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ABSTRACT

Aims. We present results of using individual galaxies’ redshift probability information derived from a photometric redshift (photo-z)
algorithm, SPIDERz, to identify potential catastrophic outliers in photometric redshift determinations. By using two test data sets
comprised of COSMOS multi-band photometry spanning a wide redshift range (0 < z < 4) matched with reliable spectroscopic or
other redshift determinations we explore the efficacy of a novel method to flag potential catastrophic outliers (those galaxies where
|Zphot — Zspec| > 1.0) in an analysis which relies on accurate photometric redshifts.

Methods. SPIDERz is a custom support vector machine classification algorithm for photo-z analysis that naturally outputs a distribu-
tion of redshift probability information for each galaxy in addition to a discrete most probable photo-z value. By applying an analytic
technique with flagging criteria to identify the presence of probability distribution features characteristic of catastrophic outlier photo-
z estimates, such as multiple redshift probability peaks separated by substantial redshift distances, we can flag potential catastrophic
outliers in photo-z determinations.

Results. We find that our proposed method can correctly flag large fractions of the catastrophic outlier (>50%) galaxies, while
only flagging a small fraction (<5%) of the total non-outlier galaxies, depending on parameter choices. The fraction of non-outlier
galaxies flagged varies significantly with redshift and magnitude, however. We examine the performance of this strategy in photo-z
determinations using a range of flagging parameter values. These results could potentially be useful for utilization of photometric
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1. Introduction

Accurate photometric redshift estimates (photo-zs) with well
constrained and understood error properties are critical for
the current and coming era of large multi-band extra-
galactic surveys (e.g. [Huterer et al! 2006; [Hearin et al/ 2010;
o_ Bernstein & Huterer 2010), such as the Large Synoptic Sur-
O) vey Telescope (LSSTN, Euclid], Wide Field Infrared Survey
O Telescope (WFIRST)H, Hyper-Suprime Cam (HSCH, and Kilo-
Degree Survey (KiDSH for which precise redshift estimates
1 will be needed for millions or billions of galaxies extending
= to high redshifts. In particular, photometric redshift accuracy is
=== the primary source of systematic error in weak-lensing surveys
>< (Bernstein & Huterer 2010). Works modeling the error relation
B between photometric (z,4,) and spectroscopic (zZype.) redshifts
as a Gaussian have found that achieving less than 50% degre-
dation in cosmological parameter uncertainties requires the bias
(Zphot — Zspec) and scatter ((Zphor — Zspec)*)'/* quantities in each
redshift bin Az = 0.1 to be constrained to roughly 0.003-0.01
(Ma et al! 2006; Huterer et al! 2006; [Kitching et all 2008) with
tighter constraints when these distributions are non-Gaussian.
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redshifts in future large scale surveys where catastrophic outliers are particularly detrimental to the science goals.

Key words. techniques: photometric - galaxies: statistics - methods: miscellaneous

Limiting the occurrence of catastrophic outlier photo-z es-
timates — those galaxies whose estimated redshift differs sub-
stantially from their actual redshift — is a top priority for con-
trolling photo-z errors. In addressing this challenge we present
a study directed toward a novel method to flag potential catas-
trophic outlier photo-z predictions through the utilization of in-
dividual galaxy redshift probability information. We utilize SPI-
DERz (SuPport vector classification for IDEntifying Redshifts
— Jones & Singal 2017), a custom implementation of a sup-
port vector machine classification model for photometric redshift
analysis, which naturally outputs an effective redshift probabil-
ity distribution for each galaxyl. SPIDERz’s natural output of
an effective redshift probability distribution for each galaxy is
not necessarily typical for empirical photo-z estimation meth-
ods (which make a predictive model based on a training set with
known redshifts), but some other empirical methods which can
output probability information are ArborZ (Gerdes et al!2010),
TPZ (Carrasco Kind & Bruner [2013), SkyNet (Bonnett 2015),
ANNZz2 (Sadeh et all [2016). The techniques discussed in this
work should theoretically be relevant to any photo-z estimation
method which provides the requisite redshift probability distri-
bution information for individual galaxies.

The performance of candidate photo-z methods should ide-
ally be demonstrated on test data that is representative of the data
anticipated by future large-scale surveys. In particular, some data

6 available from http://spiderz.sourceforge.net with usage documenta-

tion provided there.
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sets, such as much of the LSST catalog, will have photometric
data for optical bands only while others, such as Euclid, will
have, or overlap with, infrared bands. Additionally, some impor-
tant data sets will span a large redshift range with many high
redshift objects. In order to perform an analysis on real data ap-
proximating these conditions, we use two relatively large data
sets of photometry from the Cosmic Evolution Survey (COS-
MOS) COSMOS2015 photometric catalog (Laigle et all[2016)
with known redshifts spanning the redshift range 0 < z < 4. One
set consists of the overlap of COSMOS photometry with spec-
troscopic redshifts from the 3D-HST survey performed with the
Hubble Space Telescope and reported inMomcheva et al) (2016)
featuring 3704 galaxies, and the other consists of COSMOS pho-
tometry with previously reliably estimated (see criteria in §4.1)
30-band photometric redshifts. Furthermore, in order to approx-
imate the photometric redshift conditions of future large scale
surveys, we adopt training set sizes that are much smaller than
evaluation set sizes.

