Philosophy 251: Handout #11
XXIII. For each of the following arguments
construct a derivation to prove that the argument is valid.
- A B, B ( C & D ), ~C v ~D / ~A
- ( E & F ) ( G v
H ), F & E / H v G
- ( J K ) &
~L, ( ~J M ) v L, ( ~K M ) N / N
- [ ( O v P ) v R ] v ~S, ~( ~S v O ) &
[ ( P v R ) T ] / T v U
- ( V v W ) v ( X v Y ), ~W & ~( Y v V
) / X
- ~Z v ( ~A v ~B ), ( B & C ) v D, A /
Z D
- E ( ~F v
G ), I ( K & ~H ), ~( F & ~G ) I / E ( ~H & K )
- / J v ~J
- / ~~~~~( L & ~L )
- / M v [( ~M v N ) & ( ~M v O )]
XXIV. For each
of the following arguments construct a derivation to prove that
the argument is valid.
- ~P ~Q, ~Q
~R, ~R ~P / P
Q
- ( ~S & ~T ) v ( ~S & ~U ), ( W &
X ) S / ~ W v ~X
- ( Y & Z ) v ( A & ~B ), B ~( Y & C ) / B ~C
- D ( ~E v
F ), D E, ~( F v G ) / D H
- I ( K L ), ~M ( I v
L ), I K / M v L
- N ( O &
~P ), O ( R & S ), ~S v P / ~N
- [( X & Z ) & Y ] v ( ~X ~Y ), X Z, Z Y / X Y
- / [( A & B ) ( B &
A )] & [ ~( A & B ) ~( B &
A )]
- / [ C ( D &
E )] [ ( ~D v ~E ) ~C ]
- / [ F v ( G v H )] [ H v ( G v F )]
- / [ J ( K L )] { J [( ~K v L ) & ( ~L v K )]}
- / { M v [ N ( M N )]} { M v [( ~M v ~N ) v N ]}
- / [ ~P ( ~Q R )] [( P v Q ) v ( ~~Q v R )]
- / ( ~S ~S ) [ ~( ~S S ) ( S ~S )]
- / [ T v ( U W )] [ T v ( ~U ~W)]
Back
to Syllabus