0

exp(
2πi

q
(ac + bd))|c〉|d〉

This leaves the quantum computer in the entangled state

|ψ〉i = 1

(p− 1)q

p−2∑
a=0

p−2∑
b=0

q−1∑
c=0

q−1∑
d=0

exp(
2πi

q
(ac+ bd))|c〉|d〉|gax−b mod p〉 (2)

17

We then make a measurement on the computer and this removes the entangle-
ment in the state (1). Suppose that measurement gives the result

|c〉|d〉|gk(modp)〉
then the quantum computer is left in the state

|ψ〉f =
1

(p− 1)q
|c〉|d〉 ∑

(a, b)
a − rb ≡ k

exp(
2πi

q
(ac+ bd))|gax−b(modp)〉 (3)

where the summation is done over all (a, b) such that

gax−b ≡ gk(modp) (4)

By combining condition (4) with gr ≡ x(modp) , we see that the constraint on
(a, b) is that
gag−br ≡ gk(modp) which simplifies to

ga−br ≡ gk(modp) (5)

By using the fact that the powers of g are elements of Zp−1, the constraint (4)
implies that
a− rb ≡ k(mod(p− 1)); therefore, we can express a as

a = br + k − (p− 1)�br + k

p− 1
� (6)

Substituting for x in equation (3), the final state of the quantum computer after
the measurement is:

|ψ〉f =
1

(p− 1)q
|c〉|d〉

p−2∑
b=0

exp(
2πi

q
(bd+brc+kc−c(p−1)�br + k

p− 1
�))|gax−b(mod p)〉

(7)
We will now show that if c and d satisfy certain conditions, then there is

a reasonable probabilty of deducing the value of r from (c, d) and the known
parameters p and q. From equation (7), the probability,P (c, d, k), of observing
the state |c〉|d〉|gk mod p〉 is:

P (c, d, k) =

∣∣∣∣∣ 1

(p− 1)q

p−2∑
b=0

exp(
2πi

q
(bd+ brc+ kc− c(p− 1)�br + k

p− 1
�))

∣∣∣∣∣
2

(8)

By splitting the argument of the exponential in equation (8), the probability can
be written as

P (c, d, k) =

∣∣∣∣∣ 1

(p− 1)q

p−2∑
b=0

exp(
2πi

q
bT) exp(

2πi

q
V)

∣∣∣∣∣
2

(9)

where
T = rc+ d− r

p− 1
{c(p− 1)}q (10)

and
V =

(
br

p−1
−
⌊

br+k
p−1

⌋)
{c(p− 1)}q (11)

18

where {c(p − 1)}q = c(p − 1) mod q and −q/2 < {c(p − 1)}q ≤ q/2. We then
classify the output of the measurement as “good” if c and d satisfy the following
condition:

|{T}q| = |rc+ d− r

p− 1
{c(p− 1)}q − q�T/q�| ≤ 1

2
(12)

{c(p− 1)}q ≤ q/12 (13)

If condition (12) holds, then the phase of exp(2πi
q
bT) in equation (9) is at most

π. Furthermore if the condition (13) holds, then the variation of the phase of
exp(2πi

q
bT) due to the factor exp(2πi

q
V) is at most π/6. Under these conditions,

as b ranges from 0 to p−2, the phase of exp(2πi
q
bT) ranges from 0 to 2πiW where

W =
p− 2

q

(
rc+ d− r

p−1
{c(p− 1)}q − �T

q
�
)

(14)

The component of exp(2πi
q
bT) in the direction of exp(πiW) is given by:

(exp(πiW))∗ exp(
2πi

q
bT) = exp(2πiW

b

p− 2
− πiW) (15)

Therefore the least value of this component is cos(2π|W/2−Wb/(p−2)|). Also,
by using the condition (13) the phase of this component can vary by at most
π/6; therefore, the least value of the summand in equation (9) is

cos(2π|W/2−Wb/(p− 2)|+ π
6
) (16)

