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ABSTRACT

We explore the general question of correlations among multiple different waveband luminosities in
a flux-limited multiband observational data set. If such correlations are observed, they may either be
intrinsic or induced by similar redshift evolution of the luminosities and/or the selection effects due to
the flux limits. We first develop the question analytically, then use simulated observed flux-limited data
sets with known luminosity correlations and evolutions to explore how the intrinsic nature of luminosity
correlations can be deduced, including exploring the efficacy of partial correlation analysis with redshift
binning in determining whether luminosity correlations are intrinsic. We use these techniques to show
that the observed correlations between mid-infrared and optical luminosities in quasars are intrinsic
to a greater degree than those observed between radio and optical luminosities. We then show that
applying methods that we have developed in recent works can recover the true redshift luminosity
evolutions, density evolutions, and local luminosity functions of populations observed in multiple flux-
limited surveys in different wavebands, whether the luminosities in the wavebands are intrinsically
correlated or not.

1. INTRODUCTION

When dealing with multiwavelength observations of as-
trophysical sources the question often arises whether the
emissions in different wavebands (e.g. optical, radio, in-
frared, X-ray, gamma-ray, etc.) are correlated. Deter-
mining the intrinsic correlations between these emissions
is crucial for addressing large variety of scientific ques-
tions, e.g. the relation between the emission processes
and the sites and mechanisms of the acceleration of par-
ticles (or more generally the energizing of the plasma)
responsible for these emissions. A common practice is
to plot luminosities in two bands against each other for
a sample of observed sources and determine the corre-
lation empirically. However, more often than not such
samples include sources with a large range of distances
such as extragalactic sources with a range of redshifts.4

Such samples are always subject to observational selec-
tion effects that truncate the data. The most common
truncation arises in flux-limited data, where the fact that
lower (higher) luminosities in both bands are dominated
by sources at lower (higher) redshifts introduces a sig-
nificant artificial correlation in the observed luminosi-
ties (e.g. Pavlidou et al. 2012; Antonucci 2011; Feigel-
son & Berg 1983; Khembavi et al. 1986; Chanan 1983).
The situation is even more complicated, however, with
extragalctic sources, where in addition to the observa-
tional selection effects, the different luminosities may un-
dergo similar or different cosmological luminosity evolu-
tion which can itself cause correlations between different
waveband luminosities (Petrosian & Singal 2015). Figure
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sizes much smaller than their distance (e.g. Galactic star clusters,
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1 shows two examples of observed luminosity correlations
in two wavelengths in flux-limited data. The top panel
is from an actual observed data while the bottom panel
is from a simulated obseved data set described below. In
the latter case the population has no intrinsic luminosity-
luminosity correlation by design yet displays a strong
observed luminosity-luminosity correlation. Petrosian &
Singal (2015), using partial correlation coefficients and
Efron-Petrosian non-parametric methods (Efron & Pet-
rosian 1992, 1999), showed that most but not all of the
observed correlation in the top panel is induced by the
selection process.
In this work we explore the question of to what

extent observed correlations in multiwavelength flux-
limited data are indicative (or not) of intrinsic correla-
tions, and develop and verify techniques for directly de-
termining correlations and distributions. In §2 we show
analytically the extent to which i) truncations due to flux
limits of the samples and/or ii) luminosity evolutions in-
duce artificial correlation and the dependence of these
effects on the characteristics of the luminosity functions
(LFs).
It should be noted that the questions under considera-

tions here are relevant not only for luminosity-luminosity
correlations but are important for exploring the correla-
tion, or generally the relation, between any two charac-
teristics (or variables) both of which depend on and are
obtained from the values of a third independent char-
acteristic. In such a case partial correlation coefficients
(based on, for example, Pearson or Kendall statistics)
must be used as explored here. In astrophysical sources
this applies to all extensive characteristics such as lu-
minosity, mass or size, whose values can only be ob-
tained with the measurement of their distances, which
are subject to data truncation and in the case of ex-
tragalactic sources to cosmological evolutions mentioned
above. Thus the procedures and results described here
for luminosity-luminosity correlation is relevant for con-
siderations of correlations between any two (similar or
different) pairs of extensive characteristics.

http://arxiv.org/abs/1806.03738v1
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Fig. 1.— Two examples of observed luminosity-luminosity cor-
relations in multiwavelength flux-limited data. Plotted are the 1.4
GHz rest frame radio luminosity density versus the 2500 Å rest
frame optical luminosity density for quasars in a real (top) com-
bined flux-limited radio-optical data set from Singal et al. (2013)
and a simulated (bottom) combined flux-limited radio-optical
data set subject to similar flux limits with known input param-
eters and no intrinsic luminosity-luminosity correlation developed
in this work (discussed in §3). Colors represent different redshift
bins. Black points are z ≤ 0.5, dark blue points are 0.5 < z ≤ 1.0,
light blue points are 1.0 < z ≤ 1.5, green points are 1.5 < z ≤ 2.0,
yellow points are 2.0 < z ≤ 2.5, orange points are 2.5 < z ≤ 3.0,
and red points are z > 3.0. Also shown for the real data are lines of
constant raw R (defined as the ratio of the 5 GHz radio luminosity
to the 2500 Å optical luminosity), and the limiting luminosities for
inclusion in the sample at example redshifts of z = 1 and z = 3.
It is clear that selection and redshift evolutions can induce a cor-
relation between the different waveband luminosities that is not
intrinsic.

