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ABSTRACT

We present the redshift evolutions and distributions of the gamma-ray luminosity and photon spectral index of flat
spectrum radio quasar (FSRQ) type blazars, using non-parametric methods to obtain the evolutions and distributions
directly from the data. The sample we use for analysis consists of almost all FSRQs observed with a greater than
approximately 7σ detection threshold in the first-year catalog of the Fermi Gamma-ray Space Telescope’s Large
Area Telescope, with redshifts as determined from optical spectroscopy by Shaw et al. We find that FSQRs undergo
rapid gamma-ray luminosity evolution, but negligible photon index evolution, with redshift. With these evolutions
accounted for we determine the density evolution and luminosity function of FSRQs and calculate their total
contribution to the extragalactic gamma-ray background radiation, resolved and unresolved, which is found to be
16(+10/−4)%, in agreement with previous studies.
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1. INTRODUCTION

The majority of the extragalactic sources observed by the
Large Area Telescope (LAT) on the Fermi Gamma-ray Space
Telescope are blazars (e.g., Abdo et al. 2010a), the type of active
galactic nuclei (AGNs) in which one of the jets is aligned with
our line of sight (e.g., Blandford & Konigl 1979). Among AGNs
only blazars frequently feature prominent gamma-ray emission,
and the gamma-ray emission is an essential observational tool
for constraining the physics of the central engines of AGNs (e.g.,
Dermer 2007). Understanding the characteristics of blazars is
also crucial for evaluating their contribution as a source class to
the extragalactic gamma-ray background (EGB) radiation.

In Singal et al. (2012)—hereafter BP1—we explored the
source counts (the so-called logN–logS relation) of Fermi-LAT
blazars, using those detected with a greater than approximately
7σ detection threshold in the first-year Fermi-LAT catalog, and
determined their contribution to the EGB. Estimating the total
contribution of blazars to the EGB required an extrapolation
of the source counts to lower fluxes, below those detected by
the Fermi-LAT. However, in the presence of luminosity and/or
density evolution with redshift, a more accurate estimate of the
integrated flux from blazars requires determining and factoring
in the evolution of blazars with redshift.

Shaw et al. (2012) provide spectroscopically determined
redshifts for almost all of the flat spectrum radio quasar
(FSRQ) blazars from the Fermi-LAT first-year catalog. With
the inclusion of these redshifts, we can apply our techniques
to determine the evolutions of the luminosity and photon index
with redshift, the density evolution, and the distributions of
luminosity and photon index for FSRQs.

Fluxes for Fermi-LAT sources are measured and reported
for a given photon energy range. The lower limit flux for
detection of blazars by the Fermi-LAT depends strongly on
a source’s gamma-ray spectrum, such that objects with harder
spectra are able to be detected above the background level at

lower fluxes than those with softer spectra (Atwood et al. 2009).
This means that for determination of the luminosity distribution
one needs both a measure of the flux and the photon index Γ,
and that then one deals with a bi-variate distribution of fluxes
and indexes, which is truncated because of this observational
bias in the flux-index plane (as seen in Figure 1), often
referred to as Malmquist bias. Additionally, of course, there is
a truncation in the luminosity–redshift plane arising because of
the relationship between flux and luminosity. Obtaining a bias-
free determination of the distributions of luminosity and photon
index is therefore necessarily quite a bit more complicated than
a simple counting of sources.

Ajello et al. (2012) use simulated data to account for the detec-
tion biases in analyzing these data. Here we use non-parametric
methods to determine the luminosity and density distributions
directly from the observational data. When dealing with a mul-
tivariate distribution, the first required step is the determination
of the correlation (or statistical dependence) between the vari-
ables, which cannot be done by simple procedures when the
data are truncated (e.g., Petrosian 1992). We use the procedures
developed by Efron and Petrosian (EP; Efron & Petrosian 1992,
1999) and extended by Singal et al. (2011), Singal et al. (2012),
and Singal et al. (2013) to account reliably for the complex
observational selection biases to determine first the intrinsic
correlations (if any) between the variables. These techniques
have been proven useful for application to many sources with
varied characteristics, including to the logN–logS relation for
blazars in BP1, and to radio and optical luminosity in quasars in
Singal et al. (2011) and Singal et al. (2013), where references
to earlier works are presented.

In this paper we apply these methods to determine the
luminosity and photon index evolutions of Fermi-LAT blazars,
as well as the density evolution and local (z = 0) gamma-ray
luminosity function (LF). In Section 2 we discuss the data used,
and in Section 3 we explain the techniques used and present
the results for the luminosity and photon index evolution. In
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Sections 4 and 5 we present the density evolution and local LF
and photon index distribution. In Section 6 we calculate the
total contribution of FSRQs to the EGB radiation. This paper
assumes the standard cosmology throughout.

