Philosophy 251: Handout #12
XXV. For each of the following arguments
construct a derivation to prove that the argument is valid.
- ( P & Q )
R / [ ( P
Q )
P ]
[ ( P
Q )
R ]
- ( ~P & Q )
R / ( ~Q
P )
( ~P
R )
- P v Q, P
R, Q v ~R / Q
- ( P v ~Q )
( R & ~S ), Q v S / Q
- / ~~[( A v A ) & B ] v ( A ~B )
- F
( G
H ), ~I
( F v H ), ( ~H
~G )
I / I v H
- / [ ( A
B )
C ]
[ ~( A & B ) v C ]
- / [ ( A v B )
C ]
[ ( A
C ) & ( B
C ) ]
- L
( C v T ), ( ~L v B ) & ( ~B v ~C ) / L T
- A v B, ~( A & B ) / ( A B ) ~( B A )
XXVI. For each
of the following arguments construct a derivation to prove that
the argument is valid.
- ( C & A ) v ( B & C ), ~D ~ ( B v A ) / D
- / [ ( A v B ) v ~ B ] v ~ A
- ~( ~P v ~Q ), [ ( T v Q ) & ( P & R ) ]
( T
~T ) / R
~ T
- / [ ( A
B ) & ( B
C )] v ( C
A )
- C
~C, ~C
( R
T ) / ( T & T ) v ~R
- / ( A
B ) v ( B
A )
- ~( R v W ), ( R
M ) v [ ( M v G )
( W
M ) ] / ~M
- P v Q, P v R, Q v R / ( P & Q ) v [ ( P & R ) v (
Q & R ) ]
- / ( A
~ A)
~( A
~ A )
- ( P
R ) v ( Q
R ) / ( P & Q )
R
XXVII. For each
of the following arguments construct a derivation to prove that
the argument is valid.
- ( A & B ) v ( A & C ) / A
- D v ( E
F ), ~F, E / D
- G
H, [ G
( H & G )]
[ I & ~( H & K )], ~( H & K ) ( I & ~K ) / ~K
- ( M
N ), ( N
~L ) / ~( M
L )
- O v ~( ~ P v R ), ~( ~P v R ) ~O / ~O
~( ~P v R )
- ( Q & S )
~T, U
( T & ~T ), W
[ T & ( Q & S )] / ~U ~W
- ( ~W v X ) v Y, Y
~Z / ( W & Z ) X
- B
( E F
), A
( C
D ), A v B, ~D & ~F / { H & [ G v ( A & B )]} v (
~C v ~E )
- J v K, ~K
( L v M ), ( M & N ) v [ M & ( O M )] / J
- ( P v Q ) v ( R & S ), ( P T ) & ( Q U
), W
~( T v U ), R Q
/ ~W
Back
to Syllabus