Philosophy 251: Handout #8
XVI. For each of the following sets construct
a truth-tree to determine whether the set is consistent or inconsistent.
- { ~( A B ), ~(
B A ) }
- { ~[ ~C ( D E )], C E }
- { ( F G ), ~(
F G ) }
- { H ~( H I ), ~( H I
) }
- { J ( ~K L ), ~J ( K ~L ), ~( J ~L ) }
- { M v N, ~M & ~N }
- { O v ( P & ~P ), R & ~S, O P }
- { ~~Q, Q & [ U v ( ~Q & T )] }
- { ~( Y & ~ W ), ~( X v Y ) & ~~Y,
~~~X }
- { ~[ ~( Y v ~Z ) & A ], Z Y, A Z }
- { B ~~[ ~(
C & ~ B ) v D ], ~[ E v ~( B C )],
B & ( D v C ) }
- { ~[ ~( F G ) ( F & ~ G )] }
- { H I, K I, ~K v H }
- { ~[( L & M ) ~( N v O )], ~( M & N ) }
- { ~~~[( P v Q ) ~R ],
R ( S & T ), T ( ~R &
P ), P & ~T }
XVII. For each
of the following arguments construct a truth-tree to determine
whether the argument is valid or invalid.
- A ( B C ), ~B ~ A, D
& A / C
- ( ~E v F ) ( G &
H ), ~( ~E v F ) / ~( G & H )
- J & ( K v L ), ( ~L v M ) & ( M ~M ) / J & K
- ( N ~O ) &
O, { O v [( P N ) & P ]} ~N / O
~N
- ( Q R ) v
~( R & S ), ~Q ~R, ~S
~( R & S ) / Q
- ( U T
) U, ( T U ) T / ~U v ~T
- A & ( W v X ), ~X Y, ( A X ) ~X, ~Y / Z & A
- A v ~( B & C ), ~B, ~( A v C ) / A
- D & ( E F ) /
( D & F ) v ( D & ~E )
- ( G H
) v ( ~G H ) / ( ~G ~H ) v
~( G H )
- J ~J, (
K J ) K
/ J ~K
- L v ( M & ~N ), ( N v M ) L, ~L v N / ~( N v M )
- O ( P R ), ( O P ) ( O R ) /
( O R ) ( O P )
- / ~( Q Q ) ( Q v ~Q )
- ~( S T ) /
~S ~T
Back
to Syllabus