2. DATA

For this analysis we use the FSRQ blazars reported in the
Fermi-LAT first-year extragalactic source catalog (e.g., Abdo
et al. 2010b) that have a detection test statistic TS � 50 and
which lie at Galactic latitude |b| � 20◦. The TS is defined as
TS = −2 × (ln(L0) − ln(L1)), where L0 is the likelihood of the
source being not actually present and the flux being due only
to the background in that location (null hypothesis) and L1 is
the likelihood of the hypothesis being tested, which is that the
source is present along with the background in that location.
The significance level of a given detection is approximately
n × σ = √

TS. Of 425 total such extragalactic sources, 325
are identified as blazars. Spectroscopically determined redshifts
are provided for 184 of the FSRQ-type blazars in Shaw et al.
(2012), which is all or nearly all of the FSRQ-type blazars in the
TS � 50 and |b| � 20◦ sample, making the sample complete
for spectroscopic redshifts.4

The 184 FSRQ blazars used here range in gamma-ray flux
in the range from 100 MeV to 100 GeV from 1.1 × 10−8 to
1.37 × 10−6 photons cm−2 s−1, and the flux in this range is
designated as F100. The photon index Γ is defined such that the
number of photons as a function of photon energy is given by
n(E)dE ∝ E−Γ (or the νFν ∝ ν−Γ+2) and is obtained by fitting
a simple power-law to the spectra in the above energy interval.
The photon index is reported directly in the Fermi-LAT source
catalog and in the present sample ranges from 2.03 to 3.04. We
recover F100 from the reported flux density (K), pivot energy
(Ep), and photon index with

F100 =
∫ 100 GeV

100 MeV
K

(
E

Ep

)Γ

dE. (1)

The bias mentioned above, stemming from the dependence of
the Fermi-LAT point-spread function (PSF) with energy, is
apparent, as there is a strong selection against soft spectrum
sources at fluxes below F100 ∼ 10−7 photons cm−2 s−1.

Each source has an associated TS as discussed above, and
the sources’ TS values vary in part because the background
flux is a function of position on the sky, as discussed in Abdo
et al. (2010b). The approximate limiting flux for inclusion in
the survey, then, is given by Flim = F100/

√
TS/50, where

TS is a function of the position on the sky and the photon
index Γ. However, as discussed in BP1, because the limit-
ing flux as determined in this way is not the optimal esti-
mate, we use a more conservative truncation as shown by the
straight line in Figure 1. In BP1 we derive the optimal loca-
tion of this truncation line for a TS � 50 sample from the
Fermi-LAT first-year extragalactic source catalog. With the
present FSRQ sample, applying the truncation line excludes
33 sources from the analysis. As discussed in BP1, the optimal
location for the truncation line may exclude some sources, lead-
ing to increased statistical uncertainty, but provides increased
accuracy of results.

4 While the Fermi-LAT first-year extragalactic source catalog identified 161
blazars in the TS � 50 and |b| � 20◦ sample as FSRQs, Shaw et al. (2012)
spectroscopically classify 23 additional blazars in this sample as FSRQs that
were identified in the Fermi-LAT catalog as being of unknown type.

Figure 1. Flux and photon spectral index for the 184 Fermi-LAT first-year
FSRQ blazars used in this analysis, those with TS � 50 and |b| � 20◦
and known spectroscopic redshifts provided by Shaw et al. (2012). It is seen
that there is a selection bias against soft spectrum sources at fluxes below
∼10−7 photons cm−2 s−1. We also show the line used for the truncation
boundary in this analysis, as discussed in Section 2 and determined in BP1.

The FSRQs in the sample range in redshift from 0.001 to
3.197. To convert between photon flux F100 and the gamma-ray
luminosity Lγ , one must first convert from F100 to energy flux
(E100) with

E100

F100
≡ R(Γ) ∼= 100 × Γ − 1

Γ − 2
× 1 − 103(2−Γ)

1 − 103(1−Γ)
MeV photon−1

(2)
(except for Γ = 2 and Γ = 1 for which R(2) =
ln 103/(1 − 10−3) ∼ 6.9 and R(1) = (103 − 1)/ ln 103 ∼ 150,
respectively) and then from energy flux to luminosity with

Lγ = 4 π DL(z)2 K(z) E100, (3)

where DL(z) is the luminosity distance determined from the
standard cosmological model and K(z) is the K-correction factor
given by K(z) = (1 + z)Γ−2. The gamma-ray luminosities
of FSRQs in the sample range from 1.95 × 1040 erg s−1 to
6.32 × 1049 erg s−1. A nearly identical sample has been analyzed
by Ajello et al. (2012), which finds agreement with the major
conclusions of this work.