Photo-z methods have been traditionally divided into two
categories: template-fitting and empirical methods. Template-
fitting methods rely on fitting galaxy photometry to template
spectra evolved with redshift, typically derived using y* mini-
mization, e.g. Le Phare (Arnouts et al.1999; Ilbert et al. [2006),
BPZ (Benitez 2000), HyperZ (Bolzonella et al. |2000), zebra
(Feldmann et al/ 2006), EAZY (Brammer et all 2008), gazelle
(Kotulla & Fritze 12009), and DELIGHT (Leistedt & Hogg
2017). Template-fitting methods depend critically on the ex-
tent to which galaxy spectral energy distributions (SEDs) library
templates adequately represent properties of observed SEDs cor-
responding to target galaxy populations for which one wants
to estimate the redshifts; the selection of ill-fitted SED tem-
plates provides the greatest source of errors in redshift determi-
nations with these models. Some techniques for template fitting
have incorporated the use of training sets of objects with known
photometry and spectroscopic redshifts to better calibrate repre-
sentative SED templates (Benitez et all 2004} Tlbert et al. 2006,
2009).

Empirical methods, which rely on training sets with known
redshifts to derive a mapping from photometry to redshift, de-
pend critically on the extent to which training galaxy popula-
tions adequately represent target galaxy populations in terms
of the parameter overlap of photometric inputs and true red-
shift distributions. Early examples empirical photo-z methods
utilized relatively simple techniques to achieve such a map-
ping (e.g. polynomial fitting, |Connolly et al. [1995). More re-
cently, models that produce mappings with greater complex-
ity utilizing machine learning have been examined, e.g. ar-
tificial neural networks (Firth et al! |2003; |Collister & I.ahav
2004; [Vanzella et al! 2004; [Singal et all 2011); Brescia et al.
2014; ISadeh et all 2016), support vector machines (Wadadekar
2004; [Wang et al! 2007; Jones & Singal [2017), Gaussian pro-
cess regression (Way & Srivastava2006), boosted decision trees
(Gerdes et al! 2010), random forests (Carrasco Kind & Bruner
2013; [Rau et all [2015), genetic algorithms (Hogan et al. 2015),
sparse Gaussian framework (Almosallam et all [2016), nearest
neighbor search (Ball et al. 2007, 2008), and spectral connec-
tivity analysis (Freeman et al! 2009). A review and compari-
son of a number of existing photo-z methods can be found in
Hildebrandt et al. (2010); |Abdalla et al| (2011)); Sanchez et al.
2014).
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Fig. 1: Examples of EPDFs as determined by SPIDERz for par-
ticular individual galaxies in the COSMOSx3D-HST data set de-
scribed in §4.11 The top panel shows an EPDF with a singular
uniform probability peak, which is typical of galaxies with ac-
curate redshift estimates. The middle panel shows a classic dou-
bly peaked EPDF where the spectroscopic redshift is near the
slightly lower peak, which is often the case for catastrophic out-
lier redshift estimates. The bottom panel shows an EPDF without
a clear probability peak, which also can be the case for catas-
trophic outlier redshift estimates.

Here we follow convention (e.g.[Hildebrandt et al.[2010) and
define “outliers” as those galaxies where

|thol - Zspecl

> .15, 1
+ Zspec ( )

Outliers :
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Fig. 2: Reconstructed redshift distributions from a determina-
tion with SPIDERz using 1200 training galaxies compared to
the actual COSMOSx3D-HST evaluation sample of 2323 galax-
ies. Test data for the determination shown in this figure only
were limited to z < 2.9 to prevent the occurrence of unoccupied
redshift bins at high redshifts. Distributions are shown for the
actual spectroscopic redshift, the single best-estimate (highest
probability bin) photo-z, the summed EPDF, and the weighted
summed EPDF.

where z,4, and z,p.. are the estimated photo-z and actual (spec-
troscopically determined) redshift of the object. Although there
is not a standard, universal definition of “catastrophic outliers”
we use a definition that is typical (e.g. Bernstein & Huteret
2010)

O : |Zpl10t - Zspecl > 1.0. (2)

The RMS photo-z error in a realization is given by a standard
definition

2
1 Zphot — Zspec
OAz/(14+2) = —Egals R (3)
Ngals 1+ Zspec

where n4, is the number of galaxies in the evaluation testing set
and X ., represents a sum over those galaxies. We also calculate
the RMS error without the inclusion of outlier galaxies, referring
to this quantity as the “reduced” RMS or R-RMS.

