Philosophy 251: Handout #6
XII. For each of the following sets construct
a truth-tree to determine whether the set is consistent or inconsistent.
- { ~( A
B ), ~(
B
A ) }
- { ~[ ~C
( D
E )], C
E }
- { ( F
G ), ~(
F
G ) }
- { H
~( H
I ), ~( H
I
) }
- { J
( ~K
L ), ~J
( K
~L ), ~( J
~L ) }
- { O v ( P & ~P ), R & ~S, O
P }
- { ~[ ~( Y v ~Z ) & A ], Z
Y, A
Z }
- { B
~~[ ~(
C & ~ B ) v D ], ~[ E v ~( B
C )],
B & ( D v C ) }
- { ~[ ~( F
G )
( F & ~ G )] }
- { ~~~[( P v Q )
~R ],
R
( S & T ), T
( ~R &
P ), P & ~T }
XIII. For each
of the following arguments construct a truth-tree to determine
whether the argument is valid or invalid.
- A
( B
C ), ~B
~ A, D
& A / C
- ( ~E v F )
( G &
H ), ~( ~E v F ) / ~( G & H )
- ( N
~O ) &
O, { O v [( P
N ) & P ]}
~N / O
~N
- ( Q
R ) v
~( R & S ), ~Q
~R, ~S
~( R & S ) / Q
- ( U
T
)
U, ( T
U )
T / ~U v ~T
- A v ~( B & C ), ~B, ~( A v C ) / A
- ( G
H
) v ( ~G
H ) / ( ~G
~H ) v
~( G
H )
- J
~J, (
K
J )
K
/ J
~K
- O
( P
R ), ( O
P )
( O
R ) /
( O
R )
( O
P )
- ~( S
T ) /
~S
~T
Back
to Syllabus