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Abstract

The exercises in this manual have been developed to support an investigative physics course that emphasizes
active learning. Some of these units have been taken from the Workshop Physics project at Dickinson College
and the Tools for Scientific Thinking project at Tufts University and modified for use at the University of
Richmond. Others have been developed locally.

The units are made up of activities designed to guide your investigations in the laboratory. The written
work will consist primarily of documenting your class activities by filling in the entries in the spaces provided
in the units. The entries consist of observations, derivations, calculations, and answers to questions. Although
you may use the same data and graphs as your partner(s) and discuss concepts with your classmates, all
entries should reflect your own understanding of the concepts and the meaning of the data and graphs you
are presenting. Thus, each entry should be written in your own words. Indeed, it is very important to your
success in this course that your entries reflect a sound understanding of the phenomena you are observing and
analyzing.

We wish to acknowledge the support we have received for this project from the University of Richmond
and the Instrumentation and Laboratory Improvement program of the National Science Foundation. Also, we
would like to thank our laboratory directors for their invaluable technical assistance.
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1 Measuring and Graphing Horizontal Motion'

Name Section Date

Objectives

e To explore the nature of horizontal motion.

e To learn to use Cricket Graph for graphing and fitting data.

Measuring the Horizontal Motion of a Bowling Ball

A key to understanding how to describe motion near the surface of the earth is to observe horizontal motions
and vertical motions separately. Eventually, situations in which an object undergoes both horizontal and vertical
motion can be analyzed and understood as a combination of these two kinds of basic motions.

Lets start with horizontal motion. How do you think the horizontal position of a bowling ball changes over time
as it rolls along on a smooth surface? For example, suppose you were to roll the ball a distance of 6.0 meters
on a fairly level smooth floor. Do you expect that the ball would: (1) move at a steady speed, (2) speed up, or
(3) slow down? To observe the horizontal motion of a "bowling ball" you can use a bocce ball which is slightly
smaller but quite similar to a regulation bowling ball.

Apparatus

A bocce ball

3 stop watches

A 2-meter stick

Masking tape for marking distances

A smooth level surface (> 7 meters in length)

Activity 1: Horizontal Motion

(a) What do you predict will happen to the position of the ball as a function of time? Will the ball move at a
steady speed, speed up, or slow down after it leaves the bowler’s hand? Why?

(b) Find a 7 meter length of smooth floor and use masking tape to mark off a starting line and distances of 2.00
m, 4.00 m, and 6.00 m. from the starting line. Then: (1) Bowl the ball along the surface. (2) Measure the time
it takes to travel 2.0 m, 4.0 m & 6.0 m. (3) Record the results in the table below.

Note: This is a cooperative project. You will need a bowler, three people to measure the times, and someone to
stop the ball. Practice several times before recording data in the table below.

t(s) | x (m)
0.00 | 0.00

11990-93 Dept. of Physics and Astronomy, Dickinson College. Supported by FIPSE (U.S. Dept. of Ed.) and NSF. Portions of
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(c) Calculate the average speed, v, in m/s of the bowling ball as it travels the 6.00 meters.

Graphing the Horizontal Motion

In this activity, you should graph your data for the position of the ball as a function of the rolling-time of the
ball. This graphing should be done both by hand and on the computer.

Activity 2: Drawing a Graph of Position vs. Time

(a) Fill in the units and the scale numbers in the graph below and plot the data you collected. You should plot
a "fourth" data point on your graph by reasoning out what rolling-time you would measure for your ball if you
were to roll it a distance of zero meters.

x()

(b) Now use Cricket Graph on the computer to create the same graph. See Appendix C for instructions. Print
the graph and insert a copy in your notebook at the end of this unit.

How does the Position of the Ball Vary with Time?

We are interested in the mathematical nature of the relationship between position and time for rolling on a level
surface. Some definitions of mathematical relationships are shown in the sketches below. Figure (a) shows a
function y that increases with x so that y = f(x). In sketch (b) y is a linear function that increases with x so that
y = mx + b, where m is the slope and b is the y intercept. In figure (c¢) y is proportional to x (y = mx where b
= 0).

(@) (b) ()

~

(0,0) X (0,0) X (0,0) X




Activity 3: The Mathematical Relationships

(a) By comparing the shape of the graph you have just produced with the sketches shown above, would you say
that the position, x, increases with time, t? Decreases with time? Is it a linear function of t? Is it proportional
to t?7 Explain.

(b) How do the results compare with the prediction you made in Activity 17 Are you surprised?

(¢) What do you think would happen to the slope, m, of the graph, if the ball had been rolled faster? Would it
increase? Decrease? Stay the same?

Activity 4: Mathematical Modeling

(a) Create a mathematical model of the bowling ball motion data you collected in Activity 1. This can be done
by using Cricket Graph to fit the data with a line. See Appendix C for instructions. Be sure to label the graph.
Then print it and insert a copy into your notebook. Does the line provide a good description of the data?

(b) Write the equation describing the motion in the form Position (m) = ( ? m/s) Time (s) + ( 7 m).

(c¢) Compare the slope of the line with the average speed you calculated in Activity 1. A good way to do this is
by calculating the % difference between the two (See Appendix A).

(d) Give a brief discussion of the meaning of the slope of a graph of Position vs. Time. What does it tell you?

Homework



The diagram below shows the graphs of three possible relationships between the time, t, in seconds and the
position, x, in centimeters that the object has traveled.

x (m)

t(s)

(a) Which graphs represent position as a linear function of time? A, B, and/or C?

(b) Which graphs, if any, show position as proportional to time?



2 Walking Speed

Name Section Date

Objectives

e Introduction to measuring length and time.

e Introduction to metric units of length.
Apparatus

e stop watch

e 2-meter stick

Activity
(a) Use the stop watch and meter stick to determine your walking speed in m/s.
walking speed

(b) Describe the technique you used to perform the measurement.

Question

What sort of unit is speed (fundamental or derived)?



3 Converting Units

Name Section Date

Objectives:

e Introduction to units
e Exploration of relations between different systems of measurement

Apparatus:

e string
® scissors
e meter stick

Activity:

1. Cut the string into three pieces, 1-meter, 1-foot, and 30-cm, respectively.

2. Compare them. Enter into the table below how many lengths of one piece it requires to make each of the
others.

3. Cut a length of string equivalent to your anatomical foot; compare this piece to the others.

equal one of these?
pieces 1-meter | 1-foot | 30-cm | anatomical foot
How 1-meter
many 1-foot
of 30-cm
these | anatomical foot

4. Devise your own measurement system; name it; select length, mass, and time standards and choose names
and abbreviations for them; and define these.

system name

length: name abbreviation  definition
mass: name abbreviation _ definition
time: name abbreviation _ definition

5. Compare your measurement system to the Standard International (MKSA) system.

1 meter = S
1 kilogram =

1 second = S
1 = meters

1 = kilograms

1 = seconds




Questions:

1. Are anatomical units practical for measurement? Explain.

2. What criteria should be satisfied by a good clock?

3. Can you explain the nearly universal use of the metric system in scientific work?

10



4 Measurement and Uncertainty?

Name Section Date

Objectives

e To learn to measure length using a meter stick and a vernier caliper.
e To learn to express the results of measurements with the appropriate number of significant figures.

e To learn how to compensate for systematic error in measurements so that accuracy can be improved.

Measuring Lengths and Significant Figures

We are interested in determining the number of significant figures in length measurements you might make. How
is the number of significant figures determined? Suppose God could tell us that the "true" width of a certain car
key in centimeters was:

2.435789345646754456540123544332975774281245623... etc.

If we were to measure the key width with a ruler that is lying around the lab, the precision of our measurement
would be limited by the fact that the ruler only has lines marked on it every 0.1 cm. We could estimate to the
nearest 1/100th of a centimeter how far the key edge is from the last mark. Thus, we might agree that the best
estimate for the width of the key is 2.44 cm. This means we have estimated the key width to three significant
figures.

If God announces that the width of a pair of sun glasses is 13.27655457787654267787... c¢cm, then upon direct
measurement we might estimate the width to be 13.28 or 13.27 or 13.26 cm. In this case the estimated width is
four significant figures. Obviously, there is uncertainty about the "true" value of the right-most digit.

The number of significant figures in a measurement is given by the number of digits from the most certain digit
on the left of the number up to and including the first uncertain digit on the right. In reporting a number, all
digits except the significant digits should be dropped. (See the discussion of significant figures in Appendix A.)

Let’s do some length measurements to find out what factors might influence the number of significant figures in
a measurement.

Apparatus

e A meter stick
e A vernier caliper

e A rectangular board

Activity 1: Length Measurements with the Meter Stick

(a) What factors might make a determination of the "true" length of an object measured with the meter stick
uncertain?