In §2] we present a summary overview of the SVM model
implemented in SPIDERz and discuss the probability informa-
tion produced for each galaxy. In §3] we present a method for
flagging potential catastrophic outlier photo-z estimates made
by SPIDERz through the utilization of redshift probability in-
formation. In §4] we discuss the results of testing SPIDERz on
the two test data sets utilizing COSMOS multi-band photome-
try. We present a discussion in §3]

2. SPIDERz and effective probability distributions

A full discussion of the SPIDERz algorithm, mathematical the-
ory, and a suite of tests with various data sets and compar-

isons with other photo-z determination methods is available
in Jones & Singal (2017). Here, we will provide a brief out-
line of the machine learning photo-z process for context, but
we primarily focus on the utilization of the naturally available
probability information for each galaxy produced during photo-
z evaluations with SPIDERz. The general technique we pro-
pose in this work for utilizing the probability information, how-
ever, should theoretically be relevant to any photo-z estimation
method which provides the requisite probability information for
individual galaxies.

Generally speaking, machine learning photo-z codes perform
two main processes: training and evaluation. The output of the
training process is a mapping from band magnitudes (and po-
tentially additional information) to redshift. The collection of
mappings comprise a predictive model that can be used to make
photo-z predictions on evaluation galaxies.

SPIDERz utilizes support vector classification to make
photo-z predictions, where bins of redshift are assigned class
labels, and photo-z estimation is performed via the solution to
a multi-class classification problem. SPIDERz solves the multi-
class problem with a “one against one” or “pairwise coupling”
approach that treats the complex multi-class problem as a se-
ries of simpler binary class problems consisting of every possible
pairing of classes (in this case redshift bins). Thus for a system
comprised of m distinct classes (m redshift bins in this case),
SPIDERz formulates and solves @ separate binary classi-
fication problems, choosing the more likely class (redshift bin)
in each binary pairing. Each instance of classification in favor
of a particular redshift bin can be regarded as a ‘vote’ for that
class. The entire collection of =D votes forms a distribution
(see Figure[Ilfor examples) that we call an ‘effective’ probability
distribution (EPDF) for each galaxy, with the relative probabil-
ity of each redshift bin proportional to the number of times the
corresponding class was chosen as the best binary solution. This
EPDF is not continuous, but rather is resolved to the bin-width
level. Discrete z,,, estimates, if they are desired, can be obtained
for each galaxy by simply taking the redshift bin with the highest
number of votes.

Examples of actual EPDFs for individual galaxies in the
COSMOSx3D-HST data set described in §4.T]are shown in Fig-
ure[Il The top panel shows the presence a uniform singular prob-
ability peak characteristic of typical cases where Zpnor = Zspec-
The middle and bottom panels show distributions with multiple
peaked probabilities throughout wide redshift distances, which
is a feature that is typical of many inaccurate z,,, estimates.

We use the terminology “effective PDF” because of the way
that all bins are used in comparison, thus artificially inflating
low probability bins due to the inevitable pairwise comparisons
of two low probability bins. However the overall shape of the
EPDFs, in regard to higher probability bins which are the only
ones relevant in this analysis, approaches that of a true probabil-
ity distribution.

To breifly illustrate how the EPDF compares to a true prob-
ability distribution function, if one desired to mitigate the effect
of low probability bin inflation in the EPDFs for comparisons
between the summed EPDF for all galaxies and the known N(z)
distribution in testing determinations, one would apply weights
to the EPDFs that are proportional to the fractional population of
training galaxies in each redshift bin relative to the total training
galaxy population. Weights are determined for each redshift bin
Az; by

e @
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Fig. 3: N(z) distribution for the 3704 galaxies comprising the COSMOSxHST (left) and 58622 galaxies comprising the COS-

MOS2015 (right) test data sets used in this analysis.

l

:E: w; = 1,

i=1
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I
where N = ZN(AZ[) and [ is the number of redshift bins.

Weights are applied to the EPDF by

!
Pu(Az) = 10 Prys(Azy) + wy)), (©)
i=1

where P, (Az;) is the weighted probability for some redshift bin
Az;, and Pgyr(Az;) is the probability given by the unweighted
EPDF. In this way, as shown in Figure 2] we can see that there is
meaningful probability information in the EPDFs and that they
can be made, in aggregate, to approach a true probability distri-
bution with weighting. For the present work, however, the degree
of fidelity of the EPDFs to true probability distribution functions
is not important, as only the highest probabilty bins are rele-
vant, and so no weighting is applied — the analyses in this work
simply use the raw EPDFs as output by SPIDERz. The reason
for this is severalfold: Firstly, we would like to demonstrate the
method of this work with the raw output of a machine learning
classifier, for the simplest, most general situation. Further, while
itis the case that in the analyses here the training set and the eval-
uation set have practically the same redshift distribution, that is
not necessarily the case for all generic photo-z evaluations going
forward, so weighting the individual output galaxy probabilities
by the particular redshift distribution of the training set may not
be appropriate. Additionally, in this work we are focusing on the
utility of individual galaxy probability functions. If one were to
weight those functions individually by the cumulative redshift
distribution of a given single training set, the amount that high
probability peaks are scaled up and down would be highly de-
pendent on the particulars of that training set, and would be
different for another training set; therefore values investigated
quantitatively here would be entirely training set dependent, and
certain training sets would result in a weighting where no indi-
vidual galaxies have high probability peaks at high redshifts.
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We note that to produce Figure[2] due to the relatively limited
population of galaxies at high redshifts in the COSMOSx3D-
HST data set used in this analysis, the presence of unpopu-
lated redshift bins at high z in a training set is often unavoid-
able. So in order to present a useful comparison between the
summed EPDFs and distribution of discrete most probable es-
timates N(zpno) produced in SPIDERz determinations with the
actual redshift distribution N(z;)..) for this particular data set we
utilized a subset of test data galaxies restricted to z < 2.9, ensur-
ing all redshift bins are populated, for this particular calculation
only.