Thus,

P (c, d, k) ≥
∣∣∣∣∣ 1

(p− 1)q

p−2∑
b=0

cos(2π|W/2−Wb/(p− 2)|+ π

6
)

∣∣∣∣∣
2

(17)

Since p is usually very large, we can replace the discrete sum with an
integral, and this gives

P (c, d, k) ≥
∣∣∣∣∣ 1

(p− 1)q

∫ p−2

0
cos(2π|W/2−Wb/(p− 2)|+ π

6
)db

∣∣∣∣∣
2

+O
(

W
pq

)
(18)

where

O
(

W
pq

)
is an error term due to the approximation. By using the substitution

u =
∣∣∣ W

2
− Wb

p−2

∣∣∣+ π

6

we have

P (c, d, k) ≥
(

1

q

2

π

∫ 2π/3

π/6
cosu du

)2

(19)

19

Evaluating the integral gives

P (c, d, k) ≥ 0.054/q2 > 1/(20q2)

In order to find the number of good pairs (c, d) available, we first note from
condition (12) that for each value of c there exists only one d. Therefore, the
number of good pairs (c, d) is the same as the number of possible c’s. Since there
are q c’s, it follows that there are q pairs (c, d) which satisfy the condition (12).
Also, there are at least q/12 pairs (c, d) satisfying the condition (13); therefore,
there are at least q/12 pairs satisfying both conditions (12) and (13). So, there
are at least q/12 good pairs (c, d). For each of these pairs there are p−1 possible
gk; therefore, there are at least (p − 1)q/12 good states |c〉|d〉|gk(modp)〉. The
probability of observing some good state is at least P (c, d, k)× (p − 1)q/12 ie.
at least

1/(20q2)× pq/12 = p/240q

Thus if we choose q to be close to p, then there is a realistic chance of finding
some good states from which r can be deduced.

Recovering r from the good pair (c, d):
The condition (12) can be rewritten as

−1

2
≤ rc+ d− r

p− 1
{c(p− 1)}q − qj ≤ 1

2
(20)

where j is the closest integer to T/q. Dividing through (20) by q and rearranging
we obtain

− 1

2q
≤ d

q
+ r

(
c(p− 1)− {c(p− 1)}q

q(p− 1)

)
− j ≤ 1

2q
(21)

This further reduces to

− 1

2q
≤ d

q
+ r

(
c(p− 1)− {c(p− 1)}q

q(p− 1)

)
≤ 1

2q
(mod 1) (22)

It should be noted that the mod 1 reduces the number between the inequality
signs to a proper fraction.

It should also be noted that q divides c(p− 1)− {c(p− 1)}q; therefore, the
coefficient of r is a fraction with denominator p− 1 . A candidate r is recovered
by approximating d/q to the nearest multiple of 1/(p−1) and dividing the result
(modp− 1) by the number

c′ =
c(p− 1)− {c(p− 1)}q

q

After finding a candidate r, we then plug in the values (r, c, d) into the relations
(12) and (13). If both conditions are satisfied, then there is a reasonable chance
that the result is accurate. If the conditions are not satisfied, then we will run
the quantum computer again. We will continue until we obtain enough good
states.

20

8. Application to Elliptic Curves

Attacking the Elliptic Curve Analog of the Massey-Omurra Cryptosystem:
In this cryptosystem, if Alice wants to send a message Pm(ie, a point on

E with the message m hidden in it) to Bob, she first sends eAPm to Bob. Bob
then performs the operation eBeAPm(modN) and sends the result back to Alice.
Alice then performs the operation dAeBeAPm = eBPm(modN). She then sends
the result to Bob who finally recovers the message by performing the operation
dBeBPm = Pm(modN). The evesdropper Charlie,only sees eAPm, eBeAPm and
eBPm when he attempts to intercept the communication between Alice and Bob.
In order to recover the point P containing the message, he needs to know either
eA or eB. If he takes the x in Shor’s algorithm to be X = eBeAPm, g to be
G = eBPm, and the operation to be addition of points on the elliptic curve, then
he needs to solve the discrete logarithm problem

r(modN)G = X (23)

for r. We can show that r = eA by sustituting the vaules of G and X in equation
(23). This gives

reBPm = eBeAPm (24)

From equation (24) we see that r = eA(modN).

