Philosophy 251: Handout #9
XVIII. For each of the following arguments
construct a derivation to prove that the argument is valid.
- A & B / B & A
- ~~C / (~~C & ~~C ) & ~~C
- D & [ ~E & ( F & ~G )] / F
- ( H & I ) & K / K & ( I &
H )
- J & ~L, M & ( N
O ), ( ~P v R ) & ~N / [( N
O ) & ~L ] & ( ~P v R )
- Q
S, T & Q / S
- ( U & W )
( X v Y ), W & ( X v Z ), U & ~A / X v Y
- A
( B & C ) / A C
- ( D & E )
( F & G ) / ( E & D )
( G & F )
- H (
I & ~K ) / ( H & L )
~K
XIX. For
each of the following arguments construct a derivation to prove
that the argument is valid.
- ( M
J ) & ~J / ~M
- N & ~N / O
- ~P
Q, ~P ~Q / ~~P
- ~( R & S )
( T & ~U ), U / R & S
- ( ~X
~W ) & ( ~W W )
/ X
- Y / X v ( Y v Z )
- A v B, A
C, B C / C
- D v D / D
- ( E v F )
~G, F / ~G
- ~H v I, ~H
I / I
XX. For each
of the following arguments construct a derivation to prove that
the argument is valid.
- J (
~K & L ), J / L
- ( ~M & N ) & ( N
~M ) / ~M N
- ( O
~P ) & R, ( R ~P
) & ~S / O & ~S
- T v U, T
W, U W / W
- ( X Y
) & ( Y Z ),
Z X / ( Z X ) & ( X
Z )
- A
( A B ) / A B
- ( C
D ) & E, ( F G
) & ~~H, I v E / H & ( C
D )
- ( J v K )
( K L ), K / K &
L
- M & N, ~( M & O ) / ~O
- ( ~P v ~Q )
R, S & ~R / P
Back
to Syllabus