Philosophy 251: Handout #7
XIV. For each of the following
arguments use the countermodel method to determine if the argument
is valid or invalid. If the argument is invalid, be sure to specify
at least one set of truth values that demonstrate the argument
is invalid.
- A
( B & C ), B C,
~B / ~A
- D & E, ~( D & F ) /
F
- ~~G
~~H, ~G ~H / H
G
- ( I
J ) ( J
K ), J / I K
- L ~L,
(M L ) M / L ~M
- N & ~[( O & P ) ( P N
)], O ~O / P ~P
- Q & R, Q v S / S
- ( T v U ) ~(
T & U ), U ( U
T ) / U T
- Y v [ W
( X Y )], ( W ~Y ) & ( X
W ) / ~X & ~W
- Y
Z, Z A, ~A / ~Y v Z
- ( B
C ) B, ( C
B ) C / ~C v ~B
- ~[ D v ~( E v ~F )], E ( D F
) / ~D ~E
- ~~~[( G v H )
~I ], I ( K &
L ), L ( ~I & G )
/ G & ~L
- ~M
~~[ ~( N & ~M ) v O ], ~[ P v ( ~M & ~N )] / M &
~( N v O )
- P & ( ~Q
R ), ~Q / ~( P R )
XV.
For each of the following sets construct a truth-tree to determine
whether the set is consistent or inconsistent.
- { ~( A v B ), A v B }
- { ~[( C v ~ C ) & D ] }
- { ~( E v F ), E v ~F }
- { ~( ~G v H ), G v ~H }
- { J & ( K & L ), ~[
J & ( K & L )] }
- { M & ( N & ~O ), ~[
M & ( N & O )] }
- { ~P v ( Q & R ), P, ~(
Q & R ) }
- { ~( ~S v T ), S v ~T, ~( ~T
& ~ S ) }
- { ( ~U & ~W ) & [( W
v ~X ) & ( X v ~Y ) ] }
- { ~( ~A v B ), ~[ A & ~(
B & C )], A v ( B v C ) }
- { ( D v ~E ) & [ ( E v ~F
) & ( F v ~E )] }
- { ~[ G & ( ~H & ~I )],
~G v ~I, ~( ~ H v ~~I ) }
- { J v ( K v L ), ~( J v K ),
~( K & L ), ~( J & L ) }
- { ( M v ~N ) & ( N v ~O
), ~( M & O ), M v (~N & ~O ) }
- {[P v ( Q & ~R )] &
~~( ~S & T ), ~~~T, ~S v ( Q & R ), ~[ P & ( ~R v
T )]}
Back
to Syllabus