Philosophy 251: Handout #17
XXXVII. For each of the following
arguments construct a derivation to prove that the argument is
valid.
- x( Zx yKy
) / x[ Zx y(
Ky v Sy )]
- x~y(
Rxy & ~Uy) x(
Px & Jx ), x~y( ~Uy & Rxy ) / ~x( Px ~Jx )
- x( Hx Fx
), x[( Fx & Uxx ) Wxx ], zUzz / x( Hx Wxx )
- x[( Fx & Gx ) y( Axy & Py )], xy[ Fx & ( Axy & Py )] / x(
Fx & Gx )
- x( Lx Yx
), x( Cx & Yx ) & x( Cx & ~Yx ) / ~x( Cx Lx )
- x( Px Qx
) / ( xPx & xQx ) x( Px & Qx )
- xy[( Ry v Dx ) ~Ky ], xy( Ax ~Ky ), x( Ax v Rx ) / x~Kx
- y( My Ay
), xy[( Bx & Mx) & (Ry & Syx
)], xAx yz(
Syz Ay )
/ x( Rx & Ax )
- xy[( Hky & Hxk ) Hxy ], z( Bz Hkz ), x( Bx & Hxk )
/ z[ Bz & y( By Hzy )]
- x{( Fx & ~Kx ) y[( Fy & Hyx ) & ~Ky ]},
x[( Fx & y[( Fy & Hyx ) Ky ]) Kx ] Mp / Mp
XXXVIII.
For each of the following arguments construct a derivation to
prove that the argument is valid.
- x( ~Bx ~Wx ), xWx / xBx
- xyzGxyz / xyz( Gxyz Gzyx )
- x( Hx yRxyb
), xz( Razx Sxzz ) / Ha xSxcc
- ~x( Fx & Aix ) ~xKx , y[ x~( Fx & Aix ) & Ryy ] / ~xKx
- z( ~Lz v yKy ) / zLz yKy
- x(
Jxa & Ck ), x( Sx & Hxx ), x[(
Ck & Sx ) ~Ax
] / z( ~Az & Hzz )
- x[
Cx v y( Wxy Cy )], x( Wxa & ~Ca ) / xCx
- xy( Dxy Cxy ), xyDxy, xy( Cyx Dxy ) / xy( Cxy & Cyx )
- / x( Ax Bx ) x( ~Bx ~Ax )
- / x[ Cx ( Cx Dx )] x( Cx Dx
)
- / ~x( Ex v Fx ) x~Ex
- / x( Gx Hx ) v xGx
- / ( xJx xKx ) x(
Jx Kx )
- / x( Lx Mx ) ~x[(
~Lx v ~Mx ) & ( Lx v Mx )]
- / xy( Nx v Oy ) yx( Nx v Oy )
Back
to Syllabus