Philosophy 251: Handout #10
XXI. For each of the following arguments
construct a derivation to prove that the argument is valid.
- A & ( C & ~B ), ( A v D ) ~E / ~E
- ( G F ) &
( F H ), [( I v J ) v K ] G, ~(
I v J ) & K / H
- L ( M &
O ), ~O / ~( L & P )
- Q / R [ S ( T Q )]
- U X, X W / U W
- X ( Y Z ), A Y / X
( A Z )
- B C, B v
C / B & C
- ~D E, F D, E & F / ~G
- / H ( I H )
- / ( J K ) ( J K )
- / ( L & ~L ) ( M &
~M )
- / ( N O ) [( P N ) ( P O )]
- / Q v ~Q
- / ( R & R ) R
- / ~S [( T &
S ) U ]
XXII. For each
of the following arguments construct a derivation to prove that
the argument is valid.
- V W / ~W
~V
- O v ~P, ~O v ~P / ~P
- ( X Y ) Z, ( X Y ) v
~Z / ~Z ~( X Y )
- ( Q R ) v
S, [~( Q R ) & ~S ] [ T ( U & ~X )] / [ T ( U &
~X)] W
- E ( ~F v
G ), F G / E
- H ~( I ~K), ~( H v I ) / K
- L v ( M v N ) / ( L v M ) v N
- ~( A B), ~(
B C ) / ~D
- J ( K &
L ), ( ~K L ) & ( M J
) / ( J v L ) ~M
- ~( N O ) /
~N O
- / ~[( P & Q ) & ~( P & Q )]
- / ( S ~S ) ~( S ~S )
- / [( T U ) T ] T
- / ( V W ) v
( W V )
- / [( X v Y ) Z ] [( X Z) & ( Y Z )]
Back
to Syllabus