(b) Measure the width of the board with the meter stick at least seven times and create a table in the space below
to list the measurements. For best results, you should use different regions of the meter stick so that, when an

21990-93 Dept. of Physics and Astronomy, Dickinson College. Supported by FIPSE (U.S. Dept. of Ed.) and NSF. Portions of
this material have been modified locally and may not have been classroom tested at Dickinson College.
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average of these measurements is made, non-uniformities in the scale will tend to cancel. Also, you should avoid
using the end of the meter stick which might be worn and, therefore, would not be a true zero. The apparent
change in the reading on the scale due to the position of the eye is called parallax, an effect which can introduce
error into the reading. To reduce the uncertainty due to parallax, you should place the meter stick on edge so
that the scale is close to the object being measured. (See Appendix E)

(c) In general, when a series of measurements are made, the best estimate is the average of those measurements.
In the space below list the minimum measurement, the maximum measurement, and the best estimate for the
width of your board.

(d) How many significant figures should you report in your best estimate? Why?

(e) For your board, what limits the number of significant figures most - variation in the actual width of the board
or limitations in the accuracy of the meter stick? How do you know?

Activity 2: Length Measurements with the Vernier Caliper

(a) Measure the thickness of the board at least seven times and record the results in a table in the space below.
Make the measurements at different places along each of the two edges. If you have questions about how to read
the vernier, see Appendix E. If you still have questions, consult your instructor.

(b) Record the minimum, maximum, and average of your measurements below.

(c) How many significant figures should you report in your average? Why?

12



Activity 3: Calculation of Cross-Sectional Area

(a) Calculate the cross-sectional area of the board in the space below.

(b) How many significant figures should you report in your result? Why?

The Inevitability of Uncertainty

In common terminology there are three kinds of "errors": (1) mistakes or human errors, (2) systematic errors due
to measurement or equipment problems and (3) inherent uncertainties.

Activity 4: Error Types

(a) Give an example of how a person could make a "mistake" or "human error" while taking a length measurement.

(b) Give an example of how a systematic error could occur because of the condition of the meter stick when a set

of length measurements are being made.

(c) What might cause inherent uncertainties in a length measurement?

13



5 Measurement of Length, Mass, Volume, and Density

Name Section Date

Objectives:

e Learn to measure length with the vernier caliper and mass with the platform balance
e Apply knowledge of units and significant figures
e Understand the dependence of mass and density on dimensions

Apparatus:

e vernier caliper
e platform balance
e set of wooden disks

Activity:

1. Find the dimensions in centimeters of each of the disks using the vernier caliper (see Appendix E). Use
the averages of three trials for each dimension (diameter, D; width, W) in the calculations of the volumes
(V =mr?W).

2. Find the mass, M, of each disk using the laboratory balance.

3. Calculate the density, p.

_D1 Dz _D3 W1 W2 W3 D w Vv M pP
disk || (cm) | (cm) | (cm) | (em) | (em) | (em) | (em) | (em) | (cc) | (g) | (g/cc)
1
2
3
4
5

4. Graph mass versus radius and mass versus radius squared.

14



Questions:

1. How does the density depend on the size of a disk?

2. What is the nature of the relationship between mass and radius? What is the dependency?

3. What is the smallest part of a centimeter that can be read or estimated with a meter stick? With a vernier
caliper? Which reading is more reliable? Explain.

4. When determining the volume of a disk, which dimension, diameter or width, should be measured more
carefully? Explain.

5. What is the volume of the largest disk in cubic millimeters? In liters? What is its mass in kilograms?

15



6 Determining 7

Name Section Date

Objectives:

e Determine the relationship between circumference and diameter
e Understand the meaning of 7

Apparatus:

e Wooden disks
e Meter stick

e String
Activity:
1. With a meter stick, measure the diameter of one of the disks. Enter the value (or an average of several such

measurements) in the table below.

2. With a string and meter stick, measure the circumference of the same disk, and enter the value (or average
of several measurements) in the table below.

3. Repeat the previous steps i. and ii. for each of the disks.

| disk | diameter (cm) | circumference (cm) |
1

(SN O N )

4. Graph circumference versus diameter using your measurement data.

5. Fit data and determine the slope of the resulting line.

slope

Questions:

1. What quantity is identified with the slope of the graph?

2. Must the line go through the origin? Explain.

3.If the diameter of the largest disk increased by a factor of 2.7, by how much would its circumference change?

16



4. If you formed a circle with a string 15 mm shorter than the circumference of the smallest disk, its diameter
would be how much smaller than the disk’s?

17



7 Measurement Uncertainty and Variation?®

Name Section Date

Objectives

e To explore the mathematical meaning of the standard deviation and standard error associated with a set of
measurements.

e To investigate random and systematic variations associated with a set of measurements.

Statistics - The Inevitability of Uncertainty

With care and attention, it is commonly believed that both mistakes and systematic errors can be eliminated
completely. However, inherent uncertainties do not result from mistakes or errors. Instead, they can be attributed
in part to the impossibility of building measuring equipment that is precise to an infinite number of significant
figures. The ruler provides us with an example of this. It can be made better and better, but it always has an
ultimate limit of precision.

Another cause of inherent uncertainties is the large number of random variations affecting any phenomenon being
studied. For instance, if you repeatedly drop a baseball from the level of the lab table and measure the time of each
fall, the measurements will most probably not all be the same. Even if the stop watch was gated electronically
so as to be as precise as possible, there would be small fluctuations in the flow of currents through the circuits
as a result of random thermal motion of atoms and molecules that make up the wires and circuit elements. This
could change the stop watch reading from measurement to measurement. The sweaty palm of the experimenter
could cause the ball to stick to the hand for an extra fraction of a second, slight air currents in the room could
change the ball’s time of fall, vibrations could cause the floor to oscillate up and down an imperceptible distance,
and so on.

Repeated Time-of-Fall Data

In the first two activities, you and your partners will take repeated data on the time of fall of a ball and study
how the data varies from some average value for the time-of-fall.

Apparatus

e A ball
e A stop watch

o A 2-meter stick

Activity 1: Timing a Falling Ball

(a) Drop the ball so it falls through a height of exactly 2.0 m at least 20 times in rapid succession and measure
the time of fall. Be as exact as possible about the height from which you drop the ball. Record the data in a
table below.

31990-93 Dept. of Physics and Astronomy, Dickinson College. Supported by FIPSE (U.S. Dept. of Ed.) and NSF. Portions of
this material may have been modified locally and may not have been classroom tested at Dickinson College.
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(b) Enter your data as a single column in Cricket Graph and run single column statistics on the data. See
Appendix C for instructions. Report the average (mean) value in the space below.

The Standard Deviation as a Measure of Uncertainty

How certain are we that the average fall-time determined in the previous activity is accurate? The average of a
number of measurements does not tell the whole story. If all the times you measured were the same, the average
would seem to be very precise. If each of the measurements varied from the others by a large amount, we would
be less certain of the meaning of the average time. We need criteria for determining the certainty of our data.
Statisticians often use a quantity called the standard deviation as a measure of the level of uncertainty in data.
The standard deviation is usually represented by the Greek letter o (sigma). A customary way of expressing an

experimentally determined value is: Mean § 0. The formal mathematical definition of ¢ can be found in Appendix
A.

In the next activity you will use Cricket Graph (see Appendix C) to calculate the value of the standard deviation
for the repeated fall-time data you just obtained and explore how the standard deviation is related to variation
in your data. In particular, you will try to answer this question: What percentage of your data lies within one
standard deviation of the average you calculated?

Activity 2: Standard Deviation

(a) Report the value for the standard deviation of your data in the space below.

(b) Calculate the average plus the standard deviation, <t> + o, and the average minus the standard deviation,
<t> - o, and record the results in the space below.

(c) Determine the number of your data points that lie within §o of the average and write the result in the space
below. Also, calculate the percentage of data points lying within a standard deviation of the average and report
that result.

(d) Combine your results with those obtained by the other groups in the class and create a table in the space
below with the following column headings: Lab Station, <t> (s), o (s), %Data § o.

(e) Study the last column, which represents the percentage of data points lying within one standard deviation
of the average. What does the standard deviation, o, tell you about the approximate probability that another
measurement, will lie within §o of the average?

19



Systematic Error - How About the Accuracy of Your Timing Device and Timing Methods?

As the result of problems with your measuring instrument or the procedures you are using, each of your mea-
surements may tend to be consistently too high or too low. If this is the case, you probably have a source of
systematic error. There are several types of systematic error.

Most of us have set a watch or clock only to see it gain or lose a certain amount of time each day or week. In
ordinary language we would say that such a time keeping device is inaccurate. In scientific terms, we would say
that it is subject to systematic error. In the case of a stopwatch or digital timer that doesn’t run continuously
like a clock, we have to ask an additional set of questions. Does it start up immediately? Does it stop exactly
when the event is over? Is there some delay in the start and stop time? A delay in starting or stopping a timer
could also cause systematic error.

Finally, systematic error can be present as a result of the methods you and your partner are using for making the
measurement. For example, are you starting the timer exactly at the beginning of the event being measured and
stopping it exactly at the end? Are you dropping the ball from a little above the exact starting point each time?
A little below?

It is possible to correct for systematic error if you can quantify it. Suppose that God, who is a theoretical
physicist, said that the distance in meters, y, that a ball falls after a time of t seconds near the earth’s surface in
most places is given by the equation

1 .
= _gt?
) 2.‘]

where g is the gravitational constant (equal to 9.8 m/s/s). (In this idealized equation the effects of air resistance
have been neglected.)

