The Hunt is On: New Physics at Jefferson Lab

G.P. Gilfoyle University of Richmond, Richmond, VA 23173

Outline

- Jefferson Lab's Mission
- What we know.
- What we don't know.
- What we're learning.
- How we'll do it.
- Concluding Remarks

Oct 18, 2022

The Hunt is On: New Physics at Jefferson Lab

G.P. Gilfoyle University of Richmond, Richmond, VA 23173

Outline

- Jefferson Lab's Mission
- What we know.
- What we don't know.
- What we're learning.
- How we'll do it.
- Concluding Remarks

Oct 18, 2022

What is the Mission of Jefferson Lab?

- Basic research into the nature of the nucleus and the nucleon.
- Probe the quark-gluon structure of hadronic matter and how it evolves within nuclei.
- Test the theory of the strong or color force, Quantum Chromodynamics (QCD), in nucleons.
- One of the Millennium Prize Problems (Clay Mathematics Institute). Solving it gets you a cool million bucks.

• The Universe is made of quarks and leptons and the force carriers.

	BOSONS force carriers spin = 0, 1, 2,					
Unified El	ectroweak	spin = 1	Strong (o	color) s	pin = 1	
Name	Mass GeV/c ²	Electric charge	Name	Mass GeV/c ²	Electric charge	
γ photon		0	g gluon	0	0	
w-		-1	Higgs Bo	son s	pin = 0	
W ⁺		+1	Name	Mass GeV/c ²	Electric charge	

FERMIONS matter constituents spin = 1/2, 3/2, 5/2,					
Lep	otons spin =1/2		Quar	ks spin	=1/2
Flavor	Mass GeV/c ²	Electric charge	Flavor	Approx. Mass GeV/c ²	Electric charge
VL lightest neutrino*	(0-2)×10 ⁻⁹	0	u up	0.002	2/3
e electron	0.000511	-1	d down	0.005	-1/3
$\mathcal{V}_{\mathbf{M}} ~ \underset{neutrino^{*}}{\text{middle}}$	(0.009-2)×10 ⁻⁹	0	C charm	1.3	2/3
μ muon	0.106	-1	S strange	0.1	-1/3
$\mathcal{V}_{\mathrm{H}} \underset{\mathrm{neutrino}^{*}}{\mathrm{heaviest}}$	(0.05-2)×10 ⁻⁹	0	t top	173	2/3
au tau	1.777	-1	b bottom	4.2	-1/3

- The atomic nucleus is made of protons and neutrons bound by the strong force.
- The quarks are confined inside the protons and neutrons.
- Protons and neutrons are NOT confined.

- Matter comes in pairs of quarks or triplets.
- We are mostly triplets (protons and neutrons).
- More than 99% of our mass is in nucleons.
- Proton \rightarrow 2 ups + 1 down.
- Neutron \rightarrow 1 up + 2 downs.

FERMIONS matter constituents spin = 1/2, 3/2, 5/2,					
Lep	otons spin =1/2	:	Quar	ks spin	=1/2
Flavor	Mass GeV/c ²	Electric charge	Flavor	Approx. Mass GeV/c ²	Electric charge
VL lightest neutrino*	(0-2)×10 ⁻⁹	0	u _{up}	0.002	2/3
e electron	0.000511	-1	u down	0.005	-1/3
$\mathcal{V}_{\mathbf{M}}$ middle neutrino*	(0.009-2)×10 ⁻⁹	0	C charm	1.3	2/3
μ muon	0.106	-1	S strange	0.1	-1/3
$\mathcal{V}_{\rm H} \stackrel{\rm heaviest}{_{\rm neutrino^*}}$	(0.05-2)×10 ⁻⁹	0	t top	173	2/3
τ _{tau}	1.777	-1	b bottom	4.2	-1/3

- Matter comes in pairs of quarks or triplets.
- We are mostly triplets (protons and neutrons).
- More than 99% of our mass is in nucleons.
- Proton \rightarrow 2 ups + 1 down.
- Neutron \rightarrow 1 up + 2 downs.
- A quiz: How much does the proton weigh?

