Extra
SL Derivation Problems: Solutions
1. DERIVE: ~J
1. |
( ~C v ~R ) & ( R L
) |
PR |
2. |
C ( C
v L ) |
PR |
3. |
J R |
PR |
4. |
| J
|
AS |
5. |
| R
|
3, 4 E |
6. |
| R L
|
1 &E |
7. |
| L
|
5, 6 E |
8. |
| C v L
|
7 vI |
9. |
| C
|
2, 8 E |
10. |
| ~C v ~R
|
1 &E |
11. |
| ~~R
|
5 DN |
12. |
| ~C
|
10, 11 vE |
13. |
~J |
4-12 ~I |
2. DERIVE: S
1 |
( P v Q ) ( R
S ) |
PR |
2. |
(~S v T ) ( P
& R ) |
PR |
3. |
| ~S
|
AS |
4. |
| ~S v T
|
3 vI |
5. |
| P & R
|
2, 4 E |
6. |
| P
|
5 &E |
7. |
| P v Q
|
6 vI |
8. |
| R S
|
1, 7 E |
9. |
| R
|
5 &E |
10. |
| ~R
|
3, 8 MT |
11. |
S |
3-10 ~E |
3. DERIVE: A
& C
1. |
A C |
PR |
2. |
A v C |
PR |
3. |
| ~A
|
AS |
4. |
| C
|
2, 3 vE |
5. |
| A
|
1, 4 E |
6. |
| ~A
|
3 R |
7. |
A |
3-6 ~E |
8. |
C |
1, 7 E |
9. |
A & C |
7, 8 &I |
4. DERIVE: E
R
1. |
( A & R ) v ( N & A ) |
PR |
2. |
( A ~M
) & ( N M ) |
PR |
3. |
| E
|
AS |
4. |
| ( A & R ) v ( A & N )
|
1 COM |
5. |
| A & ( R v N )
|
4 DIST |
6. |
| A
|
5 &E |
7. |
| A ~M
|
2 &E |
8. |
| ~M
|
6,7 E |
9. |
| N M
|
2 &E |
10. |
| ~N
|
8,9 MT |
11. |
| R v N
|
5 &E |
12. |
| R
|
10, 11 vE |
13. |
E R |
3-12 I |
5. DERIVE: ( P Q
) v ( ~Q P )
1. |
| ~[ ( P Q )
v ( ~Q P ) ]
|
AS |
2. |
| ~( P Q )
& ~( ~Q P )
|
1 DeM |
3. |
| ~( P Q )
|
2 &E |
4. |
| ~( ~Q P )
|
2 &E |
5. |
| ~( ~P v Q )
|
3 IMP |
6. |
| ~~P & ~Q
|
5 DeM |
7. |
| ~( ~~Q v P )
|
4 IMP |
8. |
| ~~~Q & ~P
|
7 DeM |
9. |
| ~~P
|
6 &E |
10. |
| ~P
|
8 &E |
11. |
( P Q )
v ( ~Q P ) |
1-10 ~E |
6. DERIVE: A
( B v C )
1. |
( A B )
& ( A C ) |
PR |
2. |
A B |
1 &E |
3. |
A C |
1 &E |
4. |
| A
|
AS |
5. |
| B
|
2, 4 E |
6. |
| B v C
|
5 vI |
7. |
A ( B
v C ) |
4-6 I |
8. |
|
AS |
9. |
|
AS |
10. |
|
8, 9 vE |
11. |
|
3, 10 E |
12. |
|
2, 11 E |
13. |
|
9 R |
14. |
|
9-13 ~E |
15. |
|
2, 14 E |
16. |
( B v C ) A |
8-15 I |
17. |
A ( B
v C ) |
7, 16 I |
7. DERIVE: ( A & ~B ) v A
1. |
C B |
PR |
2. |
( ~C A )
v E |
PR |
3. |
D & ~E |
PR |
4. |
B ( A
& ~B ) |
PR |
5. |
~E |
3 &E |