It must be noted that this discrete logarithm problem is analogous to the one in
the multiplicative group modp. The main difference is:

In the the case of the elliptic curve cryptosystem, we are working with an
additive group as opposed to the multiplicative group in Shor’s algorithm. The
operation of this additive group is the addition of points on the elliptic curve
which was defined in the previous sections of this paper.

The Shor’s algorithm can be modified to solve this problem. In order
to show how it works we first prepare the first two registers in the uniform
superposition of all possible classical imputs |a〉 and |b〉(modN). We then create
a gate that receives the contents of the first two registers as inputs and computes
aG−bX and puts it in the third register. It must be noted that the third register
could be more than one in this case since we are dealing with points with two
coordinates instead of single numbers. Let Ĥ be the operator corresponding to
the computation of aG− bX, then the process can be represented by:

Ĥ
1

N

N−1∑
a=0

N−1∑
b=0

|a〉|b〉|0〉 = 1

N

N−1∑
a=0

N−1∑
b=0

|a〉|b〉|aG− bX〉

We then use the reversible quantum Fourier transforms

|a〉 −→ 1

q1/2

q−1∑
c=0

exp(
2πiac

q
)|c〉

and

|b〉 −→ 1

q1/2

q−1∑
d=0

exp(
2πibd

q
)|d〉

as before, to effect the transformation

|a〉|b〉 −→ 1

q

q−1∑
c=0

q−1∑
d=0

exp(
2πi

q
(ac + bd))|c〉|d〉

21

This leaves the quantum computer in the entangled state

|ψ〉i = 1

Nq

N−1∑
a=0

N−1∑
b=0

q−1∑
c=0

q−1∑
d=0

exp(
2πi

q
(ac+ bd))|c〉|d〉|aG− bX〉 (25)

Suppose we observe computer and find the result

|c〉|d〉|Y 〉
where Y = kG then the quantum computer is left in the state

|ψ〉f =
1

Nq
|c〉|d〉 ∑

(a, b)
a − rb ≡ k

exp(
2πi

q
(ac+ bd))|aG− bX〉 (26)

where the summation is done over all (a, b) such that

aG− bX ≡ kG (27)

In order to deduce the value of r from the pair (c, d) we need to establish
the condition under which (c, d) constitutes a “good” pair. These conditions are
easily obtained by making the transformation (p − 1) −→ N in the equations
(10), (12) and (13) in the algorithm for the multiplicative group (modp) above.
This transformation gives the conditions:

|{T}q| = |rc+ d− r

N
{cN}q − q�T/q�| ≤ 1

2
(28)

and
{cN}q ≤ q/12 (29)

Where
T = rc+ d− r

N
{cN}q (30)

and {cN}q = cN mod q and −q/2 < {cN}q ≤ q/2

Using the same transformation as the one above, the condition (22) in the pre-
vious algorithm becomes

− 1

2q
≤ d

q
+ r

(
cN − {cN}q

qN

)
≤ 1

2q
(mod 1) (31)

A candidate r is recovered by approximating d/q to the nearest multiple of 1/N
and dividing the result by the number

c′ =
cN − {cN}q

q

After finding a candiadte r, we then plug in the values (r, c, d) into the
relations (28) and (29). If both conditions are satisfied, then there is a reasonable
chance that the result is accurate. If the conditions are not satisfied, then we
will run the quantum computer again. We will continue until we obtain enough
good states.

22

8.1 Example of Elliptic Curve Breakdown

We will again use the elliptic curve (characteristic 2): y2 + y = x3.
We will now use the finite field: F 32 = F 25 = {0, 1, α, α2, α3, α4...α30}
where α5 = α2 + 1 and α is the generator.