FERMIONS matter constituents spin = 1/2, 3/2, 5/2,					
Lep	otons spin =1/2	:	Quar	ks spin	=1/2
Flavor	Mass GeV/c ²	Electric charge	Flavor	Approx. Mass GeV/c ²	Electric charge
\mathcal{V}_{L} lightest neutrino* \mathbf{e} electron	(0−2)×10 ^{−9} 0.000511	0 -1	u _{up} d _{down}	0.002 0.005	2/3 -1/3
\mathcal{V}_{M} middle neutrino* μ muon	(0.009–2)×10 ^{–9} 0.106	0 -1	C charm S strange	1.3 0.1	2/3 -1/3
\mathcal{V}_{H} heaviest neutrino* au tau	(0.05–2)×10 ^{–9} 1.777	0 -1	t _{top} b _{bottom}	173 4.2	2/3 1/3

- Matter comes in pairs of quarks or triplets.
- We are mostly triplets (protons and neutrons).
- More than 99% of our mass is in nucleons.
- Proton \rightarrow 2 ups + 1 down.
- Neutron \rightarrow 1 up + 2 downs.
- A quiz: How much does the proton weigh?

 $m_p = 2m_{up} + m_{down}$

FERMIONS matter constituents spin = 1/2, 3/2, 5/2,					
Lep	otons spin =1/2	:	Quar	ks spin	=1/2
Flavor	Mass GeV/c ²	Electric charge	Flavor	Approx. Mass GeV/c ²	Electric charge
\mathcal{V}_{L} lightest neutrino* \mathbf{e} electron	(0−2)×10 ^{−9} 0.000511	0 -1	u _{up} d down	0.002 0.005	2/3 -1/3
\mathcal{V}_{M} middle neutrino* μ muon	(0.009–2)×10 ^{–9} 0.106	0 -1	C charm S strange	1.3 0.1	2/3 -1/3
\mathcal{V}_{H} heaviest neutrino* au tau	(0.05–2)×10 ^{–9} 1.777	0 -1	t _{top} b _{bottom}	173 4.2	2/3 1/3

- Matter comes in pairs of quarks or triplets.
- We are mostly triplets (protons and neutrons).
- More than 99% of our mass is in nucleons.
- Proton $\rightarrow 2 \text{ ups} + 1 \text{ down}$.
- Neutron \rightarrow 1 up + 2 downs.

• A quiz: How much does the proton weigh? $m_p = 2m_{up} + m_{down} = 2(2 \ MeV/c^2) + 5 \ MeV/c^2$

FERMIONS matter constituents spin = 1/2, 3/2, 5/2,					
Lep	otons spin =1/2		Quar	ks spin	=1/2
Flavor	Mass GeV/c ²	Electric charge	Flavor	Approx. Mass GeV/c ²	Electric charge
\mathcal{V}_{L} lightest neutrino*	(0-2)×10 ⁻⁹	0	u _{up}	0.002	2/3
e electron	0.000511	-1	d down	0.005	-1/3
$\mathcal{V}_{\mathbf{M}} \stackrel{\text{middle}}{\underset{\text{neutrino}^{*}}{\text{middle}}}$	(0.009-2)×10 ⁻⁹	0	C charm	1.3	2/3
μ muon	0.106	-1	S strange	0.1	-1/3
\mathcal{V}_{H} heaviest neutrino*	(0.05-2)×10 ⁻⁹	0	t top	173	2/3
τ _{tau}	1.777	-1	b bottom	4.2	-1/3

- Matter comes in pairs of quarks or triplets.
- We are mostly triplets (protons and neutrons).
- More than 99% of our mass is in nucleons.
- Proton \rightarrow 2 ups + 1 down.
- Neutron \rightarrow 1 up + 2 downs.