3. LUMINOSITY AND PHOTON INDEX EVOLUTIONS

3.1. Luminosity and Density Evolution

The LF expresses the number of objects per unit comoving
volume V per unit source luminosity, so that, if there are no
other correlated parameters, the number density of objects
is dN/dV = ∫

dLΨ(L, z) and the total number is N =∫
dL

∫
dz (dV/dz) Ψ(L, z). To provide for luminosity and

density evolution, without loss of generality, we can write an
LF in some waveband a as

Ψa(La, z) = ρ(z) ψa(La/ga(z), ηj
a)/ga(z), (4)

where ga(z) describes the luminosity evolution with redshift and
ρ(z) describes the comoving density evolution with redshift,
and η

j
a stands for parameters that describe the shape (e.g.,

power-law indices and break values) of the a-band LF. If the
parameters η

j
a have some redshift dependence, this is equivalent
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to having luminosity-dependent density evolution, and if η
j
a have

some luminosity dependence, this is equivalent to luminosity-
dependent luminosity evolution. The methods used here for
determining intrinsic correlations and distributions have been
demonstrated through previous works and analysis of simulated
data sets for the case where the parameters η

j
a are constant in

redshift, i.e., the LF is modeled with only luminosity evolution
and density evolution. In principle, the methods could be
extended to allow for evolving parameters η

j
a with redshift or

with luminosity dependence. Here we start with the simpler
model where there is only luminosity evolution and density
evolution to capture the most important features of the evolution
of the LF, and we find that it is adequate to do so. We consider
this form of the LF for the gamma-ray luminosity and a similar
form for the photon index distribution.

Once the luminosity evolution ga(z) is determined using the
EP method, we can obtain the mono-variate distributions of the
independent variables L′

a = La/ga(z) and z, namely, the density
evolution ρ(z) and local (z = 0) LF ψa. The total number of
observed objects seen is then

Ntot =
∫ zmax

0
dz

∫ ∞

Lmin(z)
dLa

∫
dΩ ρ(z)

dV

dz

ψa (La/ga(z))

ga(z)
.

(5)
In this case, because Lmin(z) has some dependence on Γ, an
integral over the distribution of Γ must be performed as well,
leading to

Ntot =
∫ zmax

0
dz

∫ ∞

Lmin(z, Γ)
dLγ

∫
dΓ

∫
dΩ ρ(z)

× dV

dz

ψγ

(
Lγ /gL(z)

)
gL(z)

h(Γ), (6)

where the distribution h(Γ) should have a norm of 1.5

Because the sample at hand has a mean redshift of around
z = 1, we can assume a simple power law for the evolutions
within this redshift range

ga(z) = (1 + z)ka . (7)

We have also considered a more complicated parameterization
that allows a non-monotonic form with a turnover at a critical
redshift

ga(z) = (1 + z)ka

1 +
(

1+z
zcr

)ka
; (8)

however, the form of Equation (7) provides a valid fit to the data
as determined by the methods of Section 3.2, so we choose the
simpler parameterization.

We discuss the determination of the evolution factors ga(z)
with the EP method, which in this parameterization becomes a
determination of ka, in Section 3.2. The density evolution func-
tion ρ(z) is determined by the method discussed in Section 4.
Once these are determined, we construct the local (de-evolved)
LF ψL′

γ
(L′

γ ), shown in Section 5.

5 We note that this form for Equation (6) is only strictly true if h(Γ) is
independent of redshift and luminosity. The former is seen in Section 3.2,
while the latter is discussed in Section 6.

3.2. Determination of Best-fit Correlations

Here we first give a brief summary of the algebra involved in
the EP method. This method finds the best-fit values of parame-
ters describing correlations between variables by removing the
correlation with some function and testing for independence.
We utilize a modified version of the Kendall tau test to esti-
mate the best-fit values of parameters describing the correlation
functions between variables, using the test statistic

τ =
∑

j (Rj − Ej )√∑
j Vj

(9)

to quantify the independence of two variables in a data set, say
(xj , yj ) for j = 1, . . . , n. Here Rj is the dependent variable
(y) rank of the data point j in a set associated with it. The
expectation value of the rank is Ej = (1/2)(n + 1), and the
variance is Vj = (1/12)(n2 − 1). For untruncated data (i.e., data
truncated parallel to the axes) the set associated with point j
includes all of the points with a lower (or higher) independent
variable value (xk < xj ). If the data are truncated, the unbiased
set is then the associated set consisting only of those points
of lower (or higher) independent variable (x) value that would
have been observed if they were at the x value of point j given
the truncation. A very simple example of an associated set is
discussed in the Appendix.