By default, SPIDERz chooses the most probable (commonly
occurring) redshift bin as a single valued photo-z estimate for the
galaxy. In this analysis we use this method for discrete photo-z
predictions, such as those shown in Figure @ In this work we
seek a method to identify potential catastrophic outliers in such
photo-z predictions.

SPIDER?z also allows users flexibility in redshift bin size. We
generally find determinations have increased accuracy and pre-
cision when smaller bin sizes are used, however the optimal bin
size for any determination will be dependent on the size and na-
ture of the training set (decreasing the bin size for determinations
lowers existing parameter overlap between training and evalua-
tion sets) and can be approached via trial-and-error or approxi-
mated with the bin size introduced as an additional parameter in
a grid search (see a detailed discussion inlJones & Singal 2017).

3. Strategy for identifying potential catastrophic
outliers with EPDFs

To identify potential catastrophic outlier photo-z estimates we
focus on the existence of individual galaxies’ EPDFs displaying
multiple probability peaks or, somewhat equivalently, a ‘weak’
primary probability peak. There is some ambiguity in what
constitutes multiple substantial probability peaks in a galaxy’s
EPDF. In particular, a secondary peak is more likely to be signif-
icant if it is closer in height (probability) to the primary (highest
probability) peak, and also if it is located farther away in redshift
from the primary peak. Let us denote the ratio of the probability
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of a secondary peak i to the primary peak in a galaxy’s EPDF as

pr =11 7

pmax

where p,,,. is the probability of the primary (highest probabil-
ity) peak, and let us also denote the redshift distance between
that secondary peak and the primary peak as Az,¢q. Thus a des-
ignated minimum value for p; (psmin), and a designated min-
imum value for Azpear (AZpeak,min), can serve as filter values
above which a multiply peaked EPDF is flagged. If at least
one redshift bin in an EPDF distribution satisfies both of the
AZpeak > AZpeakmin and py > p g min criteria, the galaxy is flagged
as a potential catastrophic outlier. The optimal values for py, i,
and Azpeqk min Will vary depending on factors such as the redshift
range of test data and designated bin size, and the relative im-
portance of flagging more catastrophic outliers versus avoiding
spurious flaggings.

The simplest way to deal with flagged galaxies would be
to remove them from analyses which rely on photo-zs. This
would, of course, remove some fraction of catastrophic outliers
and other outliers, along with some fraction of non-outliers. In
§4.2l we show that the former number can be relatively high and
the latter relatively low. In this analysis going forward we con-
sider flagging being somewhat equivalent to removal from con-
sideration, while acknowledging that other strategies, such as
de-weighting while not completely eliminating flagged galaxies
in analyses, are possible and likely desirable in some circum-
stances.

4. Results

In this section, we present the results from our study of us-
ing EPDFs to identify probable outlier and catastrophic outlier
galaxy estimates as discussed in §31 We begin with a discussion
of the two test data sets used in these photo-z analyses. Next
we provide results from photo-z determinations performed with
SPIDER?z on the test data sets — both with and without applica-
tion of the EPDF outlier identification method discussed in §3]
Metrics of performance of this method are provided for a range
of values for the identification criteria, assuming here a simple
removal of flagged galaxies.

4.1. Test Data Sets

To obtain a data set of real galaxies with publicly available spec-
troscopic redshifts containing sources throughout a large redshift
range including higher redshifts we use spectroscopic redshifts
from the 3D-HST survey performed with the Hubble Space
Telescope and reported in Momcheva et al! (2016) that overlap
with photometry from the COSMOS2015 photometric catalog
(Laigle et all 2016) which reports photometry for over half a
million objects in the COSMOS field (Scoville et al.2007). For
spectroscopic redshifts we use the reported “best available” red-
shift measurement and eliminate those flagged as having their
redshift obtained from photometry or as being stars. This results
in a data set of 3704 galaxies, of which 383 (10.3%) have z > 2
and 948 (25.6%) have z > 1.5. The N(z) distribution for this data
set is shown in Figure Bl These data span an i-band magnitude
range from 27.05 to 18.16 with a median of 23.74.