In §3 we introduce and explore simulated data sets
with known intrinsic characteristics of the LF with dif-
ferent degrees of intrinsic correlation between different
waveband luminosities. In §4 we explore the efficacy of
partial correlation analysis with redshift binning in de-
termining whether luminosity correlations are intrinsic,
and show that the intrinsic correlations can be deduced
by considering the correlations between the de-evolved
luminosities. In §5 we demonstrate that techniques ap-
plied in recent works (Singal et al. 2011, 2012, 2014, 2013;
Singal 2015; Singal et al. 2016), based on extensions of
methods first proposed by Efron and Petrosian (Efron &
Petrosian 1992, 1999) can recover the intrinsic distribu-
tions and correlations of the luminosities and redshifts
in flux-limited multiwavelength data. We summarize the
main results in §6.

2. ANALYTICAL CONSIDERATIONS

Let us consider the general trivariate luminosity func-
tion (LF) Ψ̄(x, y, r) where x and y stand for dimension-
less luminosities ({x, y} = L{x,y}/L0), in two different
photon energy bands, and r stands for a measure of the
distance (in units of c/H0) of the object, such as redshift
z or Z ≡ 1 + z, such as the co-moving distance

r =

∫ Z

1

dZ ′/
√

1 + Ωm(Z ′3 − 1) (1)

or luminosity distance rL = rZ. In what follows we
will use the last choice, i.e. r will stand for rL.

5 The
luminosities in a sample are calculated from the observed
fluxes fx, fy. We express these dimensionless fluxes in
units of fiducial flux f0 = L0/[4π(c/H0)

2] so that we get
{x, y} = r2f{x,y}.
Without loss of generality we can write

Ψ̄(x, y, r) = Ψ(x, y, r)ρ(r), (2)

with ρ(r) describing the density evolution. The observed
distribution of a sample of sources with flux limits fl,x
and fl,y (in units of f0) is related to these intrinsic dis-
tributions as

d3N/dxdy dr = (dσ/dr)Ψ(x, y, r)Θ(x − xm)Θ(y − ym)
(3)

where Θ(x) is the step function (=1, for x > 0 and
=0 otherwise), and the distance related distribution (cu-
mulative density evolution) and limiting luminosities are
given as

dσ/dr = ρ(r)(dV/dr), xm(r) = r2fl,x, ym(r) = r2fl,y.
(4)

For convenience we also define bivariate observed lumi-
nosity distribution

d2N/dxdy ≡ N(x, y) =

∫ ∞

0

(d3N/dxdy dr) dr (5)

and mono-variate distributions

dN/{dx, dy} ≡ N({x, y}) =

∫ ∞

{xm,ym}

N(x, y) d{x, y},

(6)
and use the observed moments of these distributions to
determine the correlation between the two luminosities.
For example, we can determine if the observed average
value of x depends on y:

〈x(y)〉 =

∫∞

0
x d2N/(dx dy) dx

dN/dy
. (7)

We start first assuming that the luminosities are un-
correlated (i.e. x and y are independent) and see if
data truncation induces a correlation in an observed
sample. In this case we can separate the variables as
Ψ̄(x, y, r) = ψ(x)ψ(y)ρ(r). Clearly in this case the in-
trinsic average values of variables are constants:

〈x〉 =

∫∞

0 xψ(x) dx
∫∞

0 ψ(x) dx
= xint = Const.. (8)

5 Note that in a static Euclidean case (for example if one is
dealing with Galactic or nearby extragalactic sources) all these
measures of distance are equivalent.
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In what follows we will consider several cases starting
with the (mathematically) simplest case.

1. Simple Power law LFs and No Luminosity Evolu-
tion:

Here ψ(x) = φxx
−δxΘ(x − x0) (similarly ψ(y) =

φyy
−δyΘ(y − y0)). The no luminosity evolution

implies that φx, x0 and δx are independent of r.
The truncation due to flux limits introduces dis-
tances r0,x =

√

x0/fl,x and r0,y =
√

y0/fl,y below
which the sample is not truncated. We assume that
r0,x < r0,y and calculate the average value of x in
the sample as a function of y (or vise versa in the
opposite case). The intrinsic average value (for un-
truncated data) xint = x0(δx − 1)/(δx − 2) but for
the truncated data average values is given as:

〈x(y)〉 =

∫ r0,x
0

dσ
∫∞

x0
dxx1−δx +

∫ ζr0,x
r0,x

dσ
∫∞

xm

dxx1−δx

∫ r0,x
0

dσ
∫∞

x0
dxx−δx +

∫ ζr0,x
r0,x

dσ
∫∞

xm

dxx−δx
.

(9)

where ζ = (r0,y/r0,x)
√

y/y0 > 1. In order to eval-
uate these integrals we need the functional form of
dσ/dr which involves the product of two functions;
the density evolution and the co-moving volume. In
general this product is a complex function of any
of the above three measures of distance (z, r, dL),
in particular the last one being used here. Let us
assume that we can approximate this with a power
law, dσ/dr ∝ r2+α, with α presenting roughly an
evolution index. We then have

〈x(y)〉 = xint×
1 + (3 + α)

∫ ζ

1
η2+γdη

1 + (3 + α)
∫ ζ

1 η
γdη

with γ = 4+α−2δx.

(10)
so that the result depends primarily on the index γ.
For γ > −1 (α−2δx > −5) the average value starts
from near unity and rises quickly as 〈x(y)〉 ∝ y
with increasing y, while in the opposite limit of
γ < −3 we get 〈x(y)〉 ∼ const., and in between it
varies more slowly than linearly with y. This indi-
cates that in general data truncation induces some
correlation between the luminosities and this cor-
relation becomes stronger for larger values of the
density evolution index α and flatter LFs (smaller
δx). This is as expected because both these ef-
fects result in a greater segregation of high and low
luminosity sources at high and low redshifts, re-
spectively, in the luminosity-luminosity scatter di-
agrams as shown in Figure 1.

