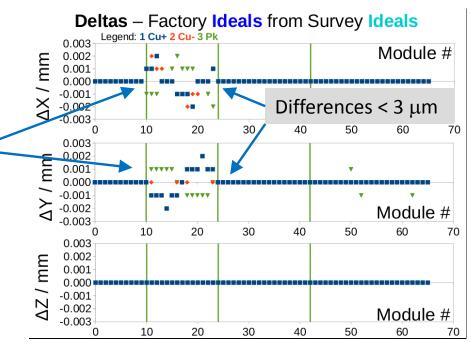
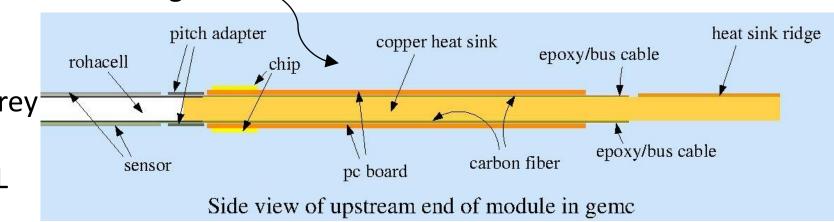

Alignment of the Silicon Vertex Tracker (SVT)

- Track-based alignment of SVT requires fitting many parameters: N_{sectors} x N_{layers} x N_{trans} x N_{rot} = 66 x 2 x 3 x 2 = 792
- Program millepede does linear least squares with many parameters.
 - $\circ~$ Uses matrix form of least squares method and divide the elements into two classes.
 - ➢ Global parameters the geometry misalignments. Same in all events.
 - Local individual track fit parameters. Change event-to-event.
 - Calculate first partial derivatives of the fit residuals with respect to the local (i.e. fit) parameters and global parameters (geometry misalignments).
 - Manipulate the linear least squares matrix to isolate the global parameters (geometry) and invert the results to obtain the solution.




- Apply to a 'simple' example Type 1 tracks.
 - $\circ~$ Use gemc cosmics for testing and validation.
 - $\circ~$ Shift layers 1-2 (Region 1) by 2-500 microns in x.
 - \circ $\,$ millepede reproduces all shifts.
 - Apply to Type-1 cosmic ray sample from SVT.
 - \circ 5.9M events collected May 11-18.
 - $\circ~$ Fixed layer 4 in millipede fit to SVT residual.
 - Good agreement between millipede mis alignment and residuals.
 - Fit residual and resolution improve.
 - Code for Type 2 events now being tested.

Geometry of the Silicon Vertex Tracker (SVT)

- Ideal Geometry Validation and Testing
 - Calculate ideal fiducial location on each module.
 - Observed significant difference with engineering drawings - up to 100 μm. Now reduced to < 3μm
 - Ideal geometry defined by engineering drawings.
 - Used by simulation and reconstruction codes.
- Geometry package
 - Common Java utility for gemc and reconstruction.
 - Detailed reproduction from engineering drawings.
 - Full inventory of material in SVT for gemc. -
 - CLAS-NOTE near completion.
 - Charles Platt new Surrey masters student.
 - Sereres Johnston ANL postdoc.

