Hall B:User Software Contributions

Gerard Gilfoyle University of Richmond

12 GeV Upgrade Software Review

Jefferson Lab November 6-7, 2014

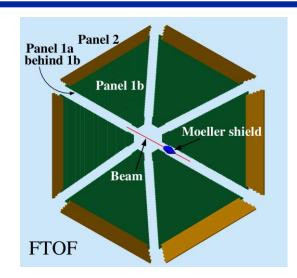
Goals and Outline

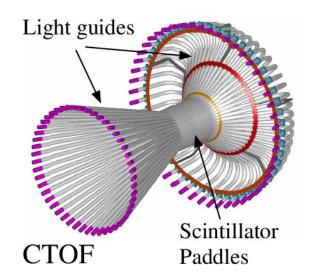
□Committee Charge - 1.c

- Are users engaged at a sufficient level to demonstrate usability and readiness from a user's perspective?
- Has the CLAS Collaboration identified appropriate mechanisms to support utilization of the software by the entire collaboration?
- Is the level of user documentation appropriate for this point in time?

□Outline of talk

- TOF reconstruction software: detectors, methods, results, and status.
- User experience: developers, workflow.
- Connection with committee charge.



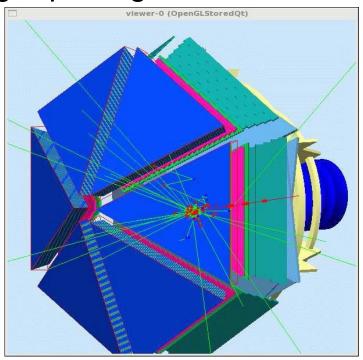


TOF Reconstruction

- □ Forward Time-of-Flight (FTOF)
 - 6 sectors, double-sided PMT readout.
 - Paddles: Panel 1a 23, Panel 1b 62,
 Panel 2 5.
- □Central Time-of-Flight (CTOF)
 - 48 paddles, double-sided PMT readout.
 - form hermetic barrel around target.
- □Outputs
 - Times
 - Positions
 - Hit times
 - Deposited energy

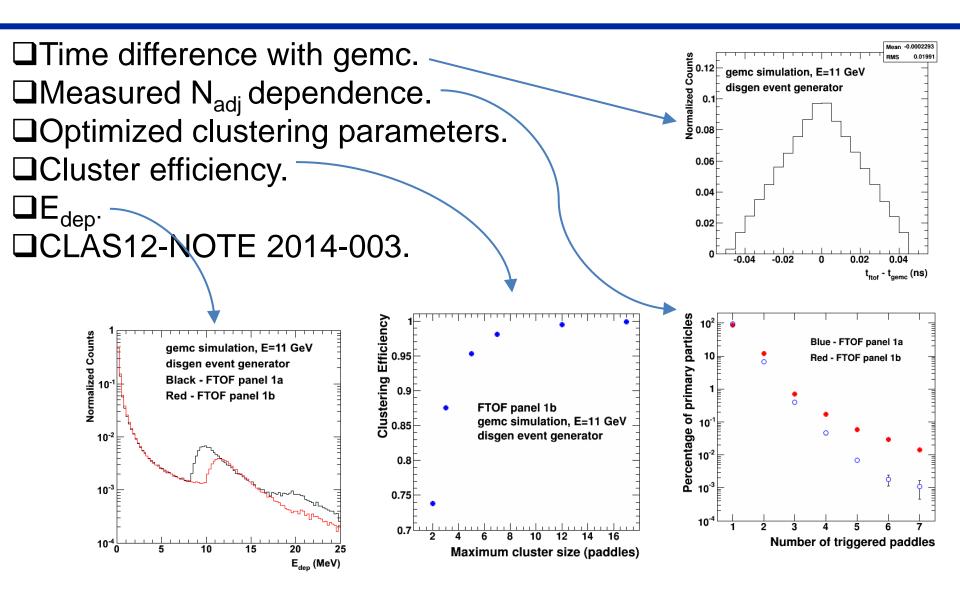
TOF Reconstruction Methods

- ☐ Single TOF paddles and clusters
 - o adjacent hits grouped based on cuts on Δy_{hit} and Δt_{hit} .
- \square TDC Time (T_L, T_R)
 - Apply time walk corrections and calibration
 - Clusters energy-weighted average.
- □Deposited Energy (E_{dep})
 - Apply ADC calibration and $E_{dep} = \sqrt{E_L \cdot E_R}$
 - Clusters sum E_{dep}'s
- \square Position (y_{hit})
 - Use T_L-T_R to get y_{hit} relative to paddle center.
 - Clusters energy-weighted average.
- \Box Hit time (T_{hit})
 - Average T_L, T_R
 - Clusters energy-weighted average vs. earliest hit.



Code Validation

- □Simulation is primary testing tool of TOF reconstruction code.
- □CLAS12 Simulation *gemc*
- ☐Simulations done on Richmond cluster and copied to JLab.
 - Accessible, well-documented, bug reporting, website.
 - JLab staff member (M. Ungaro).
- □ Event generation
 - o disgen proton DIS
 - Range of final states and momenta.
 - Local
 - QUEEG quasielastic scattering from deuterium
 - Local, under svn,
 - CLAS-NOTE 2014-008.