In order to form an additional test set with a significantly
larger number of real galaxies, we also utilize galaxies from the
COSMOS2015 photometric catalog that contain particularly re-
liable, previously estimated photometric redshifts derived from
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Fig. 4: The best discrete photo-z estimation (most probable red-
shift, as discussed in §2)) as determined by SPIDERz versus the
actual redshift for the COSMOSx3D-HST data set discussed
in §4.1] for a realization of the five-band (fop) and ten-band
(bottom) cases. The catastrophic outlier identification method
discussed in §3lwas employed for these determinations with the
AZpeakmin = 0.6 criteria and the flagged galaxies are shown by
red crosses. These determinations were performed with a train-
ing set consisting of 1200 galaxies chosen at random and an
evaluation testing set consisting of the other 2504 galaxies. A
bin size of 0.1 was used. Outliers in a determination are defined
by equation[I] shown as those points lying outside of the two di-
agonal lines. The density of points within the lines is quite high
— only 2.6% of points lie outside of the lines as outliers for
the ten-band case (BOTTOM) before flagging and 6.7% for the
five-band case (TOP).

a large number of photometric bands. As the COSMOS2015 cat-
alog provides photometry for some galaxies in up to 31 optical,
infrared, and UV bands, those galaxies with (i) magnitude val-
ues for at least 30 bands of photometry, and (ii) for which the
stated y? for the redshift estimate is < 1, and (iii) for which the
stated photo-z value from the minimum y? estimate is less than
0.1 redshift away from the stated photo-z value from the peak
of the pdf, can be considered to have highly reliable previous
redshift estimates. Applying these criteria result in a data set of
58622 galaxies spanning an i band magnitude range from 27.17
to 19.00 with a median of 24.08. For shorthand purposes we will
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refer to this set here as the “COSMOS-reliable-7” test data set.
The N(z) distribution for this data set is also shown in Figure 3l

Although the COSMOS2015 catalog provides photometry in
a potentially large number of optical, infrared, and UV bands, we
choose to restrict our test analyses to the u, B, V., r, i, z+, Y, H, J,
and Ks bands, and a subset of five of these bands, because with
data sets approaching 30 bands of photometry, the distinction
between photo-z estimation and spectroscopic redshift determi-
nation is somewhat muddled, and in any case this does not repre-
sent a realistic photometric situation for upcoming large surveys
such as LSST, even for subsets which would have infrared survey
overlap. In the following sections we refer to test data consist-
ing of only five optical bands (u, B, r, i, z+) as the ‘five-band
case’, which could resemble the default situation for obtaining
photometric redshifts from a very large optical survey, and simi-
larly refer to test data comprised of all ten aforementioned bands
as the ‘ten-band case’, which could resemble the situation for
obtaining photometric results from a large optical survey that
overlaps a large near-infrared survey. For these bands we use
aperture magnitudes measured in a 3” aperture. The depths of
the photometry for the bands are given in Table 1 of|[Laigle et al.
(2016). We have not utilized galaxies with missing photometry
values in these bands — for the COSMOSx3D-HST test set the
number of galaxies where this is the case is negligible, while for
the COSMOS-reliable-z test set applying this filter has almost no
effect since this data set by definition contains 30 reliable bands
of photometry.

Unless otherwise noted, all determinations are performed
with randomly selected training and testing set populations of
1200 and 2504 galaxies, respectively for the COSMOSx3D-HST
data set, and 5000 and 53622 galaxies for the COSMOS-reliable-
z data set. Increasing the training population size beyond 1200
for the COSMOSx3D-HST data set produced only marginal im-
provements in photo-z accuracy. For the COSMOS-reliable-z
data set we chose to maintain a training set to evaluation set
size ratio of below 1:10 to more closely approximate the photo-z
conditions of future large scale survey analyses than would be
achieved with doing analyses with larger ratios.

We note that the galaxies in these data sets span the largest
redshift range of publicly available real galaxy photo-z test data
with photometry down to these magnitudes of which we are
aware. We also note that a significant limitation is posed on the
performance accuracy of SPIDERz due to inadequate parame-
ter overlap between training and evaluation galaxies in sparsely
populated redshift regions, which, among other restrictive influ-
ences, imposes a lower limit on the redshift bin size that can be
effectively used.

4.2. Results for various parameter choices

Figure @ displays the estimated SPIDERz photo-z versus actual
redshift for an example of typical determinations with the five-
band and ten-band cases for the COSMOSx3D-HST data set-
discussed in §4.11 The EPDF outlier identification method dis-
cussed in §3] was then employed for these determinations with
particular flagging parameters Azpeqk min = 0.6 and p i, = 0.95.
Red data points indicate flagged potential catastrophic outlier es-
timates in these cases. Estimates with the ten-band case are of
course significantly better than with the five-band case.

To examine the influence of our proposed method for
flagging potential catastrophic outliers in photo-z determina-
tions, we performed an extensive analysis with test deter-
minations on the five-band and ten-band cases for both the
COSMOSx3D-HST and COSMOS-reliable-z data sets using a
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range of AZpeqrmin values and py,n;, values, redshift bin sizes,
and training population sizes.

