Philosophy 251: Handout #9
XVIII. For each of the following arguments
construct a derivation to prove that the argument is valid.
- A & B / B & A
- ~~C / (~~C & ~~C ) & ~~C
- D & [ ~E & ( F & ~G )] / F
- ( H & I ) & K / K & ( I &
H )
- J & ~L, M & ( N O ), ( ~P v R ) & ~N / [( N O ) & ~L ] & ( ~P v R )
- Q S, T &
Q / S
- ( U & W ) ( X v
Y ), W & ( X v Z ), U & ~A / X v Y
- A ( B &
C ) / A C
- ( D & E ) ( F &
G ) / ( E & D ) ( G &
F )
- H (
I & ~K ) / ( H & L ) ~K
XIX. For
each of the following arguments construct a derivation to prove
that the argument is valid.
- ( M J ) &
~J / ~M
- N & ~N / O
- ~P Q, ~P
~Q / ~~P
- ~( R & S ) ( T &
~U ), U / R & S
- ( ~X ~W ) &
( ~W W ) / X
- Y / X v ( Y v Z )
- A v B, A C, B C / C
- D v D / D
- ( E v F ) ~G, F
/ ~G
- ~H v I, ~H I / I
XX. For each
of the following arguments construct a derivation to prove that
the argument is valid.
- J ( ~K &
L ), J / L
- ( ~M & N ) & ( N ~M ) / ~M N
- ( O ~P ) &
R, ( R ~P ) & ~S / O & ~S
- T v U, T W, U W / W
- ( X Y
) & ( Y Z ), Z X / (
Z X ) & ( X Z )
- A ( A B ) / A B
- ( C D ) &
E, ( F G ) & ~~H, I v E / H & ( C D )
- ( J v K ) ( K L ), K / K & L
- M & N, ~( M & O ) / ~O
- ( ~P v ~Q ) R, S &
~R / P
Back
to Syllabus