2. Broken Power Law LFs

If broken power law applies only to one variable,
say break of LF(x) at xbr, then as evident from the
above analysis the shape of the other LF (namely y)
is unimportant, and the only complication is that
in equation 9 we get three integrals in both the nu-
merator and the denominator (the second integral
gets divided into two at the break luminosity). As
indicated above a steeper LF induces weaker corre-
lation, thus we expect that a steepening of the LF
at higher luminosities, which is often the case for
most astronomical sources, will reduce this effect.

This can be seen by considering a very large steep-
ening (i.e. a large increase in value of δx instead of
changes of order unity seen in AGNs) which essen-
tially sets a ceiling for the average near a value at
the break luminosity (〈x(y)〉 → xrmbr).

Now if the other LF also suffers a break (steepen-
ing at ybr as is common) then the integration limits
become complicated depending on the relative val-
ues of the break luminosities and relative values of
high luminosity indexes. In this case a numerical
calculation, for specific parameters of the LFs, is
required.

3. Effects of Luminosity Evolution

If the sources undergo luminosity evolution in one
or both luminosities with forms x = x′gx(r) and
y = y′gy(r), where x′ and y′ will be referred to
as the “local luminosities” if we normalize the evo-
lution function so that g(0) = 1. As evident from
above analysis the LF ψ(y) does not affect the aver-
age value of x but luminosity evolution in x alters
the integrand in integration over the distance. If
we carry out a variable change x′ = x/gx(r) we get
an equation very similar to equation 9 with x re-
placed by x′ and dσ/dr in the numerator changed
to dσ/dr×gx(r). This clearly adds the density evo-
lution inducing an increase index of the α, which
as mentioned above increases the variation of the
average x with y and the false correlation of the
luminosities.

In summary, the above results show that for the types
of LFs and luminosity evolutions seen in AGNs at vari-
ous wavelength bands the truncation of the data due to
observational selection effects induces an artificial corre-
lation between luminosities the degree of which depends
on the functional forms of the LFs and luminosity evo-
lutions. The simulations below confirm these analytic
results.

3. SIMULATED DATA SETS

In order to explore the effects of redshift evolutions
and observational selection effects on populations with
known intrinsic properties we simulate populations with
luminosities in two different wavebands that are then ob-
served with two hypothetical flux-limited surveys. To de-
velop and highlight comparisons with recently explored
real populations (e.g. Singal et al. 2013, 2016) we have as-
sumed this simulated population to be ‘quasars’ observed
by large area surveys and labeled the two wavebands ‘op-
tical’ and ‘radio,’ but the conclusions as far as issues of
luminosity-luminosity correlations and population distri-
butions are entirely general.

3.1. Simulated Population Characteristics

We have distributed the populations according to the
following intrinsic characteristics, now switching nota-
tion in some cases to be more concrete: La is the lumi-
nosity in a given waveband. The populations have intrin-
sic “local” (that is before any redshift evolution effects
are considered) differential (and cumulative) luminosity
functions which obey a simple power law of the form

ψa(L
′
a) = −

dΦ(L′
a)

dL′
a

= ψ0,a(L
′
a)

δaΘ(L′
a − L0,a), (11)
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and introduce luminosity evolution with the functional
form used for our AGN studies which has been shown to
be a good fit to the data (Singal et al. 2013, 2016):

La(z) = L′
a × ga(z) with ga(z) =

Zka

1 + (Z/Zcr)ka
(12)

where Z ≡ 1 + z as above, with potentially different
parameters (δa, L0,a, ka) for each waveband. The popu-
lation also is simulated to have a co-moving density evo-
lution ρ(z) or the differential number evolution

dσ(z)

dz
= ρ(z)

dV

dz
∝ e

−(z−zm)2

2s (13)

where σ(z) is the cumulative number evolution with zm
and s as the mean redshift and variance. With the popu-
lation characteristics distributed in this way, the overall
luminosity function in a waveband a can be expressed as

Ψ̄a(La, z) = ρ(z)ψa

(

La

ga(z)

)

/ga(z), (14)

from which we can get the total number of observed ob-
jects to be

Ntot =

∫ zmax

0

dz

∫ ∞

Lmin(z)

dLa ρ(z)
dV

dz

ψa(La/ga(z))

ga(z)
,

(15)
where the value of Lmin(z) depends on the flux limit of
the sample in waveband a.
In what follows we simulate a population in two dif-

ferent bands which we will call optical and radio with a
simple power law intrinsic correlation between the local
(prior to any redshift evolution) luminosities:

L′
rad ∝ (L′

opt)
α (16)

where α is the correlation index. We explore the values
α = 0.0 (i.e. no correlation) and two different degrees of
correlations with α = 0.5 and 1.0.
For the luminosity evolutions, in order to span values

approximately matching the intrinsic characteristics of
real populations from previous analyses, we adopt the
value Zcr = 3.7 and kopt = 3.0 and krad = 4.5. For
the luminosity functions and density evolution, also to
approximate intrinsic values seen in previous analyses,
we adopt power law indexes, δopt=-2 and δrad=-2, and
zm = 2 and s=0.75. We also assume that the spectrum
of sources in the short range of frequencies around each
band can be approximated by a power law

La ∝ ν−εa (17)

with photon index values of εopt = 0.5 and εrad = 0.4.
We form Monte Carlo populations with these distribu-
tions by inverse transform sampling which allows random
numbers to be generated uniformly on the interval [0,1]
(e.g. Miller et al. 2010). For concreteness we consider
the optical luminosity density at 2500 Å and the radio
luminosity density at 1.4 GHz.