Perhaps surprisingly, we determine that appropriate values
of pymin are quite high, with any values below py i, = 0.9 re-
sulting in an unacceptably large number of spurious flaggings.
We find variations in the designated value for Azpq min greatly
influence the performance of the outlier identification method,
as measured by the relative numbers of correct outlier identifi-
cations versus spurious removal of non-outliers, however varia-
tions in py ., produced marginal difference in the range 0.90 <
Pfmin < 0.98.

We also find that discrete photo-z accuracy is generally high-
est on this test data when using redshift bin sizes between 0.1
and 0.05; the use of larger bin sizes significantly reduced photo-
z precision across all z values and particularly at lower zs, as
expected, while the use of bin sizes less than 0.05 produced a
significant number of unoccupied bins at higher redshifts and
deteriorated parameter overlap between training and evaluation
sets.

Figures[3land[7]and Tables[[land2lshow various performance
metrics from determinations with SPIDERz using the EPDF out-
lier identification method on COSMOSx3D-HST test data. Ta-
ble[highlights the percentage of outliers, percentage of outliers
removed, percentage of removed galaxies that are outliers, per-
centage of non-outliers removed, percentage of catastrophic out-
liers removed, and finally the percentage of catastrophic outliers
remaining for determinations on five-band and ten-band cases
for this data set, with a range of values for Az,eqx min and a fixed
Pfmin of 0.95, while figure [ provides a visual compendium of
some of those quantities for the five-band case. Table [2f shows
various metrics for several combinations of Azpeuk min and P 1 min
values. Figure [7] shows a redshift histogram of the reduction in
the number of catastrophic outliers and outliers present in a typi-
cal determination with the five-band case with one particular pa-
rameter value choice. Figure |6 shows performance metrics from
determinations with SPIDERz using the EPDF outlier identifica-
tion method on the COSMOS-reliable-z test data set. Comparing
Figures [ and [flit is clear that results from the two test data sets
are quite similar but with significantly smaller error bars in the
COSMOS-reliable-z case as would be expected from a signifi-
cantly larger data set.

We see that certain choices for Azpeqk min and p f,min result in
successfully flagging a high percentage (> 50%) of the catas-
trophic outliers while flagging a small percentage (2-4%) of the
non-outlier galaxies. On the other hand, low values of Az,eqk min
result in the flagging of a large percentage of the non-outlier
galaxies.

It is also of interest to explore whether this method flags an
excessive fraction of galaxies at higher redshifts and/or higher
magnitudes. In Figure [§] we show the percentage of non-outliers
flagged in bins of 0.1 in redshift (left panel) and in sextiles
of i-band magnitude (right panel) for the COSMOS-reliable-z
test data set with flagging parameter values py,;, = 0.95 and
AZpeak min = 0.6. It is seen that less than 15% of non-outliers are
flagged in the highest magnitude (dimmest flux) sextile but in
a few of the least populated redshift bins in the sample roughly
half of non-outliers are flagged. This suggests that steps could
be taken to mitigate this effect within certain low population red-
shift bins, as discussed in §3]
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Fig. 5: Visualization of photo-z performance metrics from determinations performed by SPIDERz on the COSMOSx3D-HST data
set discussed in §4.1] for the five photometric band case using a range of AZpeak,min values and fixed py = 0.95, considering that
all flagged galaxies would be removed from an analysis that relied on accurate photo-zs. We also include the performance for the
default case of no flagging on the left-most portion of the x-axis labeled “D.”. The determinations were performed with a bin size
of 0.1, and a training set consisting of 1200 galaxies chosen at random and an evaluation testing set consisting of the other 2504
galaxies, with results averaged over six determinations. The performance metrics shown include the percentage of outliers (TOP),
followed by the percentage of outliers removed (2nd from TOP), followed by the percentage of catastrophic outliers remaining (3rd
from TOP), followed by the percentage of non-outliers removed (3rd from BOTTOM), followed by the percentage of catastrophic
outliers removed (2nd from BOTTOM), and finally the percentage of removed galaxies that are outliers (BOTTOM). The variance
in performance across the six randomized realizations is indicated.
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Table 1: Results for analyses performed with SPIDERz on the five- and ten photometric band test data sets derived from the
COSMOSx3D-HST data discussed in §4.11 Determinations feature 1200 galaxies used for training and the remaining 2504 galaxies
used for evaluation. Six determinations were performed for every case, each with randomized training and evaluation testing sets,
and results averaged. Results are shown for the default cases with no flagging, and also with implementation of the EPDF outlier
flagging method discussed in §3] using a range of Azpeumin values and fixed p, = 0.95, assuming that all flagged galaxies would
be removed from a data set that relied on accurate photo-zs, to illustrate the percentage reduction in outlier and catastrophic outlier
galaxies achieved at the cost of incorrectly removing a percentage of non-outlier galaxies. Here we use the shorthand O and O, for
outliers and catastrophic outliers, respectively, which are defined by equations [[land 2] and O,,,, for non-outliers. The ‘Precision’
refers to the percentage of flagged galaxies which are outliers. The RMS and reduced RMS errors are also included for each case
and defined by equation[3las discussed in §I1