If (xj , yj ) are uncorrelated, then the ranks of all of the points
Rj in the dependent variable within their associated set should
be distributed uniformly between 1 and the number of points
in the set n, with the rank uncorrelated with their independent
variable value. Then the points’ contributions to τ will tend to
sum to zero. On the other hand, if the independent and dependent
variables are correlated, then the rank of a point in the dependent
variable will be correlated with its independent variable, and
because the set to be ranked against consists of points with a
lower independent variable value, the contributions to τ will not
sum to zero.

Independence of the variables is rejected at the mσ level
if | τ | > m, and this can be considered the same standard
deviation as would be calculated from another method such as
least-squares fitting, as discussed in Efron & Petrosian (1999). If
the variables are not independent, to find the best-fit correlation
the y data are then adjusted by defining y ′

j = yj/F (xj )
and the rank test is repeated, with different values of parameters
of the function F. In this case F (xj ) would be the luminosity or
photon index evolution factors, gL(z) and gΓ(z), with the forms
specified by Equation (7).

The procedure for determining simultaneously the best-fit kL
and kΓ is more complicated because we now are dealing with
a three-dimensional distribution (Lγ , Γ, z) and two correlation
functions (gL(z) and gΓ(z)). The associated set for any object i
then consists of only those objects that would still be present in
the survey if they were located at the redshift of object i, given
the luminosity and photon index evolution factors and in light
of the truncation boundary in the F100–Γ plane.

We form a combined TS τcomb =
√

τ 2
L + τ 2

Γ , where τL is that
calculated with Equation (9) with Lγ as the independent variable
and z as the dependent variable, and τΓ is that calculated with
Γ as the independent variable and z as the dependent variable.
Because the luminosity corresponding to a given measured flux
and redshift is dependent on the photon index, adjusting the
luminosity or the photon index by a redshift-dependent factor
(i.e., performing the L′

γ = Lγ /gL(z) and Γ′ = Γ/gL(z)) affects
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Figure 2. Surface plot of the value of τcomb showing the location of the minimum
region where the favored values of kL and kΓ lie, for the forms of the evolutions
given by Equation (7).

Figure 3. 1σ , 2σ , and 3σ contours of τcomb for the simultaneous best-fit values
of kL and kΓ for the forms of the evolutions given by Equation (7).

the other variable. Therefore, τL and τΓ must be evaluated
simultaneously for every L′

γ and Γ′ combination. We perform
the evaluations on a grid of L′

γ and Γ′ values, i.e., a grid of kL

and kΓ values with spacing as small as 0.05. As with the one-
dimensional case, the best-fit values of kL and kΓ are those that
minimize τcomb. Since τcomb is a geometric average and cannot
be negative, the m σ ranges of the best-fit values of kL and kΓ
are those that lead to τ < m.

The favored values of kL and kΓ are those that simultaneously
give the lowest τcomb, and, again, we take the 1σ limits as those
where τcomb � 1. For visualization, Figure 2 shows a surface
plot of τcomb. Figure 3 shows the best-fit values of kL and kΓ
taking the 1, 2, and 3σ contours. We have verified this general
method with simulated Monte Carlo data sets as discussed in
Singal et al. (2011) and BP1. We see that strongly positive
evolution in gamma-ray luminosity is favored, along with no
evolution of the photon index.

The result for the luminosity evolution can be checked by con-
sidering only those objects with F100 � 10−7 photons cm−2 s−1,
where the truncation in the F100–Γ plane is not relevant (see
Figure 1). The determination of the luminosity evolution in this
case reduces to a simpler two-dimensional determination of the

Figure 4. τ vs. kL for the set of objects where F100 � 10−7 photons cm−2

and truncation in the F100–Γ plane is unimportant, so determination of the
luminosity evolution reduces to a simpler two-dimensional correlation. The
best-fit 1σ range of kL is where |τ | � 1, and this results in kL = 5.5 ± 0.5,
in good agreement with the results when the full three-dimensional case is
considered with the whole data set (e.g., Figure 3).

correlation between Lγ and z. The associated set for each object
i is then those objects that would still be present in the survey if
they were located at the redshift of object i given the luminosity
evolution factor and a simple limiting flux of F100 � 10−7 pho-
tons cm−2 s−1. Figure 4 shows τ versus kL for this subset, and
the results indicate that kL = 5.5 ± 0.5, in good agreement with
the results when the full three-dimensional case is considered
with the whole data set. Ajello et al. (2012) also derive quite
strong FSRQ luminosity evolution with redshift, although with
a more complicated parameterization. We note in passing that,
as can be seen from the contours in Section 3, a complete lack
of luminosity evolution is not ruled out at the 3σ level. How-
ever, the results from considering the untruncated subset, along
with those in other works, strongly favor positive luminosity
evolution.