3.2. Simulated Selection Effects

With the populations simulated according to the in-
trinsic characteristics of §3.1, we then apply simulated
flux-limited “observations” in both wavebands. For sim-
plicity, straightforwardness, and a connection to real

Fig. 2.— The optical luminosities vs. redshift for the observed
simulated data sets, for the case of intrinsically correlated (top —
α = 1.0) and intrinsically uncorrelated (bottom — α = 0) radio
and optical luminosities.

data, the optical survey is taken to observe in a filter
equivalent to the Sloan Digital Sky Survey (SDSS) i band
(e.g. Schneider et al. 2010) and have a universal magni-
tude limit of 19.1 that band, and the radio survey is
taken to be observing at 1.4 GHz have a universal flux
density limit of 1 mJy. The former is a simplified version
of a limit that can be taken for the SDSS data release 7
quasar catalog (Schneider et al. 2010) and the latter is a
simplified version of the limit of the Faint Images of the
Radio Sky at Twenty one centimeters (FIRST) survey
(Becker et al. 1995). The flux density for a given object
j in waveband a, fj,a, is related to its luminosity denisty
in that waveband by

fj,a =
Lj,aKa(z)

4 πDL(z)2
(18)

where DL(z) is the luminosity distance determined from
the standard cosmology and Ka(z) is the K-correction
factor. For a power law spectrum as in equation 17 the
K-correction factor is

Ka(z) = (1 + z)1−εa (19)

Because an optical observation is needed to identify a
quasar via colors and provide a spectroscopic redshift,
only those objects whose flux density is greater than the
corresponding limit in both wavebands is considered to be
part of the observed sample. For ease of comparison we
randomly select 10000 sources to comprise the observed
sample in each case. In Figures 2, 3, 4, and 5 we show
the optical luminosities vs. redshift, radio luminosities
vs. redshift, radio luminosities vs. optical luminsities,
and radio fluxes vs. optical fluxes, respectively, for the
“observed” simulated data sets.

4. ANALYSIS WITH BINNED PARTIAL CORRELATIONS

Here we explore the efficacy of determining correla-
tions with data binned in redshift. In the limit of
infinitessimally narrow bins, the data within each bin
should have no appreciable luminosity evolution and
will be truncated parallel to the axes in the luminosity-
luminosity plane, and therefore the phenomena that in-
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Fig. 3.— The radio luminosities vs. redshift for the observed
simulated data sets, for the case of intrinsically correlated (top —
α = 1.0) and intrinsically uncorrelated (bottom — α = 0) radio
and optical luminosities.

Fig. 4.— The optical vs. radio luminosities for the observed
simulated data sets, for the case of intrinsically correlated (top
— α = 1.0) and intrinsically uncorrelated (bottom — α = 0)
radio and optical luminosities. As in Figure 1 it is clear that the
observed luminosities can be correlated even if there is no intrinsic
correlation between them.

duce luminosity-luminosity correlations discussed in §1
will be irrelevant. Thus redshift binning has been used
as a technique to deduce intrinsic luminosity-luminosity
correlations (e.g. Pavlidou et al. 2012). The question
still arises, however, whether analysis in finite-sized bins
where these effects do not disappear completely is effec-
tive.
A standard measure of partial correlations is the Pear-

son partial correlation coefficient (PPCC — e.g Rao &
Sievers 2007), which expresses the partial correlation be-
tween two variables discounting their mutual dependence
on a third:

r12,3 =
r12 − r13r23

[(1− r213)(1 − r223)]
1/2

(20)

where rab is the standard sample product moment cor-

Fig. 5.— The i band optical vs. 1.4 GHz radio fluxes for the
observed simulated data sets, for the case of intrinsically correlated
(top — α = 1.0) and intrinsically uncorrelated (bottom — α = 0)
radio and optical luminosities.

relation (PMC) between variables a and b

rab =

∑

i(ai − a)(bi − b)

Nσaσb
(21)

where σa =
∑

√

1
N (ai − a)2 is the standard deviation of

the a values and N is the total number of data points.
It is important to note that the PMC and PPCC are

measures of the extent to which two variables are cor-
related, in the sense of being related by some function.
However, they do not shed any light on the nature of
the correlation function itself, and a higher value does
not necessarily indicate a steeper correlation function,
only that the data more closely adhere to the function
whatever it may be. In this work we calculate PMCs
and PPCCs based on the logarithm of the luminosities,
in order to reduce the potential outsize effect of a small
number of objects with a very high luminosity in a given
bin.
We bin the data and then examine a) the two

luminosity-redshift correlations, b) the luminosity-
luminosity correlation, and c) the partial luminosity-
luminosity correlation for two cases: i) the raw observed
luminosities, and ii) the so-called “local” luminosities
with the best-fit redshift evolution removed. The differ-
ences between the luminosity-luminosity full and partial
correlations between the two cases can reveal how much
of the luminosity-luminosity correlation is physically real
and how much is due to redshift evolution.
The most effective binning method for our needs, tak-

ing into consideration the data that we deal with, was
found to be an equal number of objects per bin since ob-
jects are distributed unevenly across redshift. If we di-
vide bins instead with uniform redshift size per bin, the
few highest redshift bins end up with too few objects,
resulting in unrealistic, erratic, and unreliable correla-
tion coefficients for these bins. The number of objects in
the least populated bins could be increased by increas-
ing the width of the bins in redshift, but this leads to
severely flux-limit induced correlations as discussed be-
low. On the flip side, having an equal number of ob-
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Fig. 6.— Radio-redshift, optical-redshift, and radio-optical
PMCs, and radio-optical partial with redshift PPCCs in 20 bins
of redshift with an equal number of objects per bin for raw (top)
and local (bottom) luminosities for the intrinsically uncorrelated
simulated observed radio and optical quasar data. Points are plot-
ted at the average redshift and correlation values for each bin.