N = 2r + 1 = 25 + 1 = 33

The thirty-three points that satisfy this equation are:
(0, 0), (0, 1), (α2, α14), (α4, α26), (α5, α25), (α5, α21), (α9, α13), (α10, α11),

(α10, α19), (α11, α6), (α11, α27), (α13, α15), (α13, α24), (α15, α4), (α15, α10),
(α18, α28), (α20, α7), (α20, α22), (α21, α3), (α21, α29), (α22, α12), (α22, α23),
(α23, α2), (α23, α5), (α26, α17), (α26, α30), (α27, α), (α27, α18), (α29, α9),
(α29, α16), (α30, α8), (α30, α20),O

To add two different points, P1 and P2, on this curve, we will use the
equations that we have seen before, modified to work in the finite field F 32 with
α as the generator:

P1 + P2 = P3 = (x3, y3)
x3 = −x1 − x2 + A2 + cA (c = 0) ⇒ x1 + x2 + A2

y3 = cx3 − d− y1 + A(x1 − x3) (c = 0, d = 1) ⇒ 1 + y1 + A(x1 − x3)
A = (y2 − y1)/(x2 − x1) ⇒ (y2 + y1)(x2 + x1)

30

We will again use the special duplication formula: (2P) = (x4, y4 + 1)

Alice’s random integer and its inverse: eA = 5, dA = 20
Bob’s random integer and its inverse: eB = 7, dB = 19

Message Point: Pm = (α15, α10)

eAPm = 5(α3, α4) = (α9, α14) (Alice’s encrypted message)

eAeBPm = 7(α9, α14) = (α29, α16)

eAeBdAPm = 20(α29, α16) = (α18, α26)

which equals eBPm = 7(α15, α10) = (α18, α26)

eBdBPm = 19(α18, α26) = (α15, α10) (Bob’s decrypted message)

which equals Pm.

Charlie, the evesdropper sees only eAPm = (α9, α14), eAeBPm = (α29, α16)
and eBPm = (α18, α26). In order to capture the message Pm he only needs to know
eA; and he can do this by solving the discrete logarithm problem r(modN)G =
Xwhere N = 33 is the number of points on the elliptic curve and G = eBPm =
(α18, α26) and X = eAeBPm = (α29, α16). To use the quantum computer to solve
this problem Charlie prepares the registers of the computer as

|ψ〉i = 1

33

32∑
a=0

32∑
b=0

|a〉|b〉|aG− bX〉

A few examples of some of the terms in the summation sign are listed below:
|1〉|31〉|(0, 0)〉,
|2〉|32〉|(α11, α6)〉,
|2〉|31〉|(α5, α25)〉,
|1〉|32〉|(α13, α15)〉. He then chooses the q in Shor’s algorithm as q = 64 The
quantum computer then uses the Quantum Fourier transform

|a〉|b〉 −→ 1

33(64)

63∑
c=0

63∑
d=0

exp(
2πi

64
(ac+ bd))|c〉|d〉

23

to transform the state |ψ〉i to

|ψ〉f =
1

33(64)

32∑
a=0

32∑
b=0

63∑
c=0

63∑
d=0

exp(
2πi

64
(ac + bd))|c〉|d〉|aG− bX〉

The quantum computer evaluates each of the 2112 terms in the summation and
stores them as a single entangled state; this is something a classical computer
cannot do.

Suppose Charlie observes the computer’s memory and finds the result cor-
responding to the (c, d) pair (4, 45) and the (a, b) pair (2, 32), ie, suppose that
he finds the state

|φ〉 = 1

2112
exp[

2πi

64
(2× 4) + (32× 45)]|4〉|45〉|(α11, α6)〉

Then he can deduce a candidate r by using the relations

− 1

2q
≤ d

q
+ r

(
cN − {cN}q

qN

)
≤ 1

2q
(32)

This can be written in a more compact form as

− 1

2q
≤ d

q
+
rc′

N
≤ 1

2q

where

c′ =
cN − {cN}q

q
(33)