4. DENSITY EVOLUTION

We turn now to the density evolution ρ(z). The cumulative
density function is

σ (z) =
∫ z

0

dV

dz
ρ(z) dz, (10)

which, following the procedure in Petrosian (1992) based on
Lynden-Bell (1971), can be calculated by

σ (z) =
∏
j

(
1 +

1

m(j )

)
. (11)

In this case j runs over all objects with a redshift lower than or
equal to z, and m(j ) is the number of objects with a redshift lower
than the redshift of object j which are in object j’s associated
set. The associated set for object j consists of those objects that
would still be in the survey if they had object j’s luminosity.
Then the differential density evolution ρ(z) is

ρ(z) = dσ (z)

dz
× 1

dV/dz
. (12)
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Figure 5. Cumulative density function σ (z) vs. redshift for FSRQ blazars. The
normalization of σ (z) is determined as described in Section 4. A polynomial fit
to σ (z) is used to determine ρ(z) by Equation (12). We also show the cumulative
number of observed FSRQs for redshift bins of size 0.1 for comparison. It is
seen that the raw data are significantly biased and the reconstructed intrinsic
redshift distribution for FSRQs is very different from the observed one.

Figure 6. Density evolution ρ(z) vs. redshift for FSRQ blazars. ρ(z) is defined

such that σ (z′) = ∫ z′
0 ρ(z) dV/dz dz. The normalization of ρ(z) is determined

as described in Section 4, and polynomial fits of ρ(z) to z are given there.
At redshifts greater than 2.5, the smaller number of objects renders the
determination of ρ(z) with errors too large to be meaningfully plotted.

If σ (z) is expressed in number of objects less than redshift z
per solid angle (N < z sr−1), then ρ(z) here is expressed in
N/dz Mpc−3.

However, to determine the density evolution, the previously
determined luminosity evolution must be factored out of each
objects’ luminosity. Thus, the luminosities for determining
inclusion in the associated sets for each object in the calculation
of σ by Equation (11) are scaled by taking out factors of gL(z)
and gΓ(z), determined as above.

The normalization of ρ(z) is determined by Equation (6),
with the customary choice of

∫ ∞
L′

min
ψ(L′) dL′ = 1. Figures 5

and 6 show the cumulative and differential density evolutions,
respectively. The number density of FSRQ is seen to peak at
around redshift 0.75. This can be compared with the more
complicated parameterization used in Ajello et al. (2012), where
the number density as a function of luminosity can be calculated.
For the median luminosity of objects in the sample (5.89 ×
1047 erg s−1) the peak would be at z = 0.8, while for the mean
luminosity (2.47 × 1048 erg s−1) the peak is at z = 1.7. We see

Table 1
Coefficients for Polynomial Fita to Density Evolution ρ(z) versus z

z � 0.75 z � 0.75

c +8.9 × 10−8 −6.0 × 10−9

a1 −4.4 × 10−8 +3.4 × 10−7

a2 +3.0 × 10−7 −3.0 × 10−4

a3 −2.5 × 10−7 +6.5 × 10−8

Note. a Polynomial fits are of the form ρ(z) = c1 + a1 z + a2 z2 +
a3 z3.

from Figure 5 that the raw data are significantly biased and the
reconstructed intrinsic redshift distribution for FSRQs is very
different from the observed one. The density evolution ρ(z) can
be fit quite well with a broken third-order polynomial in z, with
coefficients shown in Table 1.

5. LOCAL GAMMA-RAY LUMINOSITY FUNCTION

One can use the local (redshift evolution taken out, or de-
evolved) luminosity to determine the local cumulative distri-
bution ΦL′

γ
(L′

γ ), where the prime indicates that the redshift
evolutions have been taken out. The cumulative distribution is
related to the differential LF ψL′

γ
(L′

γ ) by

Φa′(L′
a) =

∫ ∞

L′
a

ψ ′
a(L′′

a) dL′′
a. (13)

Following Petrosian (1992), Singal et al. (2011), and Singal
et al. (2013), Φa′(L′

a) can be calculated by

Φa′(L′
a) =

∏
k

(
1 +

1

n(k)

)
, (14)

where k runs over all objects with a luminosity greater than or
equal to La, and n(k) is the number of objects with a luminosity
higher than the luminosity of object k that are in object k’s
associated set, determined in the same manner as in Section 3.2.

As before, the objects’ luminosities, as well as the luminosity
limits for inclusion in the associated set for given redshifts,
are scaled by taking out factors of gL(z), with kL determined
in Section 3. We use the notation L → L′ ≡ L/gL(z). For the
local distribution functions, we use the customary normalization
involving the differential distribution

∫ ∞
L′

min
ψ(L′′) dL′′ = 1. This

normalization may be biased by around 10% due to variability
as discussed in BP1. Figure 7 shows the local cumulative LF for
FSRQ blazars.