AZpeakmin 0% O™ % 0.% O™ Q" g  Precision % Orus OTR-RMS
Five photometric bands
(0.1 bin size)

Default 9.25 - 196 - - - 0.221 0.052
0.2 4.22 544 0.702 64.2 35.0 173 0.110 0.035
0.3 5.24 434 0.736 62.4 16.1 255 0.122 0.043
0.4 6.00 35.1 0.783 60.0 9.46 319 0.131 0.046
0.5 6.00 35.1 0.783 60.0 9.46 319 0.131 0.046
0.6 7.19 223 0.847 56.8 4.62 37.9 0.139 0.049
0.7 7.19 223 0.847 56.8 4.62 37.9 0.139 0.049
0.8 7.83 154 0.872 55.5 3.23 37.7 0.142 0.050
0.9 8.00 13.5 0.882 55.0 2.98 37.3 0.143 0.050
1.0 8.00 13.5 0.882 55.0 2.98 37.3 0.143 0.050
Ten photometric bands

(0.05 bin size)

Default 4.17 - 1.08 - - - 0.144 0.047
0.2 0.938 77.5 0.146 86.5 53.1 6.89 0.064 0.025
0.3 1.49 64.3 0.129 88.1 20.5 13.4  0.069 0.037
0.4 2.02 51.6 0.180 83.3 9.59 20.8 0.078 0.042
0.5 2.21 47.0 0.198 81.7 7.48 23.4  0.079 0.043
0.6 2.66 362 0.218 79.8 3.96 30.8 0.085 0.045
0.7 2.76 33.8 0.237 78.1 3.44 32.3  0.087 0.045
0.8 2.95 29.3  0.257 76.2 2.92 33.0 0.088 0.046
0.9 3.07 264 0.277 74.4 2.74 32.3  0.090 0.046
1.0 3.12 25.2  0.290 73.1 2.66 32.1  0.090 0.046

Table 2: Improvements in RMS and R-RMS (defined by equation [3), and the percentage of catastrophic outliers (O,, defined in
equation[2)) after flagging potential catastrophic outlier EPDFs in SPIDERz determinations on COSMOSx3D-HST test data for the
five photometric band case for a range of AzZpeat min and py pin values, with a redshift bin size of 0.1, assuming removal of flagged
galaxies. Six determinations were performed for every case, each with randomized training and evaluation testing sets consisting
of 1200 and 2504 galaxies respectively, and results averaged. The default case is for no flagging. We also show the percentage of
non-outliers (O,,,) flagged.

AZpeak,min P f,min Oc % A% ORMS A% OR-RMS A% O;eorgoved %

Default -~ 208 -~ 0213 = 0.0445 -

02 90 0483 -76.8 0078 -634 00274 384 55.1
02 95 0703 -662 0.110 -484 0.0346 -222 35.0
0.2 98 0.636 -69.4 0102 -52.1 00349 -21.6 325
0.3 90 0486 -76.6 0092 -56.8 00392 -11.9 288
0.3 95 0.746 -641 0122 -427 00426 -4.27 16.1
0.3 98 0.664 -68.1 0.118 -446 00418 -6.07 17.0
04 90 0543 -739 0.100 -53.1 00463 4.04 16.0
0.4 95 0.783 -62.4 0.131 -385 00462 3.82 9.46
0.4 98 0.659 -683 0.122 -427 0.0457 270 9.82
05 90 0562 -73.0 0.103 -51.6 0.0481 8.09 23
0.5 95 0.783 -62.4 0.131 -385 00462 3.82 9.46
0.5 98 0.659 -683 0.122 -427 0.0457 270 9.82
0.6 90 0627 -699 0.15 -460 00512 151 777
0.6 95 0.847 -59.3 0.139 -347 0.0491 103 4.62
0.6 98 0703 -66.2 0.128 -39.9 00486 9.1 473
0.7 90 0.625 -700 0.116 -455 00519 166 6.60
0.7 95 0.847 -59.3 0.139 -347 0.0491 103 4.62
0.7 98 0703 -66.2 0.128 -39.9 0.0486 9.1 4 Zicle number, page 9 of 12
0.8 90 0.630 -69.7 0.118 -446 00526 182 507
0.8 95 0.872 -58.1 0.142 -333 00499 12.1 327

0.8 98 0.743 -643 0.135 -36.6 0.0494 11.0 3.20
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5. Discussion

In this work, we have considered the utilization of SPIDERZ’s ef-
fective redshift probability distributions for flagging likely catas-
trophic outlier photo-z predictions — gross mis-estimations de-
fined by |z,h0r — Zspec| > 1 — by considering galaxies with multi-
ple or ill-defined peaks in photo-z probability separated by red-
shift. We introduced a formalism with two threshold criteria: the
minimum redshift separation of multiple peaks (Azpeak,min) and
the minimum probability ratio of secondary probability peaks to
the highest probability peak (pmix), as discussed in §3] to pre-
emptively flag potential catastrophic outlier estimates. We im-
plemented this method in SPIDERz photo-z determinations per-
formed with real galaxy test data spanning a wide redshift range
0 < z < 4 and utilizing limited photometric bands to estimate
photometric redshift (see §4.1)), testing a range of threshold val-
ues Azpeak,min and P fmin (See §BI)

We found Azeax min to have the greatest influence on the frac-
tion of catastrophic outliers which were flagged, while p i, was
sub-dominant in this regard but most strongly correlated with
flagging precision, with low values of p, leading to a higher
number of non-outliers flagged. Optimal values for Azpeuk min and
P#.min for any given application would result from striking an ac-
ceptable balance between more thoroughly flagging catastrophic
outlier galaxies and reducing the number of spuriously flagged
non-outlier galaxies.