6. |
~C A |
2, 5 vE |
7. |
C ( A
& ~B ) |
1, 4 HS |
8. |
~A ~~C |
6 TRANS |
9. |
~A C |
8 DN |
10. |
~A ( A
& ~B ) |
7, 9 HS |
11. |
~~A v ( A & ~B ) |
10 IMP |
12. |
A v ( A & ~B ) |
11 DN |
13. |
( A & ~B ) v A |
12 COM |
8. DERIVE: P [
( Q & ~Q ) R ]
1. |
|
AS |
2. |
|
AS |
3. |
|
2 &E |
4. |
|
2 &E |
5. |
|
3 vI |
6. |
|
4, 5 vE |
7. |
| ( Q & ~Q ) R |
|
|
2-6 I |
8. |
P [ (
Q & ~Q ) R ] |
1-7 I |
9. DERIVE: I
~H
1. |
~H |
PR |
2. |
( ~J v H ) H |
PR |
3. |
I v ( J H ) |
PR |
4. |
~( ~J v H ) |
1, 2 MT |
5. |
~( J H ) |
4 IMP |
6. |
I |
3, 5 vE |
7. |
I & ~H |
1, 6 &I |
8. |
( I & ~H ) v ( ~I & ~~H ) |
7 vI |
9. |
I ~H |
8 EQUIV |
10. DERIVE: K
1. |
H ~(
I ~K) |
PR |
2. |
~( H v I ) |
PR |
3. |
~H & ~I |
2 DeM |
4. |
|
AS |
5. |
| |
| I ~K |
|
AS |
6. |
|
4, 5 E |
7. |
|
3 &E |
8. |
| ~( I ~K) |
|
|
5-7 ~I |
9. |
|
1, 8 E |
10. |
|
3 &E |
11. |
K |
4-10 ~E |
11. DERIVE: [ ~A (
~B C ) ] [
( A v B ) v ( ~~B v C ) ]
1. |
| ~A ( ~B
C )
|
AS |
2. |
| ~~A v ( ~B C )
|
1 IMP |
3. |
| ~~A v ( ~~B v C )
|
2 IMP |
4. |
| A v ( ~~B v C )
|
3 DN |
5. |
| A v [ ( ~~B v ~~B ) v C ]
|
4 IDEM |
6. |
| A v [ ~~B v ( ~~B v C ) ]
|
5 ASSOC |
7. |
| A v [ B v ( ~~B v C ) ]
|
6 DN |
8. |
| ( A v B ) v ( ~~B v C )
|
7 ASSOC |
9. |
[ ~A ( ~B
C ) ] [
( A v B ) v ( ~~B v C ) ] |
1-8 I |
12. DERIVE: ~X
Y
1. |
~( X Y ) |
PR |
2. |
~[ ( X & Y ) v (~X & ~Y ) ] |
1 EQUIV |
3. |
~( X & Y ) & ~( ~X & ~Y ) |
2 DeM |
4. |
(~X v ~Y ) & ~( ~X & ~Y ) |
3 DeM |
5. |
( ~Y v ~X ) & ~( ~X & ~Y ) |
4 COM |
6. |
( Y ~X )
& ~( ~X & ~Y ) |
5 IMP |
7. |
( Y ~X )
& ( ~~X v ~~Y ) |
6 DeM |
8. |
( Y ~X )
& ( ~X ~~Y ) |
7 IMP |
9. |
( Y ~X )
& ( ~X Y ) |
8 DN |
10. |
( ~X Y )
& ( Y ~X ) |
9 COM |
11. |
~X Y |
10 EQUIV |
13. DERIVE: H J
1. |
( H & T ) J |
PR |
2. |
( M D
) & ( ~D M ) |
PR |
3. |
~T ( ~D
& M ) |
PR |
4. |
|
AS |
5. |
|
AS |
6. |
|
3, 5 E |
7. |
| |
| M D |
|
2 &E |
8. |
|
6 &E |
9. |
|
7, 8 E |
10. |
|
6 &E |
11. |
|
5-10 ~E |
12. |
|
4, 11 &I |
13. |