We can compute the differential local (z = 0) gamma-ray LF
ψL′

γ
(L′

γ ), and combining it and the density evolution, we can
compute the LF at any redshift ΨLγ

(Lγ , z), and these can be
compared to other determinations in the literature. Figure 8
shows the differential local (z = 0) gamma-ray LF along
with that reported by Ajello et al. (2012). It is seen that the
determinations agree in the region of L′

γ where they overlap.
We see that the results here access the z = 0 LF for lower
values of L′

γ than reported in Ajello et al. (2012). This follows
from the rapid luminosity evolution seen here, where an object
at redshift 1 will have its luminosity de-evolved by a factor of
around 45 to redshift 0, uniform across luminosities. In the
luminosity-dependent density evolution scenario modeled in
Ajello et al. (2012), low luminosity sources are found to evolve
slower and thus get de-evolved by a smaller factor. In principle,
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Figure 7. Cumulative local (z = 0) gamma-ray LF ΦL′
γ

(L′
γ ) for FSRQ blazars,

as determined in Section 5.

Figure 8. Differential local (z = 0) gamma-ray LF ψL′
γ

(L′
γ ) for FSRQ blazars,

as determined in Section 5 (stars). The error bars result from a propagation of
the 1σ variation in kL and the uncertainty in the differentiation of ΦL′

γ
(L′

γ ). We
overplot the z = 0 FSRQ LF as reported by Ajello et al. (2012; solid line) with
1σ errors (dashed lines).

different methods should find the same solution, and this means
sampling very similar de-evolved luminosities. In practice, this
rarely happens if the number of sources is small. The results are
somewhat complementary in this manner and show a flattening
of the z = 0 LF at lower luminosities.

The LF at an arbitrary redshift ΨLγ
(Lγ , z) can be computed

by Equation (4). In Figure 9 we plot the z = 1 gamma-ray LF
as determined here, along with those reported by Ajello et al.
(2012) and Inoue et al. (2010). It is seen that the determination
of the LF here closely matches that in Ajello et al. (2012) in
spite of the different models considered (luminosity and density
evolution versus luminosity-dependent density evolution). It is
interesting to note that in both the z = 1 LF and the integrated
luminosity of FSRQs over the history of the universe (see
Section 6) the results are consistent.

Since in Section 3.2 we found that there is no redshift
evolution in the photon index Γ (i.e., kΓ = 0), the distribution we
found for Γ in BP1 averaged over redshifts is also valid at any
individual redshift. From BP1, the distribution of Γ for FSRQs
can be well described as a Gaussian with a mean of 2.52 ± 0.08

Figure 9. z = 1 gamma-ray LF ΨLγ (Lγ , z = 1) for FSRQ blazars, as given by
Equation (4) (stars). The error bars result from a propagation of the 1σ variation
in kL and the uncertainty in the differentiation of ΦL′

γ
(L′

γ ). We overplot the
z = 1 FSRQ LF as reported by Ajello et al. (2012; solid line) with 1σ errors
(dashed lines), and as reported by Inoue et al. (2010; dash-dot line).

and a 1σ width of 0.17 ± 0.02, a result in agreement with Abdo
et al. (2010c).

6. CONTRIBUTION OF FSRQS TO THE
EXTRAGALACTIC GAMMA-RAY BACKGROUND

Given the luminosity and photon index evolutions as de-
termined in Section 3, the density evolution as determined in
Section 4, and the cumulative local LF as determined in
Section 5, we can calculate the integrated contribution of FSRQs
of given redshifts and luminosities to the EGB. The contribution
will be

Iγ :FSRQs =
∫

z

dz

∫
Lγ

dLγ

∫
Γ

dΓ
Lγ

4πDL
2KL(Γ, z)

× ρ(z)
dV

dz

ψLγ
(Lγ )

gL(z)
h(Γ), (15)

where h(Γ) is the differential distribution of Γ for FSRQs
discussed in Section 5 and determined in BP1. ψLγ

here is
the luminosity part of the overall LF, including the redshift
evolution of the luminosity (equivalent to ψa(La/ga(z), ηj

a) in
Equation (4)). We note that because Γ is uncorrelated or only
very weakly correlated with flux as determined in BP1, and
that h(Γ) is independent of redshift while ψLγ

(Lγ ) is strongly
redshift dependent, h(Γ) is likely, or can be well approximated
by, an independent distribution.6 We integrate ψLγ

(Lγ )dLγ by
parts, noting that
∫

Lγ

ψLγ
(Lγ )×Lγ dLγ = ΦLγ

(Lγ )×Lγ |Lγ
+

∫
Lγ

ΦLγ
(Lγ ) dLγ

(16)
to obtain the dependence on the cumulative LF ΦLγ

(Lγ )

Iγ :FSRQs =
∫

z

dz

∫
Γ

dΓ
1

4πDL
2KL(Γ, z)gL(z)

ρ(z)
dV

dz

[
ΦLγ

(Lγ ) × Lγ

∣∣∣∣
Lγ

+
∫

Lγ

ΦLγ
(Lγ ) dLγ

]
h(Γ).

