Philosophy 251: Handout #6
X. Determine the truth value of each of the following formulas, given that the truth values of the atomic formulas are as follows--P = F, Q = T, R = T.
1. ~[~P v ( ~ Q v ~R )] | 6. ~[ P v ( ~Q & ~R )] |
2. ( P Q ) v ( Q R ) | 7. ( P Q ) ( Q R ) |
3. ( P Q ) v ( Q R ) | 8. ~P ( Q R ) |
4. ~[ R ( P v Q ) ] & ~~R | 9. ~[~P ~( R ~ [ P ( Q & R )])] |
5. ~( R ~P ) & [ Q ( P & R )] | 10. ~ [~( P ~Q ) ~P ] ( Q v R ) |
XI. Construct complete truth tables for each of the following formulas. For each formula determine whether the formula is contingent, a tautology, or a contradiction.
1. A ( B A ) | 6. ( C ~C ) ~( C ~C ) |
2. ( ~F & ~ G ) v ~( F v G ) | 7. ( D E ) ( ~D ~E ) |
3. ~H [( H v I ) I ] | 8. [( J v K ) & ( J v L )] ~( K v L ) |
4. ( M ~M ) & ( N O ) | 9. ~[[( P v Q ) & ( Q v R )] & (~P & ~ R)] |
5. ( S v ~T ) ~~( T S ) | 10. [( X v ~Y) & ~( X & Y )] ~Z |
XII. For each of the following
pairs of formulas determine whether imples , implies , or whether and are logically equivalent.
|
|
|
|
1. ~( A & B ) | ~( A v B ) | 4. C ( D C ) | ( C & ~C ) v ( E E ) |
2. X ( ~X X ) | ~ ( X ~X ) | 5.~( O & P ) ( P ~R ) | ( O & P ) ~R |
3. ( Q & ~U ) v S | Q v ~ ( ~S & U) |
XIII. For each of the following arguments, construct a truth
table to determine whether the argument is valid or invalid.
1. A ( B & C ),
B C, ~B / ~A
2. D v ( E & ~ F ), ( F
E ) D, ~D v F
/ ~( E v F )
3. ( G ~H ) & H, (
H v [( I G ) & I ])
~G / H
~D
4. ~( J K ), ~J, ~K / L
& ~L
5. ( M N )
( N O ), N / M
O
6. P v P, [ ~P ( ~
Q v ~ R ) ] & [( ~Q v R ) v ( ~P v R )] / R
7. ( S T ) v ( ~S T ) / (~S ~T
) v ~( S T )
8. [( U & W ) & X ] v ( ~U
~X ), U W, W
X / W X
9. ~~Y ~~Z, ~Z
~Y / Z Y
10. [A & ( B v C )] (
A v B ), B ~B /
C v A