Philosophy 251: Handout #4
VII. Determine the truth value of each of the following formulas, given that the truth values of the atomic formulas are as follows--P = F, Q = T, R = T.
1. ~[~P v ( ~ Q v ~R )] | |
2. ( P ![]() ![]() |
|
3. ( P ![]() ![]() |
|
4. ~[~P![]() ![]() ![]() |
|
5. ~( R ![]() ![]() |
VIII. Construct complete truth tables for each of the following formulas. For each formula determine whether the formula is contingent, a tautology, or a contradiction.
1. A ![]() ![]() |
|
2. ( ~F & ~ G ) v ~( F v G ) | |
3. ~[[( P v Q ) & ( Q v R )] & (~P & ~ R)] | |
4. ( M ![]() ![]() |
|
5. ( S v ~T ) ![]() ![]() |
IX. For each of the following
pairs of formulas determine whether imples
,
implies
, or whether
and
are logically equivalent.
1. ~( A & B ) | ~( A v B ) | 4. C ![]() ![]() |
( C & ~C ) v ( E ![]() |
2. X ![]() ![]() |
~ ( X ![]() |
5. ~( O & P ) ![]() ![]() |
( O & P ) ![]() |
3. Q v ~ ( S v ~T ) | ( Q![]() |
X. For each of the following arguments, construct a truth
table to determine whether the argument is valid or invalid.
1. A ( B & C ),
B
C, ~B / ~A
2. D v ( E & ~ F ), ( F E )
D, ~D v F
/ ~( E v F )
3. ~( J K ), ~J, ~K / L
& ~L
4. ( M N )
( N
O ), N / M
O
5. [( U & W ) & X ] v ( ~U ~X ), U
W, W
X / W
X