FERMIONS matter constituents spin = 1/2, 3/2, 5/2,					
Lep	otons spin =1/2	:	Quar	ks spin	=1/2
Flavor	Mass GeV/c ²	Electric charge	Flavor	Approx. Mass GeV/c ²	Electric charge
VL lightest neutrino*	(0-2)×10 ⁻⁹	0	u up	0.002	2/3
e electron	0.000511	-1	d down	0.005	-1/3
$\mathcal{V}_{\mathbf{M}}$ middle neutrino*	(0.009-2)×10 ⁻⁹	0	C charm	1.3	2/3
μ muon	0.106	-1	S strange	0.1	-1/3
\mathcal{V}_{H} heaviest neutrino*	(0.05-2)×10 ⁻⁹	0	t top	173	2/3
au tau	1.777	-1	b bottom	4.2	-1/3

• A quiz: How much does the proton weigh?

 $m_p = 2m_{up} + m_{down} = 2(2 \ MeV/c^2) + 5 \ MeV/c^2$ = 939 MeV/c^2 OOOPS!!!????

- Matter comes in pairs of quarks or triplets.
- We are mostly triplets (protons and neutrons).
- More than 99% of our mass is in nucleons.
- Proton \rightarrow 2 ups + 1 down.
- Neutron \rightarrow 1 up + 2 downs.

FERMIONS matter constituents spin = 1/2, 3/2, 5/2,					
Lep	otons spin =1/2	:	Quar	ks spin	=1/2
Flavor	Mass GeV/c ²	Electric charge	Flavor	Approx. Mass GeV/c ²	Electric charge
\mathcal{V}_{L} lightest neutrino*	(0-2)×10 ⁻⁹	0	u _{up}	0.002	2/3
e electron	0.000511	-1	d down	0.005	-1/3
$\mathcal{V}_{\mathbf{M}}$ middle neutrino*	(0.009-2)×10 ⁻⁹	0	C charm	1.3	2/3
μ muon	0.106	-1	S strange	0.1	-1/3
$\mathcal{V}_{\mathbf{H}}$ heaviest neutrino*	(0.05-2)×10 ⁻⁹	0	t top	173	2/3
au tau	1.777	-1	b bottom	4.2	-1/3

• A quiz: How much does the proton weigh?

$$m_p = 2m_{up} + m_{down} = 2(2 \ MeV/c^2) + 5 \ MeV/c^2$$

= 939 MeV/c^2 OOOPS!!!?????

•
$$m_n - m_p = 1.29333205(48) \ MeV/c^2 \ (exp)$$

= 1.51(16)(23) $MeV/c^2 \ (th)$

Sz. Borsanyi et al. *Science* 347, 1452 (2015).

• Start with the cross section.

$d\sigma$ _	scattered flux/solid angle
$\overline{d\Omega}$ –	incident flux/surface area

$$\frac{d\sigma}{d\Omega} = \frac{Z^2 \alpha^2 (\hbar c)^2}{4E^2 \sin^4(\theta/2)} \left(1 - \beta^2 \sin^2 \frac{\theta}{2}\right)$$

Rutherford

• What happens when the target is not a point?

$$\frac{d\sigma}{d\Omega} = \frac{Z^2 \alpha^2 (\hbar c)^2}{4E^2 \sin^4(\theta/2)} \left(1 - \beta^2 \sin^2 \frac{\theta}{2}\right) |F(Q^2)|^2$$

where Q is the 4-momentum transfer.

where Q is the 4-momentum transfer.

THE FORM FACTOR!

where Q is the 4-momentum transfer.

• Where experiment and theory meet.

Jerry Gilfoyle

THE FORM FACTOR!

- Nucleon elastic electromagnetic form factors (EEFFs) describe the distribution of charge and magnetization in the nucleon.
- They encode the deviations from point-particle behavior.
- Reveal the internal quark-gluon landscape of the nucleon and nuclei.
- Rigorously test QCD in the non-perturbative/nuclear regime.

• Jargon:
$$G_E^p$$
, G_M^p , G_E^n , G_M^n .

FIG. 5. Curve (a) shows the theoretical Mott curve for a spinless point proton. Curve (b) shows the theoretical curve for a point proton with the Dirac magnetic moment, curve (c) the theoretical curve for a point proton having the anomalous contribution in addition to the Dirac value of magnetic moment. The theoretical curves (b) and (c) are due to Rosenbluth.⁴ The experimental curve fails between curves (b) and (c). This deviation from the theoretical curves represents the effect of a form factor for the proton and indicates structure within the proton, or alternatively, a breakdown of the Coulomb law. The best fit indicates a size of 0.70×10⁻² cm.