He first rounds
d

q
=

45

64
to the nearest multiple of

1

N
=

1

33
. This gives

45

64
≈ 23

33
By plugging the values of c, N and q in equation (2), he obtains

c′ =
4(33)− {4(33)}64

64
= 2

He then divides 23
33

by 2 in the multiplicative group mod 33. He notes that
23
33

= 23 mod 33; therefore he finds a r by dividing 23 by 2 in the multiplicative
group mod 33, ie.

r = 23× 2−1

= 23× 17

= 28

= −5 mod 33

It should be noted that Charlie obtains the negative of the result he is looking
for. Assuming that he ignores the negative sign and proceeds with the absolute
value of the result, ie. 5, then the next step is to find out whether his values
for c and d constitute a “good” pair. This can be done by checking whether the
following conditions are satisfied:

|{T}q| = |rc+ d− r

N
{cN}q − jq| ≤ 1

2
(34)

24

and
{cN} ≤ q/12 (35)

where {cN}q = cN(modq),−q/2 < {cN}q ≤ q/2 and j is the closest integer to
T/q

T = rc+ d− r

N
{cN}q (36)

When Charlie plugs in the values r = 5, c = 4, N = 33, d = 45, and q = 64 in
the equation (36), he obtains T = 64.4 which implies that j = 1. The relation
(35) is satisfied since {4(33)}64 = 4 < 64/12. When he plugs in the values r = 5,
c = 4, N = 33, d = 45, q = 64, and j = 1 in relation (34) he gets:

|{T}64| = |5(4) + 45− 5

33
{4(33)}64 − 1(64)|

= 0.40

≤ 1

2

Since both conditions (34) and (35) are satisfied, Charlie concludes that
(4, 45) constitutes a good (c, d) pair. Therefore, he records r = 5 and runs the
quantum computer a few more times to find more values for r.

Second Run

Suppose Charlie runs the computer the second time and obtains the (c, d)

pair (2, 54). Then he can deduce r from the relation (32) by rounding
d

q
=

2

64

to the nearest multiple of
1

33
. This gives

54

64
≈ 28

33
. Also,

c′ =
2(33)− {2(33)}64

64
= 1

So he obtains a candidate r as r =
28

33
in the multiplicative group (mod 33) and

this gives r = −5
To check whether this (c, d) pair is good or not, he plugs in the values c = 2,
d = 54, r = 5, N = 33 and q = 64 into equation (36) and obtains T = 63.7
which implies j = 1. The relation (35) is satisfied since {2(33)}64 = 2 < 64/12.
When he plugs in the values r = 5, c = 2, N = 33, d = 54, q = 64, and j = 1 in
relation (34) he gets:

|{T}64| = |5(2) + 54− 5

33
{2(33)}64 − 1(64)|

= 0.30

≤ 1

2

Since both conditions (34) and (35) are satisfied, Charlie concludes that
(2, 54) constitutes a good (c, d) pair. Therefore, he records r = 5.

25

Third Run

Suppose Charlie runs the computer the third time and obtains the (c, d) pair

(37, 8). Then he can deduce r from the relation (32) by rounding
d

q
=

8

64
to the

nearest multiple of
1

33
. This gives

8

64
≈ 4

33
. Also,

c′ =
37(33)− {37(33)}64

64
= 19

So he obtains a candidate r by dividing r =
4

33
by 19 in the multiplicative group

(mod 33) and this gives

r = 4× 19−1

= 4× 7

= 28

= −5 mod 33

To check whether this (c, d) pair is good or not, he plugs in the values c = 37,
d = 8, r = 5, N = 33 and q = 64 into equation (36) and obtains T = 192.2
which implies j = 3. The relation (35) is satisfied since {37(33)}64 = 5 < 64/12.
When he plugs in the values r = 5, c = 37, N = 33, d = 54, q = 64, and j = 3
in relation (34) he gets:

|{T}64| = |5(37) + 8− 5

33
{37(33)}64 − 3(64)|

= 0.24

≤ 1

2

Since both conditions (34) and (35) are satisfied, Charlie concludes that
(37, 8) constitutes a good (c, d) pair. Therefore, he records r = 5.