Does the theoretical value for the time-of-fall lie within the standard error of your average measured value? In
the activity that follows, you should compare your average time-of-fall with that expected by theory to determine
if a systematic error exists.

Activity 3: Is There Systematic Error in the Data?

(a) Calculate the theoretical, God given, time-of-fall in the space below.

(b) Does the theoretical value lie in the range of your own average value with its associated uncertainty? If not,
you probably have a source of systematic error.

(c) If you seem to have systematic error, explain whether the measured times tend to be too short or too long
and list some of the possible causes of it in the space below.

Homework

1. Suppose you made the following five length measurements of the width of a piece of 8 1/2" X 11" paper which
has been cut carefully by a manufacturer using an unfamiliar centimeter rule: 21.33 ¢cm, 21.52 ¢cm, 21.47. cm,
21.21 c¢m, 21.45 cm. (a) Find the mean and standard deviation of the measurements. The formal mathematical
definition of s is given in Appendix A.

20



(b) Is there any evidence of uncertainty in the measurements or are they precise? Explain.

(c) Is there any evidence of systematic error in the measurements? If so, what might cause this? Explain.

2. Suppose Ashley and Ryan each throw darts at targets as shown below. Each of them is trying very hard to hit
the bulls eye each time. Discuss in essay form which of the two students has the least uncertainty associated with
his or her throws and is thus more precise. Is one of the students less accurate is the sense of having a systematic
error associated with his or her throws? What factors like eyesight and coordination might cause one to be more
precise and another more accurate?

Ashley Ryan

21



8 Position vs. Time Graphs*

Name Section Date

Objectives

e To learn about two of the ways that physicists can describe motion in one dimension-words and graphs.

e To learn how to relate graphs of position vs. time to the motions they represent.

Introduction

The focus of this unit on kinematics is to be able to describe your position as a function of time using words
and graphs. You will use a motion detector attached to a computer in the laboratory to learn to describe
one-dimensional motion.

The ultrasonic motion detector sends out a series of sound pulses that are of too high a frequency to hear. These
pulses reflect from objects in the vicinity of the motion detector and some of the sound energy returns to the
detector. The computer is able to record the time it takes for reflected sound waves to return to the detector and
then, by knowing the speed of sound in air, figure out how far away the reflecting object is. There are several
things to watch out for when using a motion detector. (1) Do not get closer than 0.15 meters from the detector
because it cannot record reflected pulses which come back too soon. (2) The ultrasonic waves come out in a cone
of about 15°. It will see the closest object. Be sure there is a clear path between the object whose motion you
want to track and the motion detector. (3) The motion detector is very sensitive and will detect slight motions.
You can try to glide smoothly along the floor, but don’t be surprised to see small bumps in velocity graphs. (4)
Some objects like bulky sweaters are good sound absorbers and may not be "seen" well by a motion detector.
You may want to hold a book or a board in front of you if you have loose clothing on.

Apparatus

o Science Workshop 750 Interface

Ultrasonic motion detector

DataStudio software (Position Graphs application)
Wooden board

Masking tape for marking distances

Position vs. Time Graphs of Your Motion

The purpose of this unit is to learn how to relate graphs of position as a function of time to the motions they
represent. How does a position vs. time graph look when you move slowly? Quickly? What happens when you
move toward the motion detector? Away? After completing the next few activities, you should be able to look at
a position vs. time graph and describe the motion of the object. You should also be able to look at the motion
of an object and sketch a graph representing that motion.

Note that the motion detector measures the distance of an object from the detector, and that the motion detector
is located at the origin of each graph. It is common to refer to the distance of an object from some origin as the
position of the object. Therefore, it is better to refer to these graphs as position vs. time graphs than distance
vs. time graphs.

You will use the DataStudio software to do the following activities. An application has been created for this
purpose. Launch the Position Graphs application from the 131 Workshop submenu of the Apple menu. To
start a data run, click the Start button. To stop a data run, click the Stop button. After a data run, the graph

41990-93 Dept. of Physics and Astronomy, Dickinson College. Supported by FIPSE (U.S. Dept. of Ed.) and NSF. Portions of
this material may have been modified locally and may not have been classroom tested at Dickinson College.
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can be expanded by clicking on the Scale to fit button in the upper left corner of the Graph window. Multiple
data sets can be displayed on the same graph. Data can be removed from the graph by selecting Delete Last
Data Run or Delete All Data Runs from the Experiment menu. When you are finished with the activities,
choose Quit from the File menu and do not save this activity.

Before you begin the activities, you should mark a position scale on the floor. To do this, position one person at
approximately 1 meter in front of the motion detector and run the VI for 1 second. The computer will display
a horizontal line showing the position measured by the detector. The person standing in front of the detector
should then adjust his/her position and the procedure repeated until the 1 meter position is established. Mark

the 1 meter position on the floor with a piece of masking tape and then mark the 2, 3 and 4 meter positions using
the 2 meter stick.

Activity 1: Making Position vs. Time Graphs
Make position-time graphs for the following motions and sketch the graph you observe in each case:

(a) Starting at 0.5 m, walk away from the origin (i.e. the detector) slowly and steadily.

Position (m)

Time (s)

(b) Walk away from the origin medium-fast and steadily.

Position (m)

Time (s)

(c) Walk toward the detector (origin) slowly and steadily.

23



Position (m)

Time (s)

(d) Describe the difference between the graph you made by walking away slowly and the one made by walking
away more quickly.

(e) Describe the difference between the graph made by walking toward and the one made walking away from the
motion detector.

Activity 2: Predicting a Position vs. Time Graph

(a) Suppose your were to start 1.0 m in front of the detector and walk away slowly and steadily for 4 seconds,
stop for 4 seconds, and then walk toward the detector quickly. Sketch your prediction on the axes below using a
dashed line.

3 . .
| |
| |
| |
| |
| |
| |
| |
| |

2 | |

____________________ e
/E\ | |
| |
\C/ | |
o) | |
— | |
) | |
o | |
o | |
| |

____________________ e

1
| |
| |
| |
| |
| |
| |
| |
| |
| |

0

0 4 8 12

Time (s)
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(b) Test your prediction by moving in the way described and making a graph of your motion with the motion
detector. Sketch the trace of your actual motion on the above graph with a solid line.

(c) Is your prediction the same as the final result? If not, describe how you would move to make a graph that
looks like your prediction.

Activity 3: Matching Position vs. Time Graphs

| | | | |
| | | | |
] e Pt Pt P
| | |
| | |
| | |
_________ | L _
— | | |
e | | |
~ I | |
g | | |
= 2 oo Tt Fo
8 | | |
a : : :
_________ L om e D D DL Lo
| | |
| | |
| | |
| | |
O Il Il Il
12 16 20

Time (s)

(a) Describe in your own words how you would move in order to match the graph shown above.

(b) Move to match the above graph on the computer screen. You may try a number of times. It helps to work
as a team. Get the times right. Get the positions right. Do this for yourself. (Each person in your group should
do his or her own match.) You will not learn very much by just watching!

(c) What was the difference in the way you moved to produce the two differently sloped parts of the graph you
just matched?

(d) Make curved position vs. time graphs like those shown below.
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Position
Position

Time Time
Graph 1 Graph 2

(e) Describe how you must move to produce a position vs. time graph with each of the shapes shown.

Graph 1 answer:

Graph 2 answer:

(f) What is the general difference between motions which result in a straight-line position vs. time graph and
those that result in a curved-line position vs. time graph?

Homework
Answer the following questions in the spaces provided.

1.What do you do to create a horizontal line on a position-time graph?

Position

Time

2. How do you walk to create a straight line that slopes up?

Position

Time

3. How do you walk to create a straight line that slopes down?
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Position

Time

4. How do you move so the graph goes up steeply at first, then continues up gradually?

Position

Time

5. How do you walk to create a U-shaped graph?

N

Time

Position

Answer the following about the two objects , A and B, whose motion produced the following position-time graphs.

6. (a) Which object is moving faster? (b) Which starts ahead? Define what you mean by "ahead. "(c) What
does the intersection mean?

Position

Time

7. (a) Which object is moving faster? (b) Which object has a negative velocity according to the convention we
have established?
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Position

Time

8. (a) Which object is moving faster? (b) Which starts ahead? Define what you mean by "ahead. "

Position

Time

Sketch the position-time graph corresponding to each of the following descriptions of the motion of an object.

9. The object moves with a steady (constant) velocity away from the origin.

Position

Time

10. The object is standing still.

Position

Time

11. The object moves with a steady (constant) velocity toward the origin for 5 seconds and stands still for 5
seconds.
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Position

Time

12. The object moves with a steady velocity away from the origin for 5 seconds, then reverses direction and moves
at the same speed toward the origin for 5 seconds.

Position

Time

13. The object moves away from the origin, starting slowly and speeding up.

Position

Time
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9 Velocity vs. Time Graphs®

Name Section Date

Objectives

e To acquire an intuitive understanding of speed and velocity in one dimension.

e To learn how to relate graphs of velocity vs. time to the motions they represent.

