Philosophy 251: Handout #8
XV. For each of the following arguments
construct a derivation to prove that the argument is valid.
- J
( ~K &
L ), J / L
- T v U, T
W, U
W / W
- A
( A
B ) / A
B
- ( C
D ) &
E, ( F
G ) & ~~H, I v E / H & ( C
D )
- ( J v K )
( K
L ), K / K & L
- ( ~P v ~Q )
R, S &
~R / P
- A & ( C & ~B ), ( A v D )
~E / ~E
- L
( M &
O ), ~O / ~( L & P )
- Q / R
[ S
( T
Q )]
- U
X, X
W / U
W
- B
C, B v
C / B & C
- ~D
E, F
D, E & F / ~G
- / ( J
K )
( J
K )
- / ( N
O )
[( P
N )
( P
O )]
- / ~S
[( T &
S )
U ]
XVI. For each
of the following arguments construct a derivation to prove that
the argument is valid.
- V
W / ~W
~V
- O v ~P, ~O v ~P / ~P
- ( X
Y )
Z, ( X
Y ) v
~Z / ~Z
~( X
Y )
- E
( ~F v
G ), F
G / E
- ~( A
B), ~(
B
C ) / ~D
- J
( K &
L ), ( ~K
L ) & ( M
J
) / ( J v L )
~M
- ~( N
O ) /
~N
O
- / ~[( P & Q ) & ~( P & Q )]
- / ( V
W ) v
( W
V )
- / [( X v Y )
Z ]
[( X
Z) & ( Y
Z )]
Back
to Syllabus