|
1, 12 E |
14. |
H J |
4-13 I |
14. DERIVE: ~D
1. |
~( A B) |
PR |
2. |
~( B C ) |
PR |
3. |
~( ~A v B ) |
1 IMP |
4. |
~~A & ~B |
3 DeM |
5. |
~( ~B v C ) |
2 IMP |
6. |
~~B & ~C |
5 DeM |
7. |
~B |
4 &E |
8. |
~~B |
6 &E |
9. |
~B v ~D |
7 vI |
10. |
~D |
8,9 vE |
15. DERIVE: A S
1. |
A [ (
~N v N ) ( S v T ) ] |
PR |
2. |
T ~( F
v ~F ) |
PR |
3. |
|
AS |
4. |
| ( ~N v N ) (
S v T ) |
|
|
1, 3 E |
5. |
|
AS |
6. |
|
5 R |
7. |
| N N |
|
|
5-6 I |
8. |
|
7 IMP |
9. |
|
4, 8 E |
10. |
|
AS |
11. |
|
9, 10 vE |
12. |
|
2, 11 E |
13. |
|
12 DeM |
14. |
|
13 &E |
15. |
|
13 &E |
16. |
|
10-15 ~E |
17. |
A S |
3-16 I |
16. DERIVE: O
1. |
( N & O ) v [ ( ~P v O ) & N ] |
PR |
2. |
~( ~O ~P )
v ~N |
PR |
3. |
( N & O ) v [ N & ( ~P v O ) ] |
1 COM |
4. |
N & [ O v ( ~P v O ) ] |
3 DIST |
5. |
N |
4 &E |
6. |
O v ( ~P v O ) |
4 &E |
7. |
~~N |
5 DN |
8. |
~( ~O ~P ) |
2, 7 vE |
9. |
~( P O ) |
8 TRANS |
10. |
~( ~P v O ) |
9 IMP |
11. |
O |
6, 10 vE |
17. DERIVE: ~L & ~M
1. |
M & L |
PR |
2. |
[ L & ( M & ~S ) ]
K |
PR |
3. |
~K v ~S |
PR |
4. |
~( K ~S
) |
PR |
5. |
K ~S |
3 IMP |
6. |
| ~S
|
AS |
7. |
| M
|
1 &E |
8. |
| M & ~S
|
6, 7 &I |
9. |
| L
|
1 &E |
10. |
| L & ( M & ~S )
|
8, 9 & I |
11. |
| K
|
2, 10 E |
12. |
~S K |
6-11I |
13. |
K ~S |
5, 12 I |
14. |
( K ~S
) v ( ~L & ~M ) |
13 vI |
15. |
~L & ~M |
4, 14 vE |
18. DERIVE: ~( K
L ) v {( M L )
[ L v ( ~K & ~M )]}
1. |
| K L |
|
|
AS |
2. |
| |
| M
L |
|
AS |
3. |
|
AS |
4. |
|
2, 3 MT |
5. |
|
1, 3 MT |
6. |
|
4, 5 &I |
7. |
| |
| ~L ( ~K
& ~M ) |
|
3-6 I |
8. |
|
7 IMP |
9. |
|
8 DN |
10. |
| ( M L )
[ L v ( ~K & ~M )] |
|
|
2-9 I |
11. |
( K L )
{( M
L ) [ L v ( ~K & ~M )]} |
1-10 I |
12. |
~( K L )
v {( M L )
[ L v ( ~K & ~M )]} |
11 IMP |
19. DERIVE: ~A
[ B ( G v D ) ]
1. |
( A v ~B ) v ~C |
PR |
2. |
( D v G ) v C |
PR |
3. |
A v ( ~B v ~C ) |
1 ASSOC |
4. |
|
AS |
5. |
|
3, 4 vE |
6. |
|
AS |
7. |
|
6 DN |
8. |
|
5, 7 vE |
9. |
|
2, 8 vE |
10. |
|
9 COM |
11. |