McAllister and Hofstadter, PR 102, 851 (1956)

- Nucleon elastic electromagnetic form factors (EEFFs) describe the distribution of charge and magnetization in the nucleon.
- They encode the deviations from point-particle behavior.
- Reveal the internal quark-gluon landscape of the nucleon and nuclei.
- Rigorously test QCD in the non-perturbative/nuclear regime.

• Jargon: G_E^p , G_M^p , G_E^n , G_M^n .

Robert Hofstadter, Nobel Prize 1961

- Nucleon elastic electromagnetic form factors (EEFFs) describe the distribution of charge and magnetization in the nucleon.
- They encode the deviations from point-particle behavior.
- Reveal the internal quark-gluon landscape of the nucleon and nuclei.
- Rigorously test QCD in the non-perturbative/nuclear regime.

• Jargon: G_E^p , G_M^p , G_E^n , G_M^n .

Robert Hofstadter, Nobel Prize 1961

What We're Learning - The Campaign

The JLab Lineup

Quantity	Method	Target	Hall	Status
G_M^p *	Elastic scattering	LH_2	А	published
G_E^p/G_M^p	Polarization transfer	LH_2	А	next year
\overline{G}_{M}^{n*}	E - p/e - n ratio	LD_2, LH_2	В	analyzing
G_M^{n*}	E - p/e - n ratio	LD_2, LH_2	А	analyzing
G_E^n/G_M^n	Double polarization	polarized ${}^{3}\mathrm{He}$	А	next week
	asymmetry			
G_E^n/G_M^n	Polarization transfer	LD_2	С	to be scheduled
G_E^n/G_M^n	Polarization transfer	LD_2	А	next year

* At least some data is collected.

What We're Learning - Flavor Decomposition

- With all four EEFFs we can unravel the contributions of the *u* and *d* quarks.
- With charge symmetry, no *s* quark, then

$$F_{1(2)}^{u} = 2F_{1(2)}^{p} + F_{1(2)}^{n}$$
 $F_{1(2)}^{d} = 2F_{1(2)}^{n} + F_{1(2)}^{p}$

(Miller et al. Phys. Rep. 194, 1 (1990))

- The *d*-quark F_1 is strongly suppressed.
- The Dyson-Schwinger Eqs are the equations of motion of quantum field theory.
 - Infinite set of coupled integral equations.
 - Inherently relativistic, non-perturbative, connected to QCD.
 - Deep connection to confinement, dynamical chiral symmetry breaking.
 - Infinitely many equations, gauge dependent → Choose well!
 - Recall u,d masses are small.

Cates et al. PRL 106, 252003 (2011).

What We'll Learn - Light Front Holographic QCD

- Based on connections between light-front dynamics, it's holographic mapping to anti-de Sitter space, and conformal quantum mechanics.
- ② Paper by Sufian *et al.* (Phys. Rev. D95, 01411 (2017)) included calculations of the electromagnetic form factors that include higher order Fock components |qqqqqq̄⟩. More recent work by Gutsche *et al.* (Phys. Rev. D97, 054011 (2018).)
- Solution Obtain good agreement with all the form factor data with only three parameters, *e.g.* $\mu_n G_E^n/G_M^n$.

What We'll Learn - Light Front Holographic QCD

- Based on connections between light-front dynamics, it's holographic mapping to anti-de Sitter space, and conformal quantum mechanics.
- ② Paper by Sufian *et al.* (Phys. Rev. D95, 01411 (2017)) included calculations of the electromagnetic form factors that include higher order Fock components |qqqqqq̄⟩. More recent work by Gutsche *et al.* (Phys. Rev. D97, 054011 (2018).)
- 3 Obtain good agreement with all the form factor data with only three parameters, *e.g.* $\mu_n G_E^n/G_M^n$.

Model the nucleon dressed quark propagator as a quark-diquark.

- Start at your local mile-long, high-precision, 12-GeV electron accelerator.
- The Continuous Electron Beam Accelerator Facility (CEBAF) produces beams of unrivaled quality.
- Electrons do up to five laps, are extracted, and sent to one of three experimental halls.
- All four halls can run simultaneously.

