Philosophy 251: Handout #8
XVI. For each of the following sets construct
a truth-tree to determine whether the set is consistent or inconsistent.
- { ~( A
B ), ~( B A )
}
- { ~[ ~C
( D E )], C E }
- { ( F
G ), ~( F G )
}
- { H
~( H I ), ~( H I ) }
- { J
( ~K L ), ~J ( K
~L ), ~( J ~L
) }
- { M v N, ~M & ~N }
- { O v ( P & ~P ), R & ~S, O P }
- { ~~Q, Q & [ U v ( ~Q & T )] }
- { ~( Y & ~ W ), ~( X v Y ) & ~~Y,
~~~X }
- { ~[ ~( Y v ~Z ) & A ], Z
Y, A Z }
- { B
~~[ ~( C & ~ B ) v D ], ~[ E v ~( B
C )], B & ( D v C ) }
- { ~[ ~( F
G ) ( F & ~ G
)] }
- { H
I, K I, ~K v H
}
- { ~[( L & M )
~( N v O )], ~( M & N ) }
- { ~~~[( P v Q )
~R ], R ( S & T ),
T ( ~R & P ),
P & ~T }
XVII. For each
of the following arguments construct a truth-tree to determine
whether the argument is valid or invalid.
- A
( B C ), ~B ~ A, D & A / C
- ( ~E v F )
( G & H ), ~( ~E v F ) / ~( G & H )
- J & ( K v L ), ( ~L v M ) & ( M ~M ) / J & K
- ( N
~O ) & O, { O v [( P
N ) & P ]} ~N
/ O ~N
- ( Q
R ) v ~( R & S ), ~Q
~R, ~S ~( R & S )
/ Q
- ( U T
) U, ( T
U ) T / ~U v
~T
- A & ( W v X ), ~X Y,
( A X ) ~X,
~Y / Z & A
- A v ~( B & C ), ~B, ~( A v C ) / A
- D & ( E
F ) / ( D & F ) v ( D & ~E )
- ( G H
) v ( ~G H ) / ( ~G ~H ) v ~( G
H )
- J
~J, ( K J ) K / J ~K
- L v ( M & ~N ), ( N v M ) L,
~L v N / ~( N v M )
- O (
P R ), ( O P ) (
O R ) / ( O R )
( O P )
- / ~( Q
Q ) ( Q v ~Q )
- ~( S
T ) / ~S ~T
Back
to Syllabus