| B ( G
v D ) |
|
|
6-10 I |
12. |
~A [ B
( G v D ) ] |
4-11 I |
20. DERIVE: ~R
1. |
( O R )
S |
PR |
2. |
( P R )
~S |
PR |
3. |
| R
|
AS |
4. |
| ~O v R
|
3 vI |
5. |
| O R
|
4 IMP |
6. |
| S
|
1, 5 E |
7. |
| ~P v R
|
3 vI |
8. |
| P R
|
7 IMP |
9. |
| ~S
|
2, 8 E |
10. |
~R |
3-9 ~I |
21. DERIVE: ~T v S
1. |
( T & Q )
R |
PR |
2. |
( Q R )
( ~T v S ) |
PR |
3. |
T ( Q
R ) |
1 EXP |
4. |
T ( ~T
v S ) |
2, 3 HS |
5. |
~T v ( ~T v S ) |
4 IMP |
6. |
( ~T v ~T ) v S |
5 ASSOC |
7. |
~T v S |
6 IDEM |
22. DERIVE: ~( I v D )
~A
1. |
~( A v G ) v P |
PR |
2. |
( P & ~I )
( O & D ) |
PR |
3. |
| A
|
AS |
4. |
| A v G
|
3 vI |
5. |
| ~~( A v G )
|
4 DN |
6. |
| P
|
1, 5 vE |
7. |
| P [ ~I
( O & D ) ]
|
2 EXP |
8. |
| ~I ( O
& D )
|
6, 7 E |
9. |
| ~~I v ( O & D )
|
8 IMP |
10. |
| I v ( O & D )
|
9 DN |
11. |
| ( I v O ) & ( I v D )
|
10 DIST |
12. |
| I v D
|
11 & E |
13. |
A ( I
v D ) |
3-12 I |
14. |
~( I v D )
~A |
13 TRANS |
23. DERIVE: ~A
~( K C )
1. |
A v ~( ~K v C ) |
PR |
2. |
( K C )
v ~A |
PR |
3. |
~~A v ~( ~K v C ) |
1 DN |
4. |
~A ~(
~K v C ) |
3 IMP |
5. |
~A ~(
K C ) |
4 IMP |
6. |
~~( K C )
v ~A |
2 DN |
7. |
~( K C )
~A |
6 IMP |
8. |
~A ~(
K C ) |
5, 7 I |
24. DERIVE ~C v ~E
1. |
B ( E
F ) |
PR |
2. |
A ( C
D ) |
PR |
3. |
A v B |
PR |
4. |
~D & ~F |
PR |
5. |
|
AS |
6. |
|
5 DeM |
7. |
|
6 DN |
8. |
|
AS |
9. |
| |
| C
D |
|
2, 8 E |
10. |
|
7 & E |
11. |
|
9, 10 E |
12. |
|
4 & E |
13. |
|
8-12 ~I |
14. |
|
3, 13 vE |
15. |
| E F |
|
|
1, 14 E |
16. |
|
7 &E |
17. |
|
15, 16 E |
18. |
|
4 &E |
19. |
~C v ~E |
5-18 ~E |
25. DERIVE: W
U
1. |
( U ~W
) ~X |
PR |
2. |
Y v ( W & Z ) |
PR |
3. |
( Y v Z ) X |
PR |
4. |
( Y v W ) & ( Y v Z ) |
2 DIST |
5. |
Y v Z |
4 & E |
6. |
|
AS |
7. |
|
AS |
8. |
|
6 DN |
9. |
|
7, 8 &I |
10. |
| |
| ( U & ~W ) v ( ~U & ~~W
) |
|
9 vI |
11. |
| |
| U
~W |
|
10 EQUIV |
12. |
|
3, 5 E |
13. |
|
1, 11 E |
14. |
|
7-13 ~E |
15. |
W U |
6-14 I |
Back to Extra SL Derivation Problems