jects per bin and many bins would lead to bins with
excessively small redshift ranges due to a high number
of objects at those redshifts. While this does not make
the luminosity-luminosity correlations unreliable, it does
hide redshift-dependent correlations since the redshift
range is too small to detect redshift dependent corre-
lations. The optimum number of bins is thus the result
of a trade-off between having some of the bins be too
narrow and some too wide, and depends on the size of
the data set.

4.1. Partial Correlation Analysis with Simulated Data

Important considerations can be investigated by exam-
ining raw as well as local luminosities for the uncorrelated
and correlated simulated data sets discussed in §3. For
the best-fit redshift evolutions to achieve the local lumi-
nosities, we use evolutions of the form of equation 12 with
the known input evolutions for the simulated data sets.
Alternately, in the absence of this knowledge, the red-
shift evolutions could be determined with the methods
of §5.1.
Figure 6 shows intrinsically uncorrelated simulated

radio-optical data in 20 bins of redshift for both raw
(top panel) and local luminosities (bottom panel). As
expected, the radio-optical partial correlation coefficients
for both raw and local luminosities are all approximately
zero since this simulated data was designed to have no
intrinsic correlation between the optical and radio lumi-
nosities. As hypothesized, in the top panel of Figure 6,
we can see the radio-redshift and optical-redshift corre-
lation coefficients to be non-zero since the populaion has

luminosity evolution. Since we are not using infinitesi-
mally small redshift bins, there is an automatic influence
of the flux-limit on the luminosities vis-a-vis redshift,
which further contributes to a higher radio-redshift and
optical-redshift correlation. Moreover, the radio-optical
full correlation coefficients can be observed to be rela-
tively higher than the partial correlation coefficients be-
cause the former are not disregarding their mutual de-
pendence on redshift. This plot also demonstrates the
contrast between using large versus small bins. The last
bin in the top panel of Figure 6, at around average red-
shift of three, is the largest in redshift range since there
are many fewer objects at higher redshifts. We can see
that this bin has a relatively much higher observed de-
pendence of the luminosities on redshift and thus has a
higher radio-optical luminosity full correlation as well.
This phenomenon was expected and is due to two rea-
sons; one, as we discussed earlier, having larger redshift
ranges brings in the flux-limit effect into the luminosity
dependence on redshift, automatically and misleadingly
strengthening the correlation between luminosities and
redshift; and two, having a larger redshift range allows
for a more accurate determination of the true correlation
between the luminosities and redshift since with smaller
redshift bins we potentially have an inadequate redshift
range to extract an accurate correlation from.
In comparison, we expected luminosity dependence on

redshift and thus the radio-optical full correlations to
drop in the bottom panel of Figure 6 since the utilization
of local luminosities removes the best-fit redshift evolu-
tion from the raw luminosities, allowing us to observe
correlations that exist sans redshift dependence. This
is exactly what is seen, as the full radio-optical and the
partial radio-optical correlation coefficients align almost
perfectly with each other in the bottom panel of Fig-
ure 6. However, local luminosities still do not remove
the effect of the flux-limit, which is why we do not see a
completely non-existent redshift dependence in luminosi-
ties, and which is why the last bin still has a relatively
higher luminosity dependence on redshift than the other
bins.
Figures 7 and 8 show the cases of intrinsically corre-

lated simulated radio-optical data, with the correlation
power law index (c.f. equation 16) α=1.0 and 0.5, re-
spectively, in 20 bins of redshift for both raw (top panel)
and local luminosities (bottom panel), which manifests
some distinctly contrasting features when compared to
the uncorrelated cases. As anticipated, the radio-optical
partial correlation coefficients for both the top and bot-
tom panels of Figures 7 and 8 are all much higher than
in Figure 6 since the simulated data was designed to
have intrinsic correlation between the luminosities. The
luminosity-redshift correlations are generally non-zero in
the top panel of Figures 7 and 8 because of factors dis-
cussed earlier for the uncorrelated cases (i.e. an intrin-
sic luminosity-redshift dependence as well as flux-limit
induced luminosity-redshift correlation), but drop lower
(almost to zero) in the bottom panel of Figures 7 and
8 since using local luminosities removes their intrinsic
dependence on redshift.
We see from considering these simulated data sets that

full and partial correlation analysis in appropriately sized
bins of redshift is a useful tool for determining presence or
lack of, and at least qualitiatively the degree, of intrinisic



Luminosity Correlations 7

Fig. 7.— Radio-redshift, optical-redshift, and radio-optical
PMCs, and radio-optical partial with redshift PPCCs in 20 bins
of redshift with an equal number of objects per bin for raw (top)
and local (bottom) luminosities for the intrinsically 1.0-correlated
simulated observed radio and optical quasar data. Points are plot-
ted at the average redshift and correlation values for each bin.

correlation between luminosities in a doubly flux-limited
sample.