- Start at your local mile-long, high-precision, 12-GeV electron accelerator.
- The Continuous Electron Beam Accelerator Facility (CEBAF) produces beams of unrivaled quality.

- Electrons do up to five laps, are extracted, and sent to one of three experimental halls.
- All four halls can run simultaneously.

- Start at your local mile-long, high-precision, 12-GeV electron accelerator.
- The Continuous Electron Beam Accelerator Facility (CEBAF) produces beams of unrivaled quality.
- Electrons do up to five laps, are extracted, and sent to one of three experimental halls.
- All four halls can run simultaneously.

- Start at your local mile-long, high-precision, 12-GeV electron accelerator.
- The Continuous Electron Beam Accelerator Facility (CEBAF) produces beams of unrivaled quality.
- Electrons do up to five laps, are extracted, and sent to one of three experimental halls.
- All four halls can run simultaneously.

How Do We Measure The Form Factors

- Add one 45-ton, \$80-million radiation detector: the CEBAF Large Acceptance Spectrometer (CLAS12).
- CLAS12 covers a large fraction of the total solid angle at forward angles.
- Has over 100,000 detecting elements in about 40 layers.

How Do We Measure The Form Factors

 Add one 45-ton, \$80-million radiation detector: the CEBAF Large Acceptance Spectrometer (CLAS12).

How Do We Measure The Form Factors

 Add one 45-ton, \$80-million radiation detector: the CEBAF Large Acceptance Spectrometer (CLAS12).

Overview

DC

Solenoid

FTOP

A CLAS12 Event - Summary

A CLAS12 Event - Summary

How Do We Extract the Form Factors? - G_M^n

- Focus of my analysis group.
- Ratio Method on Deuterium:

$$R = \frac{\frac{d\sigma}{d\Omega} [{}^{2}\mathrm{H}(e,e'n)_{QE}]}{\frac{d\sigma}{d\Omega} [{}^{2}\mathrm{H}(e,e'p)_{QE}]}$$

= $a \times \frac{\sigma_{Mott} \left(\frac{(G_{E}^{n})^{2} + \tau(G_{M}^{n})^{2}}{1+\tau} + 2\tau \tan^{2} \frac{\theta_{e}}{2} (G_{M}^{n})^{2} \right)}{\frac{d\sigma}{d\Omega} [{}^{1}\mathrm{H}(e,e')p]}$

where *a* is nuclear correction.

- Precise neutron detection efficiency needed to keep systematics low.
 - tagged neutrons from ²H(e, e'pn).
 - LH₂ target.
- Kinematics: $Q^2 = 4.5 10.0 \, (GeV/c)^2$.
- Data collected spring,2019 spring, 2020, 43 billion triggers.

Data Science - Getting the Physics Out

- The neutron magnetic form factor G_M^n is extracted with the ratio $R_{observed} = e n/e p$ in quasielastic kinematics (QE).
 - Assume QE scattering.
 - Calculate the beam energy from the scattered electron and nucleon information. Apply cut.
 - Require θ_{pq} to be small.
 - Match e n and e p acceptances
- Correct *R*_{observed} for neutron detection efficiency, Fermi motion, ...

Data Science - Neutron Detection Efficiency

- Needed to correct *e n* yield in the ratio *R*_{observed}.
- Use the ${}^{1}\text{H}(e, e'\pi^{+}n)$ reaction and the CLAS12 Run Group A data set.
- Use only the $e'\pi^+$ information and identify the neutron events with the missing mass.
- Predict the location of the neutron (expected).
- Search for the neutron near that location (detected). NDE is ratio of detected/expected.

Data Science - Neutron Detection Efficiency

- Needed to correct *e n* yield in the ratio *R*_{observed}.
- Use the ${}^{1}\text{H}(e, e'\pi^{+}n)$ reaction and the CLAS12 Run Group A data set.
- Use only the $e'\pi^+$ information and identify the neutron events with the missing mass.
- Predict the location of the neutron (expected).
- Search for the neutron near that location (detected). NDE is ratio of detected/expected.

