- Steeper slope of reconstruction efficiency
- with luminosity observed for *ep* events from gnm train compared with sidisdvcs train.

 Validate the gmn analysis by combining low-luminosity data with high-luminosity background events and compare results Validate the gmn analysis by combining with full, high-luminosity measurements. See CLAS12-NOTE 2020-005.

- Steps.
 - Update the 5-nA, reconstructed data (run 6373). The spring, 2019 data files did not include the dictionary so this has to be done first.
 - Merge the 5-nA data from the previous step with the 35-nA background data.
 - Run the denoising code on the output of the previous step.
 - Reconstruct the output of the previous step using coatjava 10.0.2.
 - Start post-reconstruction analysis.

Combine Low-luminosity data with Background runs

5-nA data (run 6373) merged with 35-nA background and reconstructed. First 50k events.

35-nA data (run 6288, spring 2019, 10.6 GeV) reconstructed. First 50k events.

Next Steps

- Continue checking results in initial analysis
- Oevelop scripts for ifarm to analyze complete files.
- Getting analysis using Lamya's code working.

More distributions

More distributions

