Philosophy 251: Handout #16
XXXIV. For
each of the following arguments construct a derivation to prove
that the argument is valid.
- xAx / Aa & Ab
- xyBxy, Bcd
Ce / Ce
- x( Dx Ex
), z( Ez Fz
) / Df Ff
- zGz, x~Gx / ~Hg
- x( Ix & ~Kx), Lh v Kj / xKx
( Ik & Lh
)
- Ma, Na / x( Nx &
Mx )
- Obbb / yOyby
- xyPxy / wzPwz
- xQx, zQz
yRy / Rc
- ~xSxx v zTz, Sdd / zUzzz v ( Te v yWy )
XXXV.
For each of the following arguments construct
a derivation to prove that the argument is valid.
- xRax
xRxa,
~Rba / ~Raa
- x[ yRxy
yRyx ], Raa / Rba
- x( Fx Gx
), x( Gx Hx
) / x( Fx Hx
).
- x( Fx Gx
), x( ( Fx & Gx )
Hx ) / x( Fx
Hx ).
- x( Fx Gx
), x( ( Gx v Hx )
Kx ) / x( Fx
Kx )
- xFx & xGx / x( Fx & Gx )
- x( Fx Gx
) / xFx xGx
- x( ( Fx & Gx )
Hx ) / x( Fx
Gx ) x( Fx
Hx )
- x( Dxx v Px ), y~Dyy, z( Pz
Jz ) / w( Lwg v Pw )
- / x( ~Bx
~Ax ) [ ~xBx
~xAx
]
XXXVI.
For each of the following arguments construct
a derivation to prove that the argument is valid.
- xyCxy / ( Caa & Cab ) & ( Cba
& Cbb )
- x( Ax Bx),
~Bc / ~Ac
- y[( Hy & Fy )
Gy ], zFz & ~xKxb / x( Hx
Gx )
- xCx
Ch / xCx
Ch
- x( ~Ax
Kx ), y~Ky / w( Aw v ~Lwf )
- y[ Hy & ( Jyy & My )] / xJxb &
xMx
- z(
Gz & Az ), y( Cy
~Gy ) / z( Az & ~Cz )
- ~x( ~Rx & Sxx ), Sjj / Rj
- x[( ~Cxb v Hx )
Lxx ], y~Lyy / xCxb
- xFx, zHz / ~y( ~Fy v ~Hy )
Back
to Syllabus