Philosophy 251: Handout #18
XXXIX. For each of the following
arguments construct a countermodel to prove that the argument
is invalid.
- x( Fx Gx
), x( Hx Gx
) / x( Hx & Fx )
- y( Fy Fa
), Fa / ~Fb
- x( Bx Cx
), xBx / xCx
- x(
Bx Cx ), xCx
/ xBx
- x( Fx Gx
), x( Hx ~Fx
) / x( Hx Gx
)
- xy~Lxy / x~Lxx
- x( Fx Gx
) xNx, x(
Nx Gx ) / x(
~Fx v Gx )
- ( ~yFy yFy ) v ~Fa / zFz
- x(
Fx & Gx ), x( Fx & Hx ) / x( Gx &
Hx )
- x( Fx Gx
), x( Hx Gx
) / x( Fx v Hx )
XL.
For each of the following arguments determine whether the argument
is valid or invalid. For those that are valid construct a derivation;
for those that are invalid construct a countermodel.
- xy(
Hxy v Jxy ), xy~Hxy / xyJxy
- z( Lz Hz
), x~( Hx v ~Bx ) / ~Lb
- z[ Kzz ( Mz & Nz )], z~Nz / x~Kxx
- Fa v yGya, Fb
v y~Gyb / yGya
- xGx, x( Gx Dxx
) / xy( Gx & Dxy )
- x(
Fx & Gx), xFx, Fa & Gb / x( Fx
v Gx )
- ~x( Ax Bx ) / x( Ax & ~Bx )
- xy( Mxy Nxy ) / xy[ Mxy ( Nxy & Nyx )]
- x~Jx, y( Hby v Ryy ) xJx / y~( Hby v Ryy )
- x( Fx v Hx ) yGy / z[( Fz v Hz ) Gz ]
Back
to Syllabus