4.2. Partial Correlation Results with Real Data

We now perform a partial correlation analysis with the
real observed two-flux-limited data set of quasar optical
and radio luminosities used in Singal et al. (2013), and
the real observed two-flux-limited data set of quasar op-
tical and mid-infrared luminosities used in Singal et al.
(2016). The best-fit redshift evolutions for the luminosi-
ties of the form of equation 12 are determined in those
works respectively, with methods verified here in §5.
Figure 9 shows the PMCs and PPCCs for the optical-

radio data set with ten bins of redshift for both raw (top
panel) and local luminosities (bottom panel). As this
data set is quite a bit smaller than any of the simulated
data sets or the optical-mid-infrared data set, a smaller
number of bins is warranted as discussed above. As can
be seen there, the radio-optical PPCCs are small yet not
insignificant, with only two bins exhibiting radio-optical
PPCCs equal to or less than zero. The radio-optical
PMCs align almost perfectly with the PPCCs in the bot-
tom panel of Figure 9, indicating that removing the red-
shift evolution removes almost all of the excess induced
correlation between the luminosities. The radio-optical
PPCCs maintain their magnitudes across both the panels
of Figure 9, providing us a fairly reliable confirmation of
the small yet not insignificant correlation between radio
and optical luminosities.
Figure 10 shows real mid-infrared and optical data in

20 bins of redshift for both raw (top panel) and local

Fig. 8.— Radio-redshift, optical-redshift, and radio-optical
PMCs, and radio-optical partial with redshift PPCCs in 20 bins
of redshift with an equal number of objects per bin for raw (top)
and local (bottom) luminosities for the intrinsically 0.5-correlated
simulated observed radio and optical quasar data. Points are plot-
ted at the average redshift and correlation values for each bin.

luminosities (bottom panel). Figure 10 can be observed
to clearly have features quite similar to the case of in-
trinsically correlated simulated data, as shown in Figure
7. Figure 10 displays high luminosity-luminosity PMC
and PPCC values across all bins, signifying a high in-
trinsic correlation between mid-infrared and optical ra-
diation being emitted by the observed quasars. Once we
remove the intrinsic redshift-evolution of the luminosi-
ties and use local luminosities (bottom panel of Figure
10), the infrared-optical PMCs drop slightly compared to
the case of raw luminosities (top panel of Figure 10) and
align almost perfectly with the PPCCs. This indicates
that the non-intrinsic, flux-limit induced redshift depen-
dence of the luminosities is almost negligible in all but
the highest redshift bin, where even in the bottom panel
the full infrared-optical PMC of the highest redshift bin
is larger than the PPCC. This anomalous behavior pre-
dictably signifies that the highest redshift bin still has a
non-intrinsic redshift dependence of luminosities owing
to the relatively larger redshift range.
These results indicate that the mid-infrared and optical

luminosities are highly intrinsically correlated whereas
the radio and optical luminosities characterize a much
smaller, although still present, intrinsic correlation. We
briefly discuss the physical implications of this in §6.

5. DEMONSTRATION OF NON-PARAMATRIC
TECHNIQUES WITH SIMULATED DATA SETS

In recent works (Singal et al. 2011, 2012, 2014, 2013;
Singal 2015; Singal et al. 2016) we used multiwavelength
extensions of methods first proposed by Efron and Pet-
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Fig. 9.— Radio-redshift, optical-redshift, and radio-optical
PMCs, and radio-optical partial with redshift PPCCs in ten bins
of redshift with an equal number of objects per bin for raw (top)
and local (bottom) luminosities for the real observed radio and
optical quasar data from Singal et al. (2013). Points are plotted at
the average redshift and correlation values for each bin.

rosian (Efron & Petrosian 1992, 1999) to recover the in-
trinsic distributions and correlations of the luminosities
and redshifts in flux-limited multiwavelength data. Here
we apply these techniques to the simulated data sets de-
veloped in §3.

5.1. Redshift Evolutions

We determine the correlations between luminosity and
redshift by using a variant of a rank test statistic mod-
ified with the use of associated sets which are unbiased
sets for comparison. The test statistic

τ =

∑

j (Rj − Ej)
√

∑

j Vj

(22)

tests the independence of two variables in a dataset, say
(xj , yj) for j = 1, . . . , n. Here Rj is the dependent vari-
able (y) rank of the data point j in a set associated
with it, Ej = (1/2)(n + 1) is the expectation value and
Vj = (1/12)(n2+1) is the variance, where n is the number
of objects in object j’s associated set. For untruncated
data (i.e. data truncated parallel to the axes) the set
associated with point j includes all of the points with
a lower (or higher, but not both) independent variable
value (xk < xj). If the data is truncated one must form
the associated set consisting only of those points of lower
(or higher, but not both) independent variable (x) value
that would have been observed if they were at the x value
of point j given the truncation (see e.g. Singal et al.
(2014) for a fuller discussion of these points).

Fig. 10.— Mid-infrared-redshift, optical-redshift, and infrared-
optical PMCs, and infrared-optical partial with redshift PPCCs in
20 bins of redshift with an equal number of objects per bin for
raw (top) and local (bottom) luminosities for real observed mid-
infrared and optical quasar data from Singal et al. (2016). Points
are plotted at the average redshift and correlation values for each
bin.