We present results for a variety of choices of Azpeq min Where
this trade-off can be seen, particularly in Figure 5] and Tables 1
and 2. There are a range of options away from the lowest val-
ues of Azp.qmin Where the percentage of catastrophic outliers
flagged is quite high and the percentage of non-outliers flagged
is relatively low. For all parameter choices, more non-outliers are
flagged than outliers, but this is likely inevitable considering that
in the default case more than 90% of the galaxies in the five-band
case and 95% in the ten-band case are non-outliers.

We have seen that with proper choices for Azpeqk min and
Psmin EPDFs can be utilized to flag potential catastrophic outlier
photo-z predictions with a high degree of overall effectiveness in
determinations performed on a data set which spans a wide red-
shift range and contains realistic photometry in a limited num-
ber of wavebands. As discussed in §3] in a future large scale sur-
vey utilizing photometric redshifts, the simplest use of such flag-
ging information would be to simply remove the flagged galaxies
from science analyses in which catastrophic outlier redshift pre-
dictions are detrimental, such as weak-lensing cosmology. An-
other simple option for utilization of flagging information could
include de-weighting of potential catastrophic outliers in cosmo-
logical probes.

If such flagged galaxies are simply removed from analy-
sis, there is, necessarily, a trade-off between more complete re-
moval of actual catastrophic outliers and spurious removal of
non-outliers. In this work we present various options for the pa-
rameters AZpeak,min and prmin (discussed in §3) which lead to
different points on this trade-off continuum. We show the vari-
ous results for catastrophic outliers removed, spurious removals,
and other metrics in Tables [1l and 2] and visualizations in Fig-
ures [7l and 3 It is seen that for a range of flagging parameter
values a favorable ratio of total genuine catastrophic outlier flag-
ging to spurious non-outlier flagging is obtained, for example
flagging of significantly more than half of catastrophic outliers
while spuriously flagging only 2-4% of non-outliers. With the
need to obtain precise redshift estimates satisfying photo-z error
constraints for probing cosmological parameters and the abun-
dance of galaxies that will be observed in future large photo-

SVM photo-z

metric surveys, it may be reasonable in many cases to accept a
slightly larger (although still low) percentage of overall spurious
removals in exchange for maximizing the number of removed
catastrophic outlier photo-z estimates.

It is important to note, however, that as seen in Figure [§] a
significant fraction (approaching half in the most dramatic cases)
of non-outliers are flagged in a few of the more sparsely popu-
lated redshift bins, including some of those at higher redshifts.
This points toward a possible strategy beyond simple removal of
flagged galaxies in these particular redshift bins in order to not
lose for cosmological analyses such a large fraction of high red-
shift galaxies in a data set. We will explore possible weighting
strategies for this in a future work. We do also note two crucial
caveats regarding this: (1) that in this work, as mentioned in Il
in order to approximate the photo-z conditions applying to fu-
ture large scale surveys, we utilize much larger evaluation sets
than training sets in this study. Thus it is likely that by adopt-
ing a larger training to evaluation set size ratio than here, as has
been done in many other photo-z studies in the literature, one
could reduce the percentage of spuriously flagged non-outliers
in the sparsely populated redshift bins given a similarly sized test
data set. Also, (2) it is likely the case that, for a given training
to evaluation set size ratio and N(z) distribution, there will be a
lower percentage of spuriously flagged non-outliers in relatively
sparsely populated redshift bins given a larger overall test data
set. However even with a very large training set high redshift bins
will contain a higher proportion of potential catastrophic outliers
and therefore spurious removals due to the degeneracy between
Balmer and Lyman breaks in galaxy spectra.

While this analysis focused on utilization of EPDFs provided
by SPIDERz, there is no reason that it should not be gener-
alizable with analagous parameters to any photo-z estimation
method which provides redshift probability distribution infor-
mation for each galaxy. While the parameters we used in this
work to flag EPDF features, Az,cak,min and p s min, were effective
in distinguishing likely catastrophic outliers, the optimal values
of these parameters for a given purpose may be data set depen-
dent to some extent. Also other photo-z estimation codes and
probability determination methods may or may not necessitate
alternate parameter values and/or definitions to those employed
in this work. We also note that in general results in empirical
photo-z estimation methods often depend on the degree of rep-
resentativeness of the training set relative to the evaluation set.
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