Philosophy 251: Handout #17

 

XXXVII. For each of the following arguments construct a derivation to prove that the argument is valid.

  1. Universal Quantifierx( Zx Existential QuantifieryKy ) / Universal Quantifierx[ Zx Existential Quantifiery( Ky v Sy )]
  2. Existential Quantifierx~Existential Quantifiery( Rxy & ~Uy) Existential Quantifierx( Px & Jx ), Existential Quantifierx~Existential Quantifiery( ~Uy & Rxy ) / ~Universal Quantifierx( Px ~Jx )
  3. Universal Quantifierx( Hx Fx ), Universal Quantifierx[( Fx & Uxx ) Wxx ], Universal QuantifierzUzz / Universal Quantifierx( Hx Wxx )
  4. Universal Quantifierx[( Fx & Gx ) Existential Quantifiery( Axy & Py )], Existential QuantifierxExistential Quantifiery[ Fx & ( Axy & Py )] / Existential Quantifierx( Fx & Gx )
  5. Universal Quantifierx( Lx Yx ), Existential Quantifierx( Cx & Yx ) & Existential Quantifierx( Cx & ~Yx ) / ~Universal Quantifierx( Cx Lx )
  6. Universal Quantifierx( Px Qx ) / ( Existential QuantifierxPx & Existential QuantifierxQx ) Existential Quantifierx( Px & Qx )
  7. Universal QuantifierxUniversal Quantifiery[( Ry v Dx ) ~Ky ], Universal QuantifierxExistential Quantifiery( Ax ~Ky ), Existential Quantifierx( Ax v Rx ) / Existential Quantifierx~Kx
  8. Universal Quantifiery( My Ay ), Existential QuantifierxExistential Quantifiery[( Bx & Mx) & (Ry & Syx )], Existential QuantifierxAx Universal QuantifieryUniversal Quantifierz( Syz Ay )
    /
    Existential Quantifierx( Rx & Ax )
  9. Universal QuantifierxUniversal Quantifiery[( Hky & Hxk ) Hxy ], Universal Quantifierz( Bz Hkz ), Existential Quantifierx( Bx & Hxk )
    /
    Existential Quantifierz[ Bz & Universal Quantifiery( By Hzy )]
  10. Universal Quantifierx{( Fx & ~Kx ) Existential Quantifiery[( Fy & Hyx ) & ~Ky ]},
    Universal Quantifierx[( Fx & Universal Quantifiery[( Fy & Hyx ) Ky ]) Kx ] Mp / Mp


XXXVIII. For each of the following arguments construct a derivation to prove that the argument is valid.

  1. Universal Quantifierx( ~Bx ~Wx ), Existential QuantifierxWx / Existential QuantifierxBx
  2. Universal QuantifierxUniversal QuantifieryUniversal QuantifierzGxyz / Universal QuantifierxUniversal QuantifieryUniversal Quantifierz( Gxyz Gzyx )
  3. Universal Quantifierx( Hx Universal QuantifieryRxyb ), Universal QuantifierxUniversal Quantifierz( Razx Sxzz ) / Ha Existential QuantifierxSxcc
  4. ~Universal Quantifierx( Fx & Aix ) ~Universal QuantifierxKx , Universal Quantifiery[ Existential Quantifierx~( Fx & Aix ) & Ryy ] / ~Universal QuantifierxKx
  5. Universal Quantifierz( ~Lz v Existential QuantifieryKy ) / Existential QuantifierzLz Existential QuantifieryKy
  6. Existential Quantifierx( Jxa & Ck ), Existential Quantifierx( Sx & Hxx ), Universal Quantifierx[( Ck & Sx ) ~Ax ] / Existential Quantifierz( ~Az & Hzz )
  7. Existential Quantifierx[ Cx v Universal Quantifiery( Wxy Cy )], Universal Quantifierx( Wxa & ~Ca ) / Existential QuantifierxCx
  8. Universal QuantifierxUniversal Quantifiery( Dxy Cxy ), Universal QuantifierxExistential QuantifieryDxy, Universal QuantifierxUniversal Quantifiery( Cyx Dxy ) / Existential QuantifierxExistential Quantifiery( Cxy & Cyx )
  9. / Universal Quantifierx( Ax Bx ) Universal Quantifierx( ~Bx ~Ax )
  10. / Universal Quantifierx[ Cx ( Cx Dx )] Universal Quantifierx( Cx Dx )
  11. / ~Existential Quantifierx( Ex v Fx ) Universal Quantifierx~Ex
  12. / Universal Quantifierx( Gx Hx ) v Existential QuantifierxGx
  13. / ( Existential QuantifierxJx Existential QuantifierxKx ) Existential Quantifierx( Jx Kx )
  14. / Universal Quantifierx( Lx Mx ) ~Existential Quantifierx[( ~Lx v ~Mx ) & ( Lx v Mx )]
  15. / Universal QuantifierxExistential Quantifiery( Nx v Oy ) Existential QuantifieryUniversal Quantifierx( Nx v Oy )

 

Back to Syllabus