Philosophy 251: Handout #11
XXIII. For each of the following arguments
construct a derivation to prove that the argument is valid.
- A
B, B ( C & D ),
~C v ~D / ~A
- ( E & F )
( G v H ), F & E / H v G
- ( J
K ) & ~L, ( ~J M
) v L, ( ~K M )
N / N
- [ ( O v P ) v R ] v ~S, ~( ~S v O ) &
[ ( P v R ) T ]
/ T v U
- ( V v W ) v ( X v Y ), ~W & ~( Y v V
) / X
- ~Z v ( ~A v ~B ), ( B & C ) v D, A /
Z D
- E
( ~F v G ), I ( K
& ~H ), ~( F & ~G )
I / E ( ~H & K )
- / J v ~J
- / ~~~~~( L & ~L )
- / M v [( ~M v N ) & ( ~M v O )]
XXIV. For each
of the following arguments construct a derivation to prove that
the argument is valid.
- ~P
~Q, ~Q ~R, ~R
~P / P Q
- ( ~S & ~T ) v ( ~S & ~U ), ( W &
X ) S / ~ W v ~X
- ( Y & Z ) v ( A & ~B ), B
~( Y & C ) / B ~C
- D
( ~E v F ), D E,
~( F v G ) / D H
- I
( K L ), ~M ( I v L ), I
K / M v L
- N
( O & ~P ), O ( R
& S ), ~S v P / ~N
- [( X & Z ) & Y ] v ( ~X
~Y ), X Z, Z
Y / X Y
- / [( A & B )
( B & A )] & [ ~( A & B )
~( B & A )]
- / [ C
( D & E )] [ (
~D v ~E ) ~C
]
- / [ F v ( G v H )]
[ H v ( G v F )]
- / [ J
( K L )] { J
[( ~K v L ) & ( ~L v K )]}
- / { M v [ N
( M N )]}
{ M v [( ~M v ~N ) v N ]}
- / [ ~P
( ~Q R )]
[( P v Q ) v ( ~~Q v R )]
- / ( ~S
~S ) [ ~( ~S S )
( S ~S )]
- / [ T v ( U
W )] [ T v ( ~U ~W)]
Back
to Syllabus