6 This consideration also applies to Equation (6).
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Stating this in terms of the local cumulative LF ΦL′
γ
(L′

γ ),

Iγ :FSRQs =
∫

z

dz

∫
Γ

dΓ
1

4πDL
2KL(Γ, z)gL(z)

ρ(z)
dV

dz

×
[

ΦL′
γ

(
Lγ

gL(z)
, z

)
× Lγ

∣∣∣∣
Lγ

+
∫

Lγ

ΦL′
γ

×
(

Lγ

gL(z)
, z

)
dLγ

]
h(Γ). (17)

Because we obtain the cumulative local LF ΦL′
γ

and photon
index distribution directly from the data, this technique allows us
to calculate the cumulative total output of FSRQs directly, non-
parametrically. Specifically, we can approximate the integral
directly by performing a Riemann sum with bins of luminosity
and redshift, with the values of ΦL′

γ
and ρ(z) at any value of

Lγ and z available via simple interpolation of the distribution
functions that are the direct output of the methods. It is
simpler to use logarithmic bins of luminosity, in which case
dLγ = Lγ d(ln Lγ ).

If one is integrating over FSRQs of all luminosities, the
surface term ΦL′

γ
( Lγ

gL(z) , z) ×Lγ |∞0 is zero because ΦL′
γ
(∞) = 0

and one is left with

Iγ :FSRQs =
∫

z

dz

∫ ∞

Γ=−∞
dΓ

∫ ∞

Lγ =0
dLγ

× 1

4πDL
2KL(Γ, z)gL(z)

ρ(z)
dV

dz
ΦL′

γ

×
(

Lγ

gL(z)
, z

)
h(Γ). (18)

We note that as z approaches large values ρ(z) → 0, and also that
as Lγ approaches large values ΦL′

γ
→ 0, so the contributions

from very high redshifts and very large luminosities are vanish-
ing. Integrating over all redshifts and luminosities, we find that
Iγ :FSRQs = 7.6 (+4.0/−1.1) ×10−4 MeV cm−2 s−1 sr−1. The
uncertainty results primarily from uncertainty in the value of
kL, as well as uncertainty in the mean value of the photon index
distribution for FSRQs.

The value of this total Iγ :FSRQs can be compared with the total
energy density of the EGB, i.e., the total gamma-ray output of
the universe in the range from 100 MeV to 100 GeV, which was
determined by Fermi in Abdo et al. (2010d)7 to be Iγ = 4.72
(+0.63/−0.29) × 10−3 MeV cm−2 s−1 sr−1, assuming a photon
index for the background of Γ = 2.4.

We see that FSRQ blazars in to contribute 16 (+10/−4)%
of the total EGB, emphasizing that the EGB as defined here is
the total gamma-ray output of the universe in the range from
100 MeV to 100 GeV. This is consistent with the result we
obtained in BP1, where we estimated the contribution of all
blazars (both FSRQs and BL Lacs) to be between 39% and
100% of the EGB if extrapolated to zero flux, and between
39% and 66% if extrapolated to a more reasonable lower limit

7 Authors often divide this radiation into two parts, one consisting of the
contribution of resolved sources and a second “diffuse” component (e.g., Abdo
et al. 2010d). However, the most relevant comparison for the total emission
from a class of object is with the total of these two, because which sources are
declared to be resolved is a function of the properties of any particular survey.
Additionally, the most relevant quantity for answering astrophysical questions
is the total contribution of a population relative to the total photon output of the
universe in that waveband.

flux of 10−12 photons cm−2 s−1. The result here for FSRQs
is also in agreement to within errors with the result of Ajello
et al. (2012), who find the contribution of all FSRQs to the
total EGB to be 21.7 (+2.5/−1.7)%. The larger uncertainty
presented here results from the uncertainty discussed above, as
well as considering the full uncertainty range in Iγ reported by
Abdo et al. (2010d).