Introduction

You have already plotted your position as a function of time. Another way to represent your motion during an
interval of time is with a graph which describes how fast and in what direction you are moving from moment to
moment. How fast you move is known as your speed. It is the rate of change of position with respect to time.
Velocity is a quantity which takes into account your speed and the direction you are moving. Thus, when you
examine the motion of an object moving along a line, its velocity can be positive or negative meaning the velocity
is in the positive or negative direction.

Graphs of velocity over time are more challenging to create and interpret than those for position. A good way to
learn to interpret them is to create and examine velocity vs. time graphs of your own body motions, as you will
do in the next few activities.

Use the Velocity Graphs application in the 131 Workshop submenu of the Apple menu to make the graphs
in the following activities.

Apparatus

e Science Workshop 750 Interface

e Ultrasonic motion detector

e DataStudio software (Velocity Graphs application)
e Wooden board

Activity 1: Making Velocity vs. Time Graphs

(a) Make a velocity graph by walking away from the detector slowly and steadily. Try again until you get a
graph you’re satisfied with and then sketch your result on the graph that follows. (We suggest you draw smooth
patterns by ignoring smaller bumps that are mostly due to your steps.)
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51990-93 Dept. of Physics and Astronomy, Dickinson College. Supported by FIPSE (U.S. Dept. of Ed.) and NSF. Portions of
this material may have been modified locally and may not have been classroom tested at Dickinson College.
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(b) Make a velocity graph, walking away from the detector steadily at a medium speed. Sketch your graph below.
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(d) What is the most important difference between the graph made by slowly walking away from the detector
and the one made by walking away more quickly?

(e) How are the velocity vs. time graphs different for motion away and motion toward the detector?

Activity 2: Predicting a Velocity vs. Time Graph

Suppose you were to undergo the following sequence of motions: (1) walk away from the detector slowly and
steadily for 6 seconds, (2) stand still for 6 seconds, (3) walk toward the detector steadily about twice as fast as
before.

(a) Use a dashed line in the graph that follows to record your prediction of the shape of the velocity graph that
will result from the motion described above.
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Velocity (m/s)
o

Time (s)

(b) Compare predictions with your partner(s) and see if you can all agree. Use a solid line to sketch your group
prediction in the graph above.

(c) Adjust the sampling time to 15 s and then test your prediction. Repeat your motion until you are confident
that it matches the description in words and then draw the actual graph on the axes below. Be sure the 6-second
stop shows clearly.

Velocity (m/s)
o

Time (s)

(d) Did your prediction match your real motion? If not, what misunderstanding of what elements of the graph
did you have?

Velocity Vectors

The two ideas of speed and direction can be combined and represented by vectors. A velocity vector is represented
by an arrow pointing in the direction of motion. The length of the arrow is drawn proportional to the speed; the
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longer the arrow, the larger the speed. If you are moving toward the right, your velocity vector can be represented
by the arrow shown below.

—-

If you were moving twice as fast toward the right, the arrow representing your velocity vector would look like:

-

while moving twice as fast toward the left would be represented by the following arrow:

-

What is the relationship between a one-dimensional velocity vector and the sign of velocity? This depends on the
way you choose to set the positive x-axis.

Positive velocity Negative velocity
Origin Pos. x axis Pos. x axis Origin
0 >~ + + 0
B E—— B E——
Negative velocity Positive velocity

In both diagrams the top vectors represent velocity toward the right. In the left diagram, the x-axis has been
drawn so that the positive x-direction is toward the right. Thus the top arrow represents positive velocity.
However, in the right diagram, the positive x-direction is toward the left. Thus the top arrow represents negative
velocity. Likewise, in both diagrams the bottom arrows represent velocity toward the left. In the left diagram
this is negative velocity, and in the right diagram it is positive velocity.

Activity 3: Sketching Velocity Vectors

Sketch below velocity vectors representing the three parts of the motion described in the prediction you made in
Activity 2.

(a)Walking slowly away from the detector:
(b) Standing still:

(c) Walking rapidly toward the detector:
Activity 4: Matching a Velocity Graph

(a) Describe how you think you will have to move in order to match the velocity graph shown below.
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(b) Move in such a way that you can reproduce the graph shown. You may have to practice a number of times
to get the movements right. Work as a team and plan your movements. Get the times right. Get the velocities
right. You and each person in your group should take a turn. Then sketch your group’s best match on the above
graph.

(c) Describe how you moved to match each part of the graph.

(d) Is it possible for an object to move so that it produces an absolutely vertical line on a velocity-time graph?
Explain.

(e) Did you run into the motion detector on your return trip? If so, why did this happen? How did you solve the
problem? Does a velocity graph tell you where to start? Explain.

Homework
Answer the following questions in the spaces provided.

1. How do you move to create a horizontal line in the positive part of a velocity-time graph, as shown below?
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+

Time

Velocity
o

2. How do you move to create a straight-line velocity-time graph that slopes up from zero, as shown below?

+

Time

Velocity
o

3. How do you move to create a straight-line velocity-time graph that slopes down, as shown below?

+

Time

Velocity
o

4. How do you move to make a horizontal line in the negative part of a velocity-time graph, as shown below?

+

Time

Velocity
o

5. The velocity-time graph of an object is shown below. Figure out the total change in position (displacement)
of the object. Show your work.

Displacement = meters.
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N

o

Velocity (m/s)

6. The velocity graph below shows the motion of two objects, A and B. Answer the following questions separately.
Explain your answers when necessary. (a) Is one faster than the other? If so,which one is faster? (A or B) (b)
What does the intersection mean? (c¢) Can one tell which object is "ahead"? (define "ahead") (d) Does either

object A or B reverse direction? Explain.

A

Velocity
W

Time

7. The velocity graph below shows the motion of two objects, A and B. Answer the following questions separately.
Explain your answers when necessary. (a) Is one faster than the other? If so,which one is faster? (A or B) (b)
What does the intersection mean? (c¢) Can one tell which object is "ahead"? (define "ahead") (d) Does either

object A or B reverse direction? Explain.

Velocity

Time

Sketch the velocity-time graph corresponding to each of the following descriptions of the motion of an object.

8. The object is moving away from the origin at a constant velocity.

+

Time

Velocity
o
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9. The object is standing still.

+

Velocity

Time

o

10. The object moves toward the origin at a steady (constant) velocity for 10 s and then stands still for 10 s.

+

Velocity
o

' H— Time (s)

10 20

11. The object moves away from the origin at a steady (constant) velocity for 10 s, reverses direction and moves

back toward the origin at the same speed for 10 s.

Velocity

+

o

' H— Time (s)

10 20
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10 Relating Position and Velocity Graphs®

Name Section Date

Objective
To understand the relationship between position vs. time and velocity vs. time graphs.
Introduction

You have looked at position and velocity vs. time graphs separately. Since position vs. time and velocity vs.
time graphs are different ways to represent the same motion, it ought to be possible to figure out the velocity
at which someone is moving by examining her/his position vs. time graph. Conversely, you ought to be able to
figure out how far someone has traveled (change in position) from a velocity vs. time graph.

To explore how position vs. time and velocity vs. time graphs are related, you will use the Position & Velocity
Graphs application in the 131 Workshop submenu of the Apple menu. For some of the runs it may be
necessary to adjust the time axis for one of the graphs so that the time scales are the same for the position and
velocity graphs.

Apparatus

e Science Workshop 750 Interface

e Ultrasonic motion detector

e DataStudio software (Position & Velocity Graphs application)
e Wooden board

Activity 1: Predicting Velocity Graphs from Position Graphs

(a) Carefully study the position graph shown below and predict the velocity vs. time graph that would result
from the motion. Using a dashed line, sketch your prediction of the corresponding velocity vs. time graph on the
velocity axes.

Position (m)
N
T

Velocity (m/s)
o

1 2 3 4 5
Time (s)

61990-93 Dept. of Physics and Astronomy, Dickinson College. Supported by FIPSE (U.S. Dept. of Ed.) and NSF. Portions of
this material may have been modified locally and may not have been classroom tested at Dickinson College.
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(b) After each person in your group has sketched a prediction, test your prediction by matching the position vs.
time graph shown. When you have made a good duplicate of the position graph, sketch your actual graph over
the existing position vs. time graph.

(c) Use a solid line to draw the actual velocity graph on the same graph with your prediction. (Do not erase your
prediction).

(d) How would the position graph be different if you moved faster? Slower?

(e) How would the velocity graph be different if you moved faster? Slower?

Activity 2: Average Velocity Calculations

(a) Find your average velocity from your velocity graph in the previous activity. This can be done using the
Smart Tool on the graph menu bar (sixth box along the top of the graph window).

Velocity values (m/s)
Average value of the velocity: m/s

(b) Average velocity during a particular time interval can also be calculated as the change in position divided by
the change in time. (The change in position is often called the displacement.) By definition, this is also the slope
of the position vs. time graph for that time period. Use the cursors on the position vs. time graph to read the
position and time coordinates for two typical points while you were moving. (For a more accurate answer, use
two points as far apart as possible but still typical of the motion, and within the time interval over which you
took velocity readings in Activity 1.) Record the coordinates of the points below.

(c) Calculate the change in position (displacement) between the two points in part (b). Also calculate the
corresponding change in time (time interval). Divide the change in position by the change in time to calculate
the average velocity. Show your calculations below.

