

Data file: data10p6nosidiscutv4.root

Histograms: expMM_Pmmbin

Jerry Gilfoyle

NDE Fitting 1

Vary μ and σ , range fixed: 0.895166-1.00242 GeV

Data file: data10p6nosidiscutv4.root

Histograms: expMM_Pmmbin

Vary μ and σ , range $\mu \pm \sigma$

Jerry Gilfoyle

Data file: data10p6nosidiscutv4.root

Histograms: expMM_Pmmbin

Vary μ and σ , range: $\mu - \sigma \rightarrow \mu + \frac{\sigma}{2}$

Jerry Gilfoyle

NDE Fitting 1

Data file: data10p6nosidiscutv4.root

Histograms: expMM_Pmmbin

Thu Sep 1 12:35:38 2022

Characterizing the Expected Neutron Background

Additional Slides

Fit Crystal Ball Function (Detected neutrons)

Jerry Gilfoyle

Use results for mean and width from CB LE+core fits 16

fix μ and σ , range to 1.15 GeV

Jerry Gilfoyle

NDE Fitting 1

fix μ and σ , range to 1.15 GeV

fix μ and σ , range to 1.15 GeV

Red: fix μ and σ , range to 1.15 GeV Blue: allow μ and σ to vary, MM range to 1.15 GeV

Crystal Ball Equations

The Crystal Ball function is given by

$$f(x; \alpha, n, \overline{x}, \sigma) = N \exp\left(-\frac{(x - \overline{x})^2}{2\sigma^2}\right), \qquad \text{for} \frac{x - \overline{x}}{\sigma} > -\alpha$$
$$= N \cdot A \cdot \left(B - \frac{x - \overline{x}}{\sigma}\right)^{-n}, \qquad \text{for} \frac{x - \overline{x}}{\sigma} < -\alpha$$

where

Simulated (SIDIS) Proton Results

Background Lineshape (Detected neutrons)

- Fit the range $MM = 0 \rightarrow \overline{MM} + \sigma$ with Crystal Ball fn.
- 2 Using full data range subtract fit from data $\Delta = N_{data} M_{fit}$
- Use result to guide choice of fitting function.

Jerry Gilfoyle