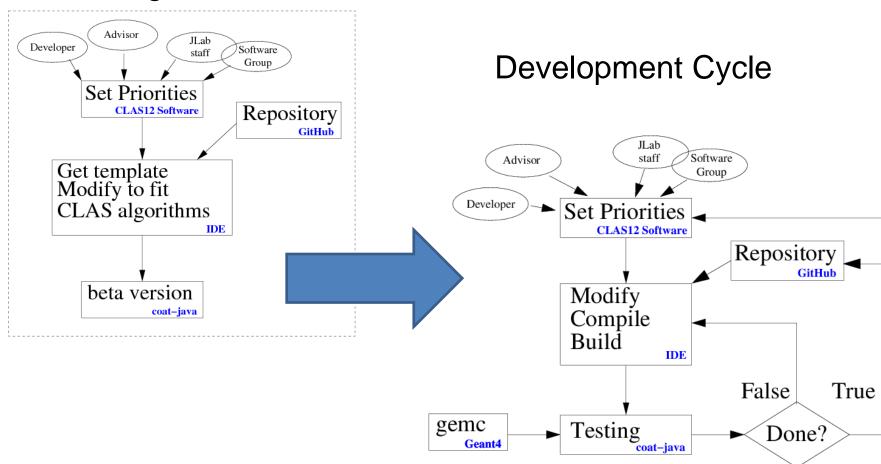
FTOF Standalone Reconstruction Results

Current Status

- □CLAS12 generation 1 TOF reconstruction completed
 - December, 2013.
 - Standalone versions for FTOF and CTOF.
 - Working as a service in analysis chain.
 - Validated in stress test.
 - Optimized parameters for forming cluster from multiplepaddle hits.
 - CLAS12 NOTE 2014-003.
- □Updated to new clasio libraries, bankefs, summer 2014.
- □New test version for event builder development.
- □ First version of code to match drift chamber track from hit-
- based tracking with FTOF hit.
- ☐Geometry parameters read from service.
- □Streamlined code.

People

- □ Developer categories: A environment programmers,
 - B service developers, C physics-only users
- ☐ Time-of-flight reconstruction software developers
 - Alex Colvill, master's student, University of Surrey, 2013
 - Created full set of reconstruction software
 - optimized algorithms for forming clusters
 - o G.P.Gilfoyle, spring 2014
 - work done at University of Richmond
 - updated FTOF to new clasio, bankdefs (with JLab help)
 - E.Golovach, summer-fall 2014
 - periodic visitor to JLab from Moscow State
 - Working on FTOF reconstruction now (track matching).
- □JLab support V.Ziegler, G.Gavalian



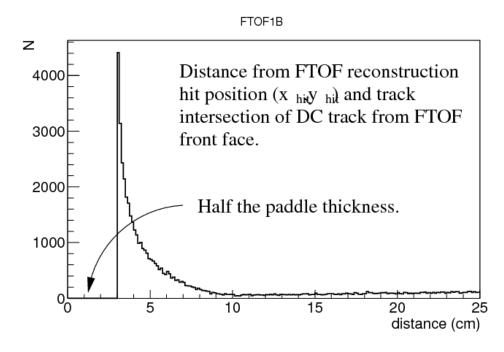
User Workflow

Getting Started

Connection to Charge

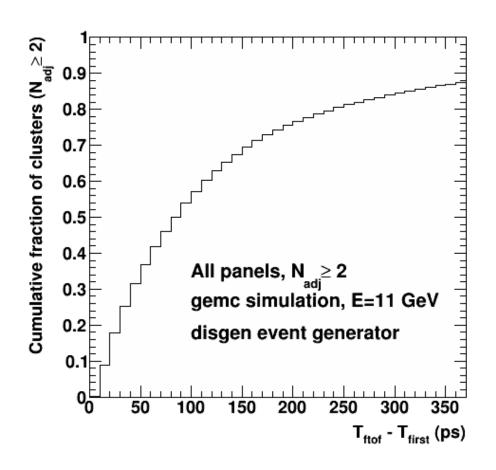
- Are users engaged at a sufficient level to demonstrate usability and readiness from a user's perspective?
 - Gilfoyle (Richmond), Golovach (Moscow State) and their students have been able to make significant contributions to the time-of-flight reconstruction package.
 - Time spent on-site is crucial for start-up.
- Has the CLAS Collaboration identified appropriate mechanisms to support utilization of the software by the entire collaborations?
 - For TOF project the common tools are far enough along for off-site users to make contributions.
 - Simulations with gemc and analysis in the Clara framework are ongoing at Richmond and MSU.
- Is the level of user documentation appropriate for this point in time?
 - Lots of material for FTOF, but should be localized (CLAS12 wiki?).
 - Bug reporting, access to JLab staff for support can be crucial to get software working offsite.

Additional Slides



Track Matching with Drift Chambers

- Match drift chamber track with FTOF hit.
- Hit-based tracking results are used now.
- DC track is propagated from last DC plane to front face of FTOF panel (B=0) using geometry service tools.
- FTOF returns (z_{hit}, y_{hit}) where z_{hit} is in the center of the paddle.
- Consider only single paddle clusters.
- First results:



Energy-weighted T_{hit} vs. Earliest T_{hit}

- □Cluster hit times have been calculated as the energyweighted sum of the paddle hit times.
- ■We also considered taking the earliest T_{hit} among the paddles of each cluster.

