Philosophy 251: Handout #17
XXXVII. For each of the following
arguments construct a derivation to prove that the argument is
valid.
- x( Zx yKy
) / x[ Zx y(
Ky v Sy )]
- x~y(
Rxy & ~Uy) x(
Px & Jx ), x~y( ~Uy & Rxy ) / ~x( Px
~Jx )
- x( Hx Fx
), x[( Fx & Uxx )
Wxx ], zUzz / x( Hx
Wxx )
- x[( Fx & Gx )
y( Axy & Py )], xy[ Fx & ( Axy & Py )] / x(
Fx & Gx )
- x( Lx Yx
), x( Cx & Yx ) & x( Cx & ~Yx ) / ~x( Cx
Lx )
- x( Px Qx
) / ( xPx & xQx )
x( Px & Qx )
- xy[( Ry v Dx )
~Ky ], xy( Ax
~Ky ), x( Ax v Rx ) / x~Kx
- y( My Ay
), xy[( Bx & Mx) & (Ry & Syx
)], xAx yz(
Syz Ay )
/ x( Rx & Ax )
- xy[( Hky & Hxk )
Hxy ], z( Bz
Hkz ), x( Bx & Hxk )
/ z[ Bz & y( By
Hzy )]
- x{( Fx & ~Kx )
y[( Fy & Hyx ) & ~Ky ]},
x[( Fx & y[( Fy & Hyx )
Ky ]) Kx ]
Mp / Mp
XXXVIII.
For each of the following arguments construct a derivation to
prove that the argument is valid.
- x( ~Bx
~Wx ), xWx / xBx
- xyzGxyz / xyz( Gxyz
Gzyx )
- x( Hx yRxyb
), xz( Razx
Sxzz ) / Ha xSxcc
- ~x( Fx & Aix )
~xKx , y[ x~( Fx & Aix ) & Ryy ] / ~xKx
- z( ~Lz v yKy ) / zLz
yKy
- x(
Jxa & Ck ), x( Sx & Hxx ), x[(
Ck & Sx ) ~Ax
] / z( ~Az & Hzz )
- x[
Cx v y( Wxy
Cy )], x( Wxa & ~Ca ) / xCx
- xy( Dxy
Cxy ), xyDxy, xy( Cyx
Dxy ) / xy( Cxy & Cyx )
- / x( Ax
Bx ) x( ~Bx
~Ax )
- / x[ Cx
( Cx Dx )]
x( Cx Dx
)
- / ~x( Ex v Fx )
x~Ex
- / x( Gx
Hx ) v xGx
- / ( xJx
xKx ) x(
Jx Kx )
- / x( Lx
Mx ) ~x[(
~Lx v ~Mx ) & ( Lx v Mx )]
- / xy( Nx v Oy )
yx( Nx v Oy )
Back
to Syllabus