Data Science - Neutron Detection Efficiency

- Needed to correct *e n* yield in the ratio *R*_{observed}.
- Use the ${}^{1}\text{H}(e, e'\pi^{+}n)$ reaction and the CLAS12 Run Group A data set.
- Use only the $e'\pi^+$ information and identify the neutron events with the missing mass.
- Predict the location of the neutron (expected).
- Search for the neutron near that location (detected). NDE is ratio of detected/expected.

Concluding Remarks

- JLab is a laboratory to test and expand our understanding of quarks, gluons, nuclear matter and QCD.
- We continue to unravel the nature of matter at greater and greater depths.
- Lots of new and exciting results are coming out.
- A bright future lies ahead in the 12 GeV Era.

THOMAS JEFFERSON NATIONAL ACCELERATOR FACILITY

Some Facts of Life On The Frontier

- Work at Jefferson Lab in Newport News.
 - 700 physicists, engineers, technicians, and staff.
 - Vibrant intellectual environment talks, visitors, educational programs...
 - Lots going on.
- Richmond group part of CLAS Collaboration.
 - operates CLAS12.
 - \sim 200 physicists, 43 institutions, 14 countries.
 - Part of Software Group emphasis on software development.
 - Past Surrey masters students (and Richmond undergrads) have presented posters at meetings, appeared on JLab technical reports,....
- Run-Group B consists of seven experiments (including Gⁿ_M) and about of the approved time has been used.

Additional Slides

What We'll Learn - Dyson-Schwinger Eqs

• Equations of motion of quantum field theory.

- Infinite set of coupled integral equations.
- Inherently relativistic, non-perturbative, connected to QCD.
- Deep connection to confinement, dynamical chiral symmetry breaking.
- Infinitely many equations, gauge dependent \rightarrow Choose well!

• Recent results (Cloët et al).

- Model the nucleon dressed quark propagator as a quark-diquark.
- Damp the shape of the mass function M(p).

What We'll Learn - Dyson-Schwinger Eqs

• Equations of motion of quantum field theory.

- Infinite set of coupled integral equations.
- Inherently relativistic, non-perturbative, connected to QCD.
- Deep connection to confinement, dynamical chiral symmetry breaking.
- Infinitely many equations, gauge dependent \rightarrow Choose well!

• Recent results (Cloët et al).

- Model the nucleon dressed quark propagator as a quark-diquark.
- Damp the shape of the mass function M(p).

What We'll Learn - Dyson-Schwinger Eqs

• Equations of motion of quantum field theory.

- Infinite set of coupled integral equations.
- Inherently relativistic, non-perturbative, connected to QCD.
- Deep connection to confinement, dynamical chiral symmetry breaking.
- Infinitely many equations, gauge dependent \rightarrow Choose well!

• Recent results (Cloët et al).

- Model the nucleon dressed quark propagator as a quark-diquark.
- Damp the shape of the mass function M(p).

Position of zero in $\mu_p G_E^p / G_M^p$ and $\mu_n G_E^n / G_M^n$ sensitive to shape of M(p)!

Some Necessary Background

• EEFFs cross section described with Dirac (F_1) and Pauli (F_2) form factors

$$\frac{d\sigma}{d\Omega} = \sigma_{Mott} \left[\left(F_1^2 + \kappa^2 \tau F_2^2 \right) + 2\tau \left(F_1 + \kappa F_2 \right)^2 \tan^2 \left(\frac{\theta_e}{2} \right) \right]$$

where

$$\sigma_{Mott} = \frac{\alpha^2 E' \cos^2(\frac{\theta_e}{2})}{4E^3 \sin^4(\frac{\theta_e}{2})}$$

and κ is the anomalous magnetic moment, E(E') is the incoming (outgoing) electron energy, θ is the scattered electron angle and $\tau = Q^2/4M^2$.

• For convenience use the Sachs form factors.

$$\frac{d\sigma}{d\Omega} = \frac{\sigma_{Mott}}{\epsilon(1+\tau)} \left(\epsilon G_E^2 + \tau G_M^2 \right)$$

where

$$G_E = F_1 - \tau F_2$$
 and $G_M = F_1 + F_2$ and $\epsilon = \left[1 + 2(1 + \tau) \tan^2 \frac{\theta_e}{2}\right]^{-1}$

Where We Are Now.