(d) Is the average velocity positive or negative? Is this what you expected?

(e) Does the average velocity you just calculated from the position graph agree with the average velocity you
estimated from the velocity graph? Do you expect them to agree? How would you account for any differences?
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Activity 3: Finding Position from a Velocity Graph

(a) Carefully study the velocity graph that follows. Using a dashed line, sketch your prediction of the corresponding
position graph on the bottom set of axes. (Assume that you started at the 1-meter mark.)

Position (m)
N
T

Velocity (m/s)
o

2 4 6 8 10
Time (s)

(b) After each person has sketched a prediction, do your group’s best to duplicate the top (velocity vs. time)
graph by walking. When you have made a good duplicate of the velocity vs. time graph, draw your actual result
over the existing velocity vs. time graph. (c) Use a solid line to draw the actual position vs. time graph on the
same axes with your prediction. Do not erase your prediction.

(c) Use a solid line to draw the actual velocity graph on the same graph with your prediction. (Do not erase your
prediction.)

(d) How can you tell from a velocity vs. time graph that the moving object has changed direction?

(e) What is the velocity at the moment the direction changes?

(f) Is it possible to actually move your body (or an object) to make vertical lines on a position vs. time graph?
Why or why not? What would the velocity be for a vertical section of a position vs. time graph?

(g) How can you tell from a position vs. time graph that your motion is steady (motion at a constant velocity)?

(h) How can you tell from a velocity vs. time graph that your motion is steady (constant velocity)?

Homework

1. Draw the velocity graphs for an object whose motion produced the position-time graphs shown below on the
left. Position is in meters and velocity in meters per second. Note: Unlike most real objects, you can assume
these objects can change velocity so quickly that it looks instantaneous with this time scale.
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2. Draw careful graphs below of position and velocity for a cart that (a) moves away from the origin at a slow and

steady (constant) velocity for the first 5 seconds; (b) moves away at a medium-fast, steady (constant) velocity

for the next 5 seconds; (c) stands still for the next 5 seconds; (d) moves toward the origin at a slow and steady

(constant) velocity for the next 5 seconds; (e) stands still for the last 5 seconds.
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11 Instantaneous Velocity
Name Section Date
Objectives:
e To make plausible the idea of velocity at an instant.
e To demonstrate that nonuniform motion appears increasingly uniform as the time interval becomes succes-
sively shorter.
e To understand the notion of “taking a limit”.
Apparatus:

Track and cart

Science Workshop 750 Interface

DataStudio software (Instantaneous Velocity application)
Motion detector

Lab stand

Activity 1: An experiment

Open Instantaneous Velocity application in the 131 Workshop submenu of the Apple menu.

. You will release a cart to roll down the track toward the motion detector. Stop the cart before it hits the

ranger. Also, be sure to aim the mtion detector at the cart and that there are no people or extraneous
objects within a 20 degree cone of the track (with vertex at the motion detector). Spurious motions within
the sensitivity of the mtion detector give false signals.

Place the cart near the 2-meter mark at the raised end of the track, opposite that on which the motion
detector is mounted.

Release the cart from rest and start recording data.

A graph with dots at regular time intervals will be created on the screen. Stop the cart before it hits the
motion detector. You may need to repeat the data taking until you get a reasonable looking chart (see
Question 1).

Print out a copy of the graph for each member of the lab group.

Questions:

1. Describe the distribution of the dots. Are they as you would have expected? Is the motion it represents
uniform or not? Explain.

2. Using the cursor select ten data points on your graph. Click on the Zoom In button on the graph menu

bar u

ntil the highlighted data points span the graph. Notice that the Zoom In button has the effect of viewing

the data over successively shorter time intervals. What does examining the data over successively shorter time
intervals demonstrate? Explain.
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3. Use the Smart Tool on the graph menu bar to record the position and time for the first and last points
highlighted on the graph. Calculate Az/At and explain the significance of this quantity.

Discussion You just approximated the instantaneous velocity for the central point of your section of dots. The
instantaneous velocity is the velocity the object would have at a particular instant if it were moving at uniform
velocity during the entire interval. You also approximated a derivative: the ratio of the displacement to the time
interval as the time interval approaches zero seconds.

Activity 2: A Graphing Exercise
1. On the next page, you will find three position versus clock reading graphs. The first one depicts motion
over an eight second time interval. We want to know the instantaneous velocity at clock reading 3 sec.

2. On the second graph, replot the outlined segment of the first graph, this time magnifying both position and
time by a factor of ten.

3. On the third graph, magnify again by a factor of ten the equivalent section of the second graph around
clock reading 3 sec and position 16 cm.

4. If you are satisfied with the straightness of the line in the third graph, calculate %, the average velocity
for this interval. Since the line is sufficiently straight, the result of your calculation may be identified also
as the instantaneous velocity at the midpoint of the interval.

5. The curve in the first graph depicts the motion of the object. Determine the equation of motion (the
equation of the curve).

6. Take the derivative of this equation of motion and evaluate it at the central clock reading of your final
interval. This is also a determination of the instantaneous velocity at that clock reading.

Questions:

1. Compare your two calculations of the instantaneous velocity. Are they the same or do they differ? Should
they be the same or different? Explain.

2. Plot a line on the first graph through the point (3s,16cm) which has the slope of the line in the last graph.
What is this line in relation to the motion curve?
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12 Changing Motion’

Name Section Date

Objectives

e To learn how to relate graphs of acceleration vs. time to the motions they represent.

e To understand the relationship between position vs. time, velocity vs. time, and acceleration vs. time
graphs.

Velocity and Acceleration Graphs

We are interested in having you learn to describe simple motions in which the velocity of an object is changing.
In order to learn to describe motion in more detail for some simple situations, you will be asked to observe and
describe the motion of a dynamics cart on a track. Although graphs and words are still important representations
of these motions, you will also be asked to draw velocity vectors, arrows that indicate both the direction and
speed of a moving object. Thus, you will also learn how to represent simple motions with velocity diagrams .

In the last session, you looked at position vs. time and velocity vs. time graphs of the motion of your body as
you moved at a "constant" velocity. The data for the graphs were collected using a motion detector. Your goal
in this session is to learn how to describe various kinds of motion in more detail. It is not enough when studying
motion in physics to simply say that "the object is moving toward the right" or "it is standing still." You have
probably realized that a velocity vs. time graph is better than a position vs. time graph when you want to know
how fast and in what direction you are moving at each instant in time as you walk. When the velocity of an
object is changing, it is also important to know how it is changing. The rate of change of velocity is known as
the acceleration.

In order to get a feeling for acceleration, it is helpful to create and learn to interpret velocity vs. time and
acceleration vs. time graphs for some relatively simple motions of a cart on a track. You will be observing the
cart with the motion detector as it moves at a constant velocity and as it changes its velocity at a constant
rate. Use the P, V & A Graphs application in the 131 Workshop submenu of the Apple menu for all of the
activities in this unit.

Apparatus

o Science Workshop 750 Interface

Ultrasonic motion detector

DataStudio software (P, V & A Graphs application)
e Dynamics cart and track

Lab stand to incline the track

Graphing a Constant Velocity Cart Motion
Let’s start by giving the cart a push along the level track and graphing its motion.
Activity 1: Position, Velocity and Acceleration Graphs of Constant Velocity

(a) Based on your observations of the motions of your body in the last session, how should the position and
velocity graphs look if you move the cart at a constant velocity away from the motion detector starting at the
0.5 meter mark? Sketch your predictions with dashed lines on the axes that follow.

71990-93 Dept. of Physics and Astronomy, Dickinson College. Supported by FIPSE (U.S. Dept. of Ed.) and NSF. Portions of
this material may have been modified locally and may not have been classroom tested at Dickinson College.
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(b) Acceleration is defined as the time rate of change of velocity. Sketch your prediction of the cart acceleration

on the axes that follow using a dashed line.
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Time (s)
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(c) Test your prediction. Be sure that the cart is never closer than 0.15 meter from the motion detector. Try
several times until you get a fairly constant velocity. Sketch your results with solid lines on the axes shown above.
The acceleration vs. time graphs will exhibit small fluctuations due to irregularities in the motion of the cart.
You should ignore these fluctuations and draw smooth patterns.

(d) Did your graphs agree with your predictions? What characterizes constant velocity motion on a position vs.
time graph?

(e) What characterizes constant velocity motion on a velocity vs. time graph?

(f) What characterizes constant velocity motion on a acceleration vs. time graph?

Finding Accelerations

To find the average acceleration of the cart during some time interval (the average time rate of change of its
velocity), you must measure its velocity at two different times, calculate the difference between the final value
and the initial value and divide by the time interval.

To find the acceleration vector from two velocity vectors, you must first find the vector representing the change
in velocity by subtracting the initial velocity vector from the final one. Then you divide this vector by the time
interval.

Activity 2: Representing Acceleration

(a) Does the acceleration vs. time graph you observed agree with this method of calculating acceleration? Explain.
Does it agree with your prediction?