Some authors have suggested that blazars could be the
primary source of the EGB (e.g., Stecker & Venters 2011;
Abazajian et al. 2010), and the results of BP1 did not rule this
out, while the results presented in Ajello et al. (2012), Abdo et al.
(2010c), and Malyshev & Hogg (2011) favor blazars being one
of several important classes of sources. Other possible source
populations for the EGB include starforming galaxies, which
have been proposed as a possible significant contributor to the
EGB by, e.g., Stecker & Venters (2011), Fields et al. (2010), and
Lacki et al. (2011), although this is countered by Makiya et al.
(2011), radio galaxies (e.g., Inoue 2011), and non-blazar AGNs
(e.g., Inoue & Totani 2009, 2011).

7. DISCUSSION

We have used a rigorous method to calculate non-
parametrically and directly from the data the redshift evolu-
tions of the gamma-ray luminosity and photon index, as well
as the density evolution, gamma-ray LF, and contribution to
the EGB of FSRQ blazars. We use a data set consisting of the
FSRQs in the Fermi-LAT first-year extragalactic source catalog
with TS � 50 and which lie at Galactic latitude |b| � 20◦,
with spectroscopically determined redshifts provided by Shaw
et al. (2012). The method employed accounts robustly for the
pronounced data truncation introduced by the selection biases
inherent in the Fermi-LAT observational catalog. The reliability
of the methods employed has been demonstrated and discussed
in Singal et al. (2011), Singal et al. (2013), and the Appendix
of BP1. We note that since spectroscopic redshifts are available
for virtually all of the FSRQs in the Fermi-LAT first-year extra-
galactic source catalog, there is not a relevant limiting optical
flux that must be considered, and the only relevant truncation
in the data is that arising from gamma-ray flux and photon
index.

In Section 3.3 of BP1 we discuss the sources of error that may
affect these determinations, including measurement uncertain-
ties, blazar variability, and source confusion. As discussed there,
in the determination of the contribution of FSRQs to the EGB,
these will be sub-dominant to the uncertainty resulting from the
range of mean values of the photon index distribution that we
consider, as well as the high redshift end of the density evolution
function. Subtler issues affecting the derived distributions may
arise because of the finite bandwidth of the Fermi-LAT and lack
of complete knowledge of the objects’ spectra over a large en-
ergy range and deviations from simple power laws. This has the
greatest potential to effect determinations of the photon index
distribution, which we do not determine in this work but carry
over from BP1. However, the bandwidth 100 MeV to 100 GeV
is wide enough that the contribution of sources that peak outside
of this range to the LF and evolution, density evolution, and the
EGB in this energy range will be small.

We find that FSRQs have a strong luminosity evolution with
redshift, well characterized (at low redshifts) by the evolution
factor (1+z)kL with kL = 5.5 ± 0.5. This, along with positive
evolutions in other wavebands such as optical and radio (e.g.,
Singal et al. 2013) and X-ray (e.g., Aird et al. 2010), favors
models in which at higher redshifts AGN systems featured on
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Figure 10. Simple case to demonstrate the general concept of an associated set
applied to truncated data. A brief discussion is provided in the Appendix.

(A color version of this figure is available in the online journal.)

average more massive black hole and accretion disk systems,
and/or more rapidly rotating black holes. We find that FSRQs
do not exhibit appreciable photon index evolution with redshift,
indicating that the mean spectrum of accelerated high energy
particles from AGN central engines has remained constant over
the history of the universe. Given these evolutions, the density
evolution, and the local LF and photon index distribution, we
determine that the total energy density from FSRQs at all
redshifts and luminosities is Iγ :FSRQs = 7.6 (+4.0/−1.1) ×
10−4 MeV cm−2 s−1 sr−1, which is 16 (+10/−4)% of the total
EGB. This indicates that FSRQ blazars are a significant, but not
dominant, component of the EGB.

The authors acknowledge support from NASA-Fermi Guest
Investigator grant NNX10AG43G. Additionally, the authors
thank Marco Ajello of the Fermi-LAT collaboration.

APPENDIX

In order to illustrate the general concept of an associated
set applied to truncated data, in Figure 10 we show the simplest
case of two-dimensional luminosity–redshift data truncated by a

universal flux limit for the survey. Suppose one were performing
a statistical test to determine correlation among the variables,
with luminosity as the dependent variable and redshift as the
independent variable. In order to form an unbiased set for
comparison with object j for this test, one should take only
those objects that would be in the sample if they were at object
j’s redshift. With the Kendall tau test, one ranks objects in the
dependent variable against those with either a higher or lower
value of the independent variable. In this case, the ranking would
have to be against those with a lower value of redshift, in order
for the associated sets themselves to be unbiased. The associated
sets for an object will be more complicated if there are additional
variables, and/or if the truncation limit is not universal. Both
are the case in this work, where both luminosity and photon
index are important, and where the truncation is a function in
the flux-index plane.
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