Fourth Run

Suppose Charlie runs the computer the fourth time and obtains the (c, d)

pair (35, 17). Then he can deduce r from the relation (32) by rounding
d

q
=

17

64

to the nearest multiple of
1

33
. This gives

17

64
≈ 9

33
. Also,

c′ =
35(33)− {35(33)}64

64
= 18

Since 18 is not in the multiplicative group mod 33, we cannot deduce the value
of r from the (c, d) pair (35, 17).

But Charlie will run the quantum computer a few more times till he has
enough evidence to make a conclusion about the value of r. In this example,
if we assume that running the computer four times is enough, then Charlie
will conclude that r = 5 and so eA = 5. Once he knows eA, he can calculate
dA = e−1(mod33) and use it to decrypt the message from eAPm.

26

9. Conclusion and comments

In the above article we have given a brief introduction to elliptic curves and some
elliptic curve cryptosystems. We have also shown how a quantum computer will
break down the security of the elliptic curve cryptosystem, that is, by solving
an elliptic curve discrete logarithm problem in an amount of time which scales
as a polynomial function of the size of the input. But we must say that the
practical quantum computer is still something in the future and at the moment
researchers continue to work on possible ways of making it a reality. Once an
actual quantum computer is built, RSA and the elliptic curve cryptosystems
will lose their security, a security which have been presumed to depend on the
difficulty of factorization and the discrete logarithms respectively. This will
create a great demand for the Quantum Cryptography which has been proved to
be more secured than the two cryptosystems mentioned above.

In describing how a quantum computer will solve the discrete logarithm problem
we adopted Peter Shor’s algorithm for solving discrete logarithm problem in the
multiplicative group (mod p). However, there are a few concerns that we need
to point out. First, the number N (the number of points on the elliptic curve)
used in the elliptic curve analog of Shor’s algorithm must be a prime in order
for the algorithm to work exactly as proposed by Shor. But since we can choose
from an infinite number of elliptic curves, maybe we can choose the curve in such
a way that, the number of points on the curve is prime; we leave this open to
investigation.

Another thing that came to our notice is that, in the original version of Shor’s
algorithm for solving discrete logarithm problem (in the multiplicative group
mod p), in recovering r from the pair (c, d), Shor uses mod(p− 1) where p is a
prime. However, if p is prime, then p − 1 is even for p > 2 and so at least two
numbers between 1 and p−1 divide p−1 and therefore do not have multiplicative
inverses. This will cause a problem when the quantum computer attempts to
deduce the value of r. This calls for an adjustment of the algorithm.

The third and final comment is about the problem that arose in the given example
where Charlie, the evesdropper, tried to use the quantum computer to solve the
discrete logarithm problem. Instead of obtaining r = 5(mod33), he consistently
obtained −5. Maybe something is not working quite right in the algorithm.

27

References

[1] Certicom home page, www.certicom.com.

[2] Koblitz, Neal. A Course in Number Theory and Cryptography. New York:
Springer-Verlag, 1987.

[3] Koblitz, Neal “Elliptic Curve Cryptosystems.” Mathematics of Computation.
1987. vol. 48, no. 177, 203-209.

[4] Richard L. Liboff. Introductory Quantum Mechanics. Addison-Wesley Pub-
lishing Company, 2nd edition.

[5] RSA home page, www.rsa.com, quote.

[6] Shor, Peter W. “Polynomial-Time Algorithms for Prime Factorization and
Discrete Logarithms on a Quantum Computer.” Proceedings of the 35th An-
nual Symposium on Foundations of Computer Science. 1994. IEEE Computer
Society Press, 124-134.

[7] Silverman, Joseph H., and John Tate. Rational Points on Elliptic Curves.
New York: Springer-Verlag, 1992.

[8] Spiller, Timothy P. Quantum Information Processing: Cryptography Compu-
tation and Teleportation. Bristol, UK: Hewlett-Packard Labratories, 1996.

28

