Philosophy 251: Handout #12
XXV. For each of the following arguments
construct a derivation to prove that the argument is valid.
- ( P & Q ) R /
[ ( P Q )
P ] [ ( P
Q ) R ]
- ( ~P & Q ) R /
( ~Q P )
( ~P R )
- P v Q, P R,
Q v ~R / Q
- ( P v ~Q ) ( R
& ~S ), Q v S / Q
- / ~~[( A v A ) & B ] v ( A
~B )
- F ( G
H ), ~I ( F v H ), ( ~H
~G )
I / I v H
- / [ ( A B )
C ]
[ ~( A & B ) v C ]
- / [ ( A v B ) C ]
[ ( A
C ) & ( B C )
]
- L ( C v T ), ( ~L
v B ) & ( ~B v ~C ) / L
T
- A v B, ~( A & B ) / ( A
B ) ~( B
A )
XXVI. For each
of the following arguments construct a derivation to prove that
the argument is valid.
- ( C & A ) v ( B & C ), ~D
~ ( B v A ) / D
- / [ ( A v B ) v ~ B ] v ~ A
- ~( ~P v ~Q ), [ ( T v Q ) & ( P & R ) ]
( T ~T ) / R ~ T
- / [ ( A B )
& ( B C )]
v ( C A )
- C ~C, ~C
( R T ) / ( T &
T ) v ~R
- / ( A B )
v ( B A )
- ~( R v W ), ( R M )
v [ ( M v G ) ( W
M ) ] / ~M
- P v Q, P v R, Q v R / ( P & Q ) v [ ( P & R ) v (
Q & R ) ]
- / ( A ~ A)
~( A ~ A )
- ( P R ) v ( Q R ) / ( P & Q ) R
XXVII. For each
of the following arguments construct a derivation to prove that
the argument is valid.
- ( A & B ) v ( A & C ) / A
- D v ( E F ),
~F, E / D
- G H, [ G
( H & G )] [ I
& ~( H & K )], ~( H & K )
( I & ~K ) / ~K
- ( M N ), ( N ~L ) / ~( M
L )
- O v ~( ~ P v R ), ~( ~P v R )
~O / ~O ~( ~P v R )
- ( Q & S ) ~T,
U ( T & ~T ),
W [ T & ( Q
& S )] / ~U ~W
- ( ~W v X ) v Y, Y
~Z / ( W & Z ) X
- B ( E F
), A ( C
D ), A v B, ~D & ~F / { H & [ G v ( A & B )]} v (
~C v ~E )
- J v K, ~K ( L
v M ), ( M & N ) v [ M & ( O M
)] / J
- ( P v Q ) v ( R & S ), ( P
T ) & ( Q U
), W ~( T v U ), R
Q / ~W
Back
to Syllabus