If (xj , yj) are independent then the ranks Rj should
be distributed randomly and τ should sum to near zero.
Independence is rejected at the mσ level if | τ | > m.
To find the best fit correlation bewteen y and x the y
data are adjusted by defining y′j = yj/F (xj) and the
rank test is repeated, with different values of parameters
of the function F until y′ and x are determined to be
uncorrelated.
In the case here of multiband luminosity and redshift

data, for determining the redshift evolution of luminos-
ity we can treat redshift as the independent variable and
the luminosities as dependent variables. The problem
becomes one of determining the evolution factors ka(z)
in the functions ga(z) in equation 12 which render each
luminosity uncorrelated with redshift. In the three di-
mensional case, properly taking into account the data
truncations is important because we now are dealing with
a three dimensional distribution (Lrad, Lopt, z) and two
correlation functions (grad(z) and gopt(z)), plus we can
find the true intrinsic correlation in this case because
the truncation effects in the luminosity-redshift space are
known and redshift is the independent variable in both
cases.
Since we have two criteria for truncation, the associ-

ated set for each object k includes only those objects that
are sufficiently luminous in both bands to have been in
the survey if they were located at the redshift of the ob-
ject in question. The luminosity cutoff limits for a given
redshift must also be adjusted by factors of gopt(z) and
grad(z). Consequently, we have a two dimensional mini-
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Fig. 11.— The 1σ, 2σ, and 3σ contours for the simultaneous best
fit values of kopt and krad of the simulated samples, for the forms of
the luminosity evolutions given by equation 12, and for simulations
with intrinsic (solid) and no intrinsic (dashed red) correlations be-
tween the luminosities. It is seen that the input intrinsic luminosity
evolutions (kopt = 3.0 and krad = 4.5 — see equation 12 in §3.1)
are recovered to within small deviations.

mization problem, because objects will drop in and out
of associated sets as gopt(z) and grad(z) change, leading
to changes in the calculated ranks in equation 22.

We form a test statistic τcomb =
√

τ2opt + τ2rad where

τopt and τrad are those evaluated considering the objects’
optical and mid-infrared luminosities, respectively. The
favored values of kopt and krad are those that simultane-
ously give the lowest τcomb and, again, we take the 1σ
limits as those in which τcomb < 1. Figure 11 shows
the 1 and 2 σ contours for τcomb as a function of kopt
and krad for the simulated data sets. We see that the
input intrinsic luminosity evolutions are recovered. We
note here that we were able to recover the input intrinsic
luminosity evolutions in the case of the intrinsically cor-
related luminosities without consideration of an orthog-
onal “correlation reduced” radio luminosity as explored
in previous works (e.g Singal et al. 2013).

5.2. Density Evolution

One can define the cumulative density function

σ(z) =

∫ z

0

dV

dz
ρ(z) dz (23)

which, following Petrosian (1992) based on the method
of Lynden-Bell (1971) which is equivalent to a maximum
likelihood estimate, can be calculated by

σ(z) =
∏

j

(1 +
1

m(j)
) (24)

where the set of j includes all objects with a redshift
lower than or equal to z, and m(j) is the number of ob-
jects with a redshift lower than the redshift of the object
at redshift z which are in that object’s associated set. In
this case, the associated set is again those objects with
sufficient optical and radio luminosity that they would
be seen if they were at redshift z. The use of only the

Fig. 12.— The differential density function dσ(z)/dz vs. redshift
determined from the simulated data sets calculated as in §5.2, for
the cases of intrinsic (stars) and no intrinsic (squares) correlations
between the luminosities. The normalization of dσ(z)/dz here is
arbitrary. It is seen that the input intrinsic redshift distribution of
the population (zm = 2.0, s = 0.75 — see equation 13 in §3.1) is
relatively closely recovered. For referece a Gaussian function with
these input distribution characteristics is also plotted.
associated set for each object accounts for the biases in-
troduced by the data truncation.
However, to determine the density evolution, the lumi-

nosity evolution determined in §5.1 must be taken out.
Thus, the objects’ optical and infrared luminosities, as
well as the optical and infrared luminosity limits for in-
clusion in the associated set for given redshifts are scaled
by taking out factors of gopt(z) and grad(z) which are
determined as above. The preceding method is fully ad-
equate if there is a uniform selection function across red-
shift for quasars at a given flux. The differential density
evolution dσ(z)/dz is shown in Figure 12. It is seen that
the input intrinsic redshift distribution of the population
is recovered.

5.3. Local luminosity functions

We first obtain a cumulative local luminosity function

Φa(L
′
a) =

∫ ∞

L′

a

ψa(L
′′
a) dL

′′
a (25)

which, following Petrosian (1992) using the method of
Lynden-Bell (1971), Φa(L

′
a), can be calculated by

Φa(L
′
a) =

∏

k

(1 +
1

n(k)
) (26)

where k runs over all objects with a luminosity greater
than or equal to La, and n(k) is the number of objects
with a luminosity higher than the luminosity of object k
which are in object k’s associated set, which in this case
consists of those objects which would be in the survey if
they were at object k’s luminosity considering the lumi-
nosity limits for inclusion in both optical and radio. The
local luminosity function ψa(L

′
a) is

ψa(L
′
a) = −

dΦa(L
′
a)

dL′
a

(27)

In §5.1 we determined the luminosity evolutions for the
optical and radio luminosities. We can form the local op-
tical ψopt(L

′
opt) and radio ψrad(L

′
rad) luminosity functions
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Fig. 13.— The local optical luminosity function ψopt(L′

opt) for

the simulated data sets, for the for the cases of intrinsic (stars) and
no intrinsic (squares) correlations between the luminosities. It is
seen that the input intrinsic local luminosity distributions of the
populations (δopt = 2.0 — see equation 11 in §3.1) are recovered.
For reference a line indicating a power law slope of δopt = 2.0 is
shown.