(b) The diagram below shows the positions of the cart at equal time intervals. (This is like taking snapshots of
the cart at equal time intervals.) At each indicated time, sketch a vector above the cart which might represent
the velocity of the cart at that time while it is moving at a constant velocity away from the motion detector.

t0=0 s t1=1s 12=2's t3=3 s

LJg LJ §LJ 9 §LJ

x0 x1 X2 X3

Y

(c) Explain how you would find the vector representing the change in velocity between the times 1.0 s and 2.0 s
in the diagram above. From this vector, what value would you calculate for the acceleration? Explain. Is this
value in agreement with the acceleration graph you obtained in Activity 17

48



Speeding Up at a Moderate Rate

In the next activity you will look at velocity and acceleration graphs of the motion of a cart when its velocity is
changing. You will be able to see how these two representations of the motion are related to each other when the
cart is speeding up.

In order to get your cart speeding up smoothly use the lab stand to raise the track approximately one-third the
height of the lab stand at the end where the motion detector is mounted.

Activity 3: Graphs Depicting Speeding Up

(a) Predict the shape of the position, velocity, and acceleration vs. time graphs for the cart moving away from
the sensor and speeding up. Sketch your predictions on the following axes using dashed lines.
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(b) Create graphs of the motion of your cart as it moves away from the detector and speeds up. Sketch the graphs
neatly on the above axes using solid lines.

(c) How does your position graph differ from the position graphs for steady (constant velocity) motion?

(d) What feature of your velocity graph signifies that the motion was away from the detector?

(e) What feature of your velocity graph signifies that the cart was speeding up? How would a graph of motion
with a constant velocity differ?

(f) During the time that the cart is speeding up, is the acceleration positive or negative? How does speeding up
while moving away from the detector result in this sign of acceleration? Hint: Remember that acceleration is the
rate of change of velocity. Look at how the velocity is changing.

(g) How does the velocity vary in time as the cart speeds up? Does it increase at a steady rate or in some other
way?

(h) How does the acceleration vary in time as the cart speeds up? Is this what you expect based on the velocity
graph? Explain.
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Using Vectors to Describe the Acceleration
Let’s return to the Vector Diagram representation and use it to describe the acceleration.
Activity 4: Acceleration Vectors

(a) The diagram that follows shows the positions of the cart at equal time intervals. At each indicated time,
sketch a vector above the cart which might represent the velocity of the cart at that time while it is moving away
from the motion detector and speeding up.

t0=0 s tl=1s 12=2s t3=3 s

LJ L J LJ L

| | | | -

x0 x1 X2 X3

(b) Show below how you would find the approximate length and direction of the vector representing the change
in velocity between the times 1.0 s and 2.0 s using the diagram above. No quantitative calculations are needed.
Based on the direction of this vector and the direction of the positive x-axis, what is the sign of the acceleration?
Does this agree with your answer to Activity 3 (f)?

Measuring Acceleration

In this investigation you will analyze the motion of your accelerated cart quantitatively. This analysis will be
quantitative in the sense that your results will consist of numbers. You will determine the cart’s acceleration from
the slope of your velocity vs. time graph and compare it to the average acceleration read from the acceleration
vs. time graph. You can display actual values for your acceleration and velocity data using the Smart Tool on
the graph window menu.

Activity 5: Calculating Accelerations

(a) List 10 of the typical accelerations of the cart measured in Activity 3. Use the Smart Tool on the Acceleration
vs. Time graph to get these values. (Only use values from the portion of the graph after the cart was released
and before you stopped it.)

(b) Calculate the average value of the acceleration and record it below.

(c) The average acceleration during a particular time period is defined as the change in velocity divided by the
change in time. This is the average rate of change of velocity. By definition, the rate of change of a quantity
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graphed with respect to time is also the slope of the curve. Thus the (average) slope of an object’s velocity vs.
time graph is the (average) acceleration of the object.

Use the Smart Tool to read the velocity and time coordinates for two typical points on the velocity graph. For
a more accurate answer, use two points as far apart in time as possible but still during the time the cart was
speeding up. Record the points in the space below.

(d) Calculate the change in velocity between points 1 and 2. Also calculate the corresponding change in time
(time interval). Divide the change in velocity by the change in time. This is the average acceleration. Show and
then summarize your calculations below.

(e) Is the acceleration positive or negative? Is this what you expected?

(f) Does the average acceleration you just calculated agree with the average acceleration you calculated from the
acceleration graph? Do you expect them to agree? How would you account for any differences?

Speeding Up at a Faster Rate

Suppose that you accelerate your cart at a faster rate by raising the track to approximately two-thirds the height
of the lab stand. How would your velocity and acceleration graphs change?

Activity 6: Calculating Accelerations

(a) Resketch the velocity and acceleration graphs you found in Activity 3 using the axes that follow.

52



1 T T T T T
| | | | |
| | | | |
| | | | |
| | | | |
— T r---"~"r-"~"~"r~"~"~"r~~"~"-"r~-~-~—~
Q | | | | |
E I I I I I
o
% | | | | |
> | | | I I
----- r---"~"r-"~"~"r~"~"~"r~~"~"-"r~-~-~—~
| | | | |
| | | | |
| | | | |
| | | | |
-1
0 3
Time (s)
1 T T T T T
| | | | |
| | | | |
—~ | | | | |
Y | | | | |
L r---"~"r-"~"~"r~"~"~"r~~"~"-"r~-~-~—~
e | | | | |
= | | | | |
c | | | | |
o | | | | |
s 0 S
o | | | | |
(5] | | | | |
8 _____ [ A E R
< ] ] ] ] ]
| | | | |
| | | | |
| | | | |
-1
0 3
Time (s)

(b) In the previous set of axes, use a dashed line or another color to sketch your predictions for the general graphs
that depict a cart speeding up at a faster rate. Exact predictions are not expected. We just want to know how
you think the general shapes of the graphs will change.

(c) Test your predictions by accelerating the cart with the track raised to approximately two-thirds the height of
the lab stand. Repeat if necessary to get nice graphs and then sketch the results in the axes that follow.
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(d) Did the general shapes of your velocity and acceleration graphs agree with your predictions? How is the
greater magnitude (size) of acceleration represented on a velocity vs. time graph?

(e) How is the greater magnitude (size) of acceleration represented on an acceleration vs. time graph?

Homework

1. An object moving along a line (the + position axis) has the acceleration-time graph shown below. Describe
how might the object move to create this graph if it is moving away from the origin?
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2. Sketch on the axes below a velocity-time graph that goes with the above acceleration-time graph.

+

Velocity
o

4
Time (s)

6 8 10

3. For each of the velocity-time graphs below, sketch the shape of the acceleration-time graph that goes with it.
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Velocity
o

Acceleration
o

4. The following is a velocity-time graph for a car.

4 T T T

Velocity (m/s)
o

0 2 4 6 8 10
Time (s)

What is the average acceleration of the car? Show your work below.

5. Which position-time graph below could be that for a cart that is steadily accelerating away from the origin?

@ (b) (c)
C C C
S S S
7} ) 7}
(@] (@] (@]
a a a
Time Time Time

A car can move along a line (the + position axis). Sketch velocity-time and acceleration-time graphs which
correspond to each of the following descriptions of the car’s motion.

6. The car starts from rest and moves away from the origin increasing its speed at a steady rate.
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7. The car is moving away from the origin at a constant velocity.

JSTRITEY

10

Time (s)

uoneIs|a2dy

10

Time (s)

8. The car starts from rest and moves away from the origin increasing its speed at a steady rate twice as large as

in (6) above.
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9. The car is moving away from the origin at a constant velocity twice as large as in (7) above.
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Time (s)
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Time (s)
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13 Slowing Down, Speeding Up, and Turning®

Name Section Date

Objectives

e To learn how to relate graphs of acceleration vs. time to the motions they represent.

e To understand the relationship between velocity vs. time and acceleration vs. time graphs.

About Slowing Down, Speeding Up and Turning

In the previous session, you explored the characteristics of position vs. time, velocity vs. time and acceleration
vs. time graphs of the motion of a dynamics cart. In the cases examined, the cart was always moving away
from a motion detector, either at a constant velocity or with a constant acceleration. Under these conditions,
the velocity and acceleration are both positive. You also learned how to find the magnitude of the acceleration
from velocity vs. time and acceleration vs. time graphs, and how to represent the velocity and acceleration using
vectors.

In the motions you studied in the last session, the velocity and acceleration vectors representing the motion of
the cart both pointed in the same direction. In order to get a better feeling for acceleration, it will be helpful
to examine velocity vs. time and acceleration vs. time graphs for some slightly more complicated motions of a
cart on an inclined track. Again you will use the motion detector to observe the cart as it changes its velocity
at a constant rate. Only this time the motion may be toward the detector, and the cart may be speeding up or
slowing down.

Apparatus

o Science Workshop 750 Interface

Ultrasonic motion detector

DataStudio software (V & A Graphs application)

e Dynamics cart and track

Lab stand to incline the track

Slowing Down and Speeding Up

In this activity you will look at a cart moving along an inclined track and slowing down. A car being brought to
rest by the steady action of brakes is a good example of this type of motion. Later you will examine the motion
of the cart toward the motion detector and speeding up. In both cases, we are interested in the shapes of the
velocity vs. time and acceleration vs. time graphs, as well as the vectors representing velocity and acceleration.