- G^p_M well known over large Q^2 range.
- The ratio G_E^p/G_M^p from polarization transfer measurements diverged from previous Rosenbluth separations.
 - Two-photon exchange (TPE).
 - Effect of radiative corrections.
- Neutron magnetic FF G_M^n still follows dipole.
- High- $Q^2 \ G_E^n$ opens up flavor decomposition.

Jerry Gilfoyle

23 / 27

The Experiments - New Detectors

Hall A - High Resolution Spectrometer (HRS) pair, SuperBigBite (SBS), neutron detector, and specialized installation experiments.

Hall C - New Super High Momentum Spectrometer to paired with the existing High Momentum Spectrometer.

Hall B - CLAS12 large acceptance spectrometer operating at high luminosity with toroid (forward detector) and solenoid (central detector).

Hall D - A new large acceptance detector based on a solenoid magnet for photon beams is under construction.

Extracting G_M^n

• Use ratio method on deuterium:

$$R = \frac{\frac{d\sigma}{d\Omega}[^{2}\mathrm{H}(e,e'n)_{QE}]}{\frac{d\sigma}{d\Omega}[^{2}\mathrm{H}(e,e'p)_{QE}]} = \mathbf{a} \times \frac{\sigma_{Mott}\left(\frac{(G_{E}^{n})^{2} + \tau(G_{M}^{n})^{2}}{1+\tau} + 2\tau \tan^{2}\frac{\theta_{e}}{2}(G_{M}^{n})^{2}\right)}{\frac{d\sigma}{d\Omega}[^{1}\mathrm{H}(e,e')p]}$$
where a is a nuclear correction

- Acceptance matching on e p and e n measurements.
 For each event swim both nucleons through CLAS12 and require both to strike the CLAS12 fiducial volume it to be accepted.
- Select quasi-elastic events by requiring the nucleon scattering angle to be within a narrow angular cone around the direction predicted by elastic scattering (no Fermi motion).
- Require no other particles in the final state to reduce inelastic contributions.
- Apply neutron/proton detection efficiency, Fermi motion, nuclear corrections and others to *R*.

Neutron Magnetic Form Factor G_M^n - 2

- E12-09-019 in Hall A (Quinn, Wojtsekhowski, Gilman).
- Ratio Method on Deuterium as in Hall B:

 $R = rac{d\sigma}{d\Omega} [^2 \mathrm{H}(e, e'n)_{QE}] / rac{d\sigma}{d\Omega} [^2 \mathrm{H}(e, e'p)_{QE}]$

- Electron arm: SuperBigBite spectrometer.
- Hadron arm: hadron calorimeter (HCal).
- Neutron detection efficiency:
 - Use $p(\gamma, \pi^+)n$ for tagged neutrons.
 - End-point method.
- Kinematics: $Q^2 = 3.5 13.5 \ (GeV/c)^2$.
- Beamtime: 25 days.
- Systematic uncertainties < 2.1%.
- Two *G*^{*n*}_{*M*} measurements 'allow a better control for the systematic error' (PAC34).
- Expected in next 2-3 years.

Proton Magnetic Form Factor - G_M^p

- E12-07-108 in Hall A (Gilad, Moffitt, Wojtsekhowski, Arrington).
- Precise measurement of *ep* elastic cross section and extract G^p_M.
- Both HRSs in electron mode.
- Beamtime: 24 days.
- Q² = 7.0 − 15.5 GeV² (1.0, 1.5 GeV² steps).
- Significant reduction in uncertainties:

	$d\sigma/d\Omega$	G^p_M
Point-to-Point	1.0-1.3	0.5-0.6
Normalization	1.0-1.3	0.5-0.6
Theory	1.0-2.0	0.5-1.0

- Two-Photon Exchange is a major source of uncertainty → vary ε to constrain.
- Sets the scale of other EEFFs.
- Completed data collection in 2017.

E. Christy, Hall A Summer Meeting 2017