Fig. 14.— The local radio luminosity function ψrad(L
′

rad
) for the

simulated data sets, for the for the cases of intrinsic (stars) and
no intrinsic (squares) correlations between the luminosities. It is
seen that the input intrinsic local luminosity distributions of the
populations (δrad = 2.0 — see equation 11 in §3.1) are recovered.
For reference a line indicating a power law slope of δrad = 2.0 is
shown.

straightforwardly, by taking the evolutions out. As be-
fore, the objects’ luminosities, as well as the luminosity
limits for inclusion in the associated set for given red-
shifts, are scaled by taking out factors of grad(z) and
gopt(z), with krad and kopt determined in §5.1.
Figures 13 and 14 show the local differential ψopt(L

′
opt)

optical and radio luminosity functions respectively deter-
mined for the simulated data sets. Here we obtain the
derivative of Φa(L

′
a) by fitting a simple cubic spline inter-

polation to Φa(L
′
a) and taking the derivative at various

points where the spline is well behaved. We see that we
recover the input intrinsic local luminosity functions.

6. DISCUSSION

Understanding the true correlation between luminosi-
ties in different wavebands is important for testing mod-
els in a variety of classes of extragalactic objects. How-
ever it is unavoidably the case that selection effects and
the common positive redshift evolution of luminosity
functions in different wavebands makes determining the
actual presence or absence, and the extent, and the form,
of the intrinsic correlation between different waveband
luminosities for a class of objects from flux-limited sur-
vey data complicated. We showed in Figure 1 that even
intrinsically uncorrelated data can manifest observed lu-
minosity correlations, and developed this analytically for
straightforward scenarios in §2. In the rest of this work,
by considering simulated observational data with known
input population correlations, luminosity functions, and
evolutions as introduced in §3, we derived some results
pertaining to the problem, and here and elsewhere have
applied these techniques to real multiwaveband quasar
and blazar data.

6.1. Partial Correlation Analysis

In §4 we determined via the simulated data sets that
considering full and partial correlations in bins of redshift
is a useful method for determining presence or lack of,
and at least qualitiatively the relative degree, of intrinisic
correlation between two waveband luminosities in a dou-
bly flux-limited sample. We then find there that for real
data sets quasars manifest a very high degree of intrinsic
correlation between mid-infrared and optical luminosities
and a much lower degree of intrinsic correlation between
radio and optical luminosities.
These results are interesting in the context of the mod-

els of how jets are launched by supermassive black holes
and the multifaceted feedback effects in active galaxies
between accretion disks, jets, and tori. In active galaxy
systems, radio luminosity is thought to dominated by
jet emission while optical luminosity is either dominated
by or at least significantly enhanced by accretion disk
luminosity (e.g. Sikora et al. 2007; Broderick & Fender
2011). Mid-infrared emission, on the other hand, may
be dominated by the brightness of a dusty torus which
partially surrounds, and is heated by, the accretion disk
(e.g. Lawrence 1991). In the so-called Blandford-Znajek
mechanism, it is the spin energy of a supermassive black
hole that is tapped for particle acceleration and there-
fore jet creation through a complex process that consid-
ers general relativistic and magnetohydrodynamic effects
(Blandford & Znajek 1977; Blandford 1990). In light
of this model, then, one would expect that larger black
hole size, leading to a larger accretion disk, would corre-
late highly with brighter optical luminosity from the ac-
cretion disk and more mid-infrared luminosity from the
heated torus, as well as brighter radio emission from the
jets as more matter is available for the black hole to ac-
celerate. On the other hand, one would hypothesize that
faster black hole spin would affect primarily only the ra-
dio emission of these bands, as the radio emission alone
of these is dominated by the strength of the jet in par-
ticular.
The very high degree of correlation seen in this analysis

between mid-infrared and optical luminosities in quasars
lends support to the picture of tori being heated by pri-
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marily by accretion disks. The significantly weaker cor-
relation between radio and optical luminosities can be
taken to support the notion that radio emission is af-
fected by both the accretion disk size and the black hole
spin, and maybe most importantly by the latter. These
results support an overall picture where black hole size
determines accretion disk size and luminosity which then
dominates the optical emission and becomes the primary
driver of infrared emission via heating of the torus, while
both black hole spin and size, and perhaps primarily spin,
determine jet strength and therefore the radio luminos-
ity.

6.2. Non-parametric Analysis

In §5 we determined with the simulated data sets
that non-parametric statistical techniques first proposed
by Efron & Petrosian (1992) and Efron & Petrosian
(1999) and extended to multiwavelength analyses in re-
cent works such as Singal et al. (2011), Singal et al.
(2013), Singal et al. (2014), and Singal et al. (2016) can
successfully recover the correct redshift evolutions of lu-
minosities, redshift densities, and luminosity functions of
extragalactic populations catalogued in flux-limited sur-
veys. The above mentioned works have shown, among
other conclusions, that active galaxy systems have man-
ifest, among the wavebands considered, the most dra-
matic redshift evolution with luminosity in the gamma-
ray band, followed by the radio band, followed by the op-
tical band, with the least (although still positive) redshift

evolution of luminosity in the mid-infrared band. These
results, with the highest redshift evolution of luminosity
in the wavebands where emission is most closely tied to
predominantly jet strength (radio and gamma ray), sug-
gest that jet production mechanisms have become pro-
portionally weaker over time compared to mechanisms
that produce primarily optical and mid-infrared emis-
sion (such as accretion disk and torus brightness), again
supporting the picture outlined above where black hole
spin is heavily tied to jet production and the spin energy
of black holes has been tapped for jet launching.
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