Let’s start with the creation of velocity and acceleration graphs of when it is moving away from the motion
detector and slowing down. To do this activity, the track should be inclined with a lab stand at one end and
the motion detector should be set up at the lower end of the track. Adjust the incline so that the track is at
approximately one-third the height of the lab stand.

Now when you give the cart a push away from the motion detector, it will slow down after it is released. In this
activity you will examine the velocity and acceleration of this motion.
Activity 1: Graphs Depicting Slowing Down

(a) If you give the cart a push away from the motion detector and release it, will the acceleration be positive,
negative or zero (after it is released)? Sketch your predictions for the velocity vs. time and acceleration vs. time
graphs on the axes below using dashed lines.

81990-93 Dept. of Physics and Astronomy, Dickinson College. Supported by FIPSE (U.S. Dept. of Ed.) and NSF. Portions of
this material may have been modified locally and may not have been classroom tested at Dickinson College.
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(b) To test your predictions, locate the cart 0.15 m from the motion detector and gently push the cart away from
the motion detector once it starts clicking. Catch the cart before it turns around or hits the end of the track.

Draw the results on the axes above using solid lines for the part of the motion after the cart is released. You may
have to try a few times to get a good run. Don’t forget to change the scales if this will make your graphs clearer
before making the sketch and change the scale on the axes shown, if needed. The acceleration vs. time graphs
will exhibit small fluctuations due to irregularities in the motion of the cart. You should ignore these fluctuations
and draw smooth patterns.

(c) Did the shapes of your velocity and acceleration graphs agree with your predictions? How is the sign of the
acceleration represented on a velocity vs. time graph?

(d) How is the sign of the acceleration represented on an acceleration vs. time graph?

(e) Is the sign of the acceleration what you predicted? How does slowing down while moving away from the
detector result in this sign of acceleration? Hint: Remember that acceleration is the rate of change of velocity.
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Look at how the velocity is changing.

Constructing Acceleration Vectors for Slowing Down

Let’s consider a diagrammatic representation of a cart which is slowing down and use vector techniques to figure
out the direction of the acceleration.

Activity 2: Vector Diagrams for Slowing Down

(a) The diagram that follows shows the positions of the cart at equal time intervals. (This is like taking snapshots
of the cart at equal time intervals.) At each indicated time, sketch a vector above the cart which might represent
the velocity of the cart at that time while it is moving away from the motion detector and slowing down.

t0=0 s t1=1s t2=2s t3=3 s

LJt LL L0 L LJa

| | | | -
I I I I =

x0 x1 X2 x3 Positive x direction

(b) Show below how you would find the vector representing the change in velocity between the times 1s and 2 s
in the diagram above. Based on the direction of this vector and the direction of the positive x-axis, what is the
sign of the acceleration? Does this agree with your answer to Question (e) in Activity 17

(c) Based on your observations in this activity and in the last session, state a general rule to predict the sign and
direction of the acceleration if you know the sign of the velocity (i.e. the direction of motion) and whether the
object is speeding up or slowing down.

Speeding Up Toward the Motion Detector

Let’s investigate another common situation. Suppose the cart is allowed to speed up when traveling toward the
motion detector. What will the direction of the acceleration be? Positive or negative?

Activity 3: Graphs Depicting Speeding Up

(a) Use the general rule that you stated in Activity 2 to predict the shapes of the velocity and acceleration graphs.
Sketch your predictions using dashed lines on the axes that follow.
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(b) Test your predictions by releasing the cart from rest at the end of the track after the motion detector starts
clicking. Catch the cart before it gets too close to the detector.

Draw the results using solid lines on the axes above. You may have to try a few times to get a good run. Don’t
forget to change the scales if this will make your graphs clearer before making the sketch and change the scale on
the axes shown, if needed.

(¢) How does your velocity graph show that the cart was moving toward the detector?

(d) During the time that the cart was speeding up, is the acceleration positive or negative? Does this agree with
your prediction? Explain how speeding up while moving toward the detector results in this sign of acceleration.
Hint: Think about how the velocity is changing.

Constructing Acceleration Vectors for Speeding Up

Let’s consider a diagrammatic representation of a cart which is speeding up and use vector techniques to figure
out the direction of the acceleration.
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Activity 4: Vector Diagrams for Speeding Up

(a) The diagram that follows shows the positions of the cart at equal time intervals. (This is like taking snapshots
of the cart at equal time intervals.) At each indicated time, sketch a vector above the cart which might represent
the velocity of the cart at that time while it is moving toward the motion detector and speeding up.

t3=3 s 12=2s t1=1s t0=0 s

LJ LS L J L J

| | | | -

I I I I
X3 X2 x1 x0 Positive x direction

(b) Show below how you would find the vector representing the change in velocity between the times 1s and 2 s
in the diagram above. Based on the direction of this vector and the direction of the positive x-axis, what is the
sign of the acceleration? Does this agree with your answer to Question (d) in Activity 3?

(c) Was the general rule you developed in Activity 2 (c) correct? If not, modify it and restate it here.

Moving Toward the Detector and Slowing Down

There is one more possible combination of velocity and acceleration for the cart, that of moving toward the
detector while slowing down.

Activity 5: Slowing Down Toward the Detector

(a) Use your general rule to predict the direction and sign of the acceleration when the cart is slowing down as
it moves toward the detector. Explain why the acceleration should have this direction and this sign in terms of
the velocity and how the velocity is changing.

(b) The diagram below shows the positions of the cart at equal time intervals for slowing down while moving
toward the detector. At each indicated time, sketch a vector above the cart which might represent the velocity
of the cart at that time while it is moving toward the motion detector and slowing down.

t3=3 s t2=2s t1=1s t0=0 s

LJs L J L J L

| | | | -

1 1 1 1
x3 X2 x1 x0 Positive x direction
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(c) Show below how you would find the vector representing the change in velocity between the times 1s and 2 s
in the diagram above. Based on the direction of this vector and the direction of the positive x-axis, what is the
sign of the acceleration? Does this agree with the prediction you made in part (a)?

Acceleration and Turning Around

In the last session and in the first activity in this session, you looked at velocity vs. time and acceleration vs.
time graphs for a cart moving in one direction with a changing velocity. In this investigation you will look at
what happens when the cart slows down, turns around and then speeds up.

To practice this motion you should position the cart 0.15 m from the detector and give the cart a gentle push
away from the motion detector. It should move up the track, slow down, reverse direction and then move back
down toward the detector. Try it without activating the motion detector! Be sure that the cart does not hit the
end of the track before it turns around.

Activity 6: Reversing Direction

(a) For each part of the motion-away from the detector, at the turning point, and toward the detector, predict in
the table that follows whether the velocity will be positive, zero or negative. Also indicate whether the acceleration
is positive, zero or negative.

Moving Away | Turning Around | Moving Toward

Velocity
Acceleration

(b) Sketch the predicted shapes of the velocity vs. time and acceleration vs. time graphs of this entire motion on
the axes that follow using dashed lines.
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(c) Test your predictions by making graphs of the motion. Use the procedures you used in the slowing down and
speeding up activities. You may have to try a few times to get a good run. Don’t forget to change the scales if
this will make your graphs clearer. When you get a good run, sketch both graphs on the axes above using solid
lines.

(d) Did the cart have a zero velocity at any point in the motion? (Hint: Look at the velocity graph. What was
the velocity of the cart at the end of the ramp?) Does this agree with your prediction? How much time did it
spend at zero velocity before it started back toward the detector? Explain.

(e) According to your acceleration graph, what is the acceleration at the instant the cart comes to rest? Is it
positive, negative or zero? Does this agree with your prediction?

(f) Explain the observed sign of the acceleration at the end of the ramp. (Hint: Remember that acceleration is
the rate of change of velocity. When the cart is at rest at the end of the ramp, what will its velocity be in the
next instant? Will it be positive or negative?)
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Tossing a Ball

Suppose you throw a ball up into the air. It moves upward, reaches its highest point and then moves back down
toward your hand. What can you say about the directions of its velocity and acceleration vectors at various
points?

Activity 7: The Rise and Fall of a Ball

(a) Consider the ball toss carefully. Assume that upward is the positive direction. Indicate in the table that
follows whether the velocity is positive, zero or negative during each of the three parts of the motion. Also
indicate if the acceleration is positive, zero or negative. Hint: Remember, to find the acceleration you must look
at the change in velocity.

Moving Up At Highest Point | Moving Down
(After Release)

Velocity
Acceleration

(b) In what ways is the motion of the ball similar to the motion of the cart which you just observed?

Homework

1. An object moving along a line (the + position axis) has the acceleration-time graph below. How might the
object move to create this graph If it is moving toward the origin?

+

Acceleration
o

0 2 4 6 8 10
Time (s)

2. Sketch on the axes below the velocity-time graph that goes with the above acceleration- time graph.

+

Velocity
o

0 2 4 6 8 10
Time (s)

3. How would an object move to create each of the three labeled parts of the acceleration- time graph shown
below?
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Sketch below a velocity-time graph which might go with the acceleration-time graph in question (3).
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5. Sketch the shape of the acceleration-time graph that goes with the velocity-time graph shown below.
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6. A car moves along a line [the + position axis]. Fill in the table below with the sign (+ or -) of the velocity
and acceleration of the car for each of the motions described.

the Origin

Position | Velocity | Acceleration | Acceleration
Speeding Up | Slowing Down
Car Moves Away +
from the Origin
Car Moves Toward +

7. For each of the position-time graphs shown, sketch below it the corresponding velocity- time and acceleration-

time graphs.
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8. Describe how you would move to produce the velocity-time graph shown below.

