Philosophy 251: Handout #10
XVIII. For each of the following arguments
construct a derivation to prove that the argument is valid.
- ( P & Q )
R / [ ( P
Q )
P ]
[ ( P
Q )
R ]
- ( ~P & Q )
R / ( ~Q
P )
( ~P
R )
- P v Q, P
R, Q v ~R / Q
- ( P v ~Q )
( R & ~S ), Q v S / Q
- / ~~[( A v A ) & B ] v ( A
~B )
- F
( G
H ), ~I
( F v H ), ( ~H
~G )
I / I v H
- / [ ( A v B )
C ]
[ ( A
C ) & ( B
C ) ]
- L
( C v T ), ( ~L v B ) & ( ~B v ~C ) / L
T
- A v B, ~( A & B ) / ( A
B )
~( B
A )
- ( C & A ) v ( B & C ), ~D
~ ( B v A ) / D
- / [ ( A v B ) v ~ B ] v ~ A
- C
~C, ~C
( R
T ) / ( T & T ) v ~R
- / ( A
B ) v ( B
A )
- ~( R v W ), ( R
M ) v [ ( M v G )
( W
M ) ] / ~M
- P v Q, P v R, Q v R / ( P & Q ) v [ ( P & R ) v (
Q & R ) ]
- ( A & B ) v ( A & C ) / A
- D v ( E
F ), ~F, E / D
- ( M
N ), ( N
~L ) / ~( M
L )
- J v K, ~K
( L v M ), ( M & N ) v [ M & ( O
M )] / J
- ( P v Q ) v ( R & S ), ( P
T ) & ( Q
U
), W
~( T v U ), R
Q
/ ~W
Back
to Syllabus