+

Velocity
o

Time

9. Sketch a position-time graph corresponding to the velocity-time graph above.
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Position

Time

10. Sketch an acceleration-time graph corresponding to the velocity-time graph above.

Acceleration
o

Time

A car can move in either direction along a line (the + position axis). Sketch velocity-time and acceleration-time
graphs that correspond to each of the following descriptions of the car’s motion.

11. The car is moving toward the origin at a constant velocity.
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8 | | | |
| | | |
< | | | |
Time

12. The car starts from rest and moves toward the origin, speeding up at a steady rate.
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13. A ball is tossed in the air. It moves upward, reaches its highest point and falls back downward. Sketch a
velocity-time and an acceleration-time graph for the ball from the moment it leaves the thrower’s hand until the
moment just before it reaches her hand again. Consider the positive direction to be upward.
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14. Each of the pictures below represents a car driving down a road.The motion of the car is described. In each
case, draw velocity and acceleration vectors above the car which might represent the described motion. Also
specify the sign of the velocity and the sign of the acceleration. (The positive position direction is toward the
right.)

(a) The driver has stepped on the accelerator and the car is just starting to move forward.

(o]

(b) The car is moving forward. The brakes have been applied. The car is slowing down, but has not yet come to
rest.
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(oo

(¢c) The car is moving backward. The brakes have been applied. The car is slowing down, but has not yet come

to rest.

The following graphs represent the motions of objects along the positive position axis. Notice that the motion of
the objects is represented by position, velocity, or acceleration graphs.

Answer the following questions. You may use a graph more than once or not at all, and there may be more
correct choices than blanks. If none of the graphs is correct, answer none.

A * ® ©c *
S S 2
o o g
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Time 0 Time Time
o) * e F
) A )
30 80 80
(] (] (]
> > >
- Time - Time - Time
@) " G O
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© © ©
9 20 20
Q Q Q
(&) (&) (&)
b4 3 3
- Time - Time - Time

15. Pick one graph that gives enough information to indicate that the velocity is always negative.
Pick three graphs that represent the motion of an object whose velocity is constant.

16. 17. 18.

19. Pick one graph that definitely indicates an object has reversed direction.
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20. Pick one graph that might possibly be that of an object standing still.
Pick 3 graphs that represent the motion of objects whose acceleration is changing.
21. 22. 23.

Pick a velocity graph and an acceleration graph that could describe the motion of the same object during the
time shown.

24. Velocity graph. 25. Acceleration graph.
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14 Equations to Define Velocity and Acceleration®

Name Section Date

Objectives

To learn how physicists use mathematical equations to describe simple one-dimensional motions by:

1. Understanding the mathematical definitions of both average and instantaneous velocity and acceleration as
well as the meaning of the slope of a position vs. time graph and of a velocity vs. time graph.

2. Learning to use different techniques for measuring length and time and to use mathematical definitions of
average velocity and acceleration in one dimension to determine these quantities from fundamental mea-
surements.

Apparatus
e Ruler with centimeter scale

Measuring Position as a Function of Time

When you used the motion detector, the computer took care of all the length and time measurements needed
to track motion automatically. In order to understand more about how the motion software actually translates
measurements into one dimensional velocities and accelerations it is helpful to make your own length and time
measurements for a cart system.

Consider the type of uniformly accelerating cart motion that you studied in the previous two units. Suppose that
instead of a motion detector you have a video camera off to one side so you can film the location of the cart 30
times each second. (This is the rate at which a standard video camera records frames.) By displaying frames at
regular time intervals it is possible to view the position of the cart on each frame as shown in the figure below.
This figure shows a scale diagram of the position of an accelerating cart at 8 equally spaced time intervals. The
cart actually moved a distance of just less than 1 meter. Every 6th frame was displayed in the cart movie, so
that 5 frames were recorded each second. At each time the center of the cart is located in the upper left corner
of the rectangle with a number 1 in it.

Origin (Position = 0)

XX X4 X5 X7
I I
- 1.00 m -
I I
I I
to'[1 t2 t3 t4 t5 t6 t7 t8
t,=0.00s tz=1.00s

91990-93 Dept. of Physics and Astronomy, Dickinson College. Supported by FIPSE (U.S. Dept. of Ed.) and NSF. Portions of
this material may have been modified locally and may not have been classroom tested at Dickinson College.
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Activity 1: Position vs. Time from a Cart Video

(a) Let’s start the measuring process by recording the key scaling factors that will be used to calibrate the time
and distance measurements. How much time, t, has elapsed between frame 0 and frame 1, between frame 1 and
frame 2, etc. What is the calibration factor (i.e. how many real meters are represented by each centimeter in the
diagram)?

t = S

m/cm =

(b) Use a ruler to measure the cart’s distance from the origin (i.e. its position) in cm at each of the times (0.00
s, 0.20 s, etc.) and fill in columns 1 and 2 in table the below.

(c) Use the scaling factor between "diagram centimeters" and real meters to calculate the position in meters of
the cart. Place the results in column 3.

Distance from Elapsed | Actual distance Average Average
origin in diagram time from origin velocity acceleration
1 2 3 4 5
Position x (cm) t (s) x (m) <v> (m/s) | <a> (m/s/s)
%o 0.000 - -
- 0.100 - -
X1 0.200 -
- 0.300 - -
X2 0.400 -
- 0.500 - -
X3 0.600 -
- 0.700 - -
1 0.800 -
- 0.900 - -
X 1.000 -
- 1.100 R -
X6 1.200 -
- 1.300 - -
X7 1.400 _
- 1.500 - -
X8 1.600 - -

How Do You Define Average Velocity Mathematically?

By considering the work you did with the motion detector and with the measurements you just performed in
Activity 1, you should be able to define average velocity along a line in words or even mathematically. Remember
that velocity is the rate of change of position divided by the time interval over which the change occurred.

Note: Mathematically, change is defined as the difference between the final value of something minus the initial
value of something.

Change = (Final Value) - (Initial Value)
Activity 2: Defining Velocity in One Dimension

(a) Describe in words as accurately as possible what the word "velocity" means by drawing on your experience
with studying velocity graphs of motion. Hint: How can you tell from the graph the direction an object moves?
How can you tell how fast it is moving?

(b) Suppose that you have a long tape measure and a timer to keep track of a cart or your partner who is moving
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irregularly along a line. For the purposes of this analysis, assume that the object of interest is a mere point mass.
Describe what you would need to measure and how you would use these measurements to calculate velocity at a
given moment in time.

(¢) Can you put this description in mathematical terms? Denote the average velocity with the symbol < v >.
Suppose the distance from the origin (where the motion detector was when it was being used) to your partner is
x; at a time t; just before the moment of interest and that the distance changes to x; at a later time to which is
just after the moment of interest. Write the equation you would use to calculate the average velocity, < v > , as
a function of x3, x3, t1, and to. What happens to the sign of < v > when x; is greater than x5?

(d) Use the mathematical definition in part (c) to calculate the average velocity for each time interval of the cart
motion described in Activity 1 and fill in column 4 of the table in Activity 1. Show at least one sample calculation
in the space below. Important note: ts - t; represents a time interval, At, between two measurements of position
and is not necessarily the total time that has elapsed since a clock started.

Defining Average Acceleration Mathematically

By considering the work you did with the motion detector, you should be able to define average acceleration in one
dimension mathematically. It is similar to the mathematical definition of average velocity which you developed in
Activity 2. All of the circumstances in which accelerations are positive and negative are described by the equation
that defines them.

Activity 3: Defining Average Acceleration

(a) Describe in words as accurately as possible what the word "acceleration" means by drawing on your experience
with studying velocity and acceleration graphs of motion.

(b) Suppose the cart’s average velocity is <v;> at a time t; and that the average velocity changes to <vs> at a
later time t,. Write an equation for the average acceleration in the space below.

(c) Use the mathematical definition in part (b) to calculate the average acceleration of the cart motion depicted
in Activity 1 and fill in column 5 of the table in Activity 1 for each time interval (i.e. 0.00 to 0.20 s, 0.20 s to
0.40 s, etc.). Show at least one sample calculation in the space below.
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(d) Suppose you are walking away from a motion detector. How does the rate of your walking change if <v;>
is greater than <vo,>7 Is your acceleration positive or negative? Use the mathematical equation in part (b) to
explain your answer.

(e) Suppose you are walking toward a motion detector. How is your speed (i.e. magnitude of velocity) changing
for <vy> > <vo>7 Is your acceleration positive or negative? Be very careful with your mathematics on this one.
It’s tricky!

(f) Is the sign of <a> always the same as the sign of the velocities? Why or why not?

Instantaneous Velocity and the Slope of a Position vs. Time Graph

What happens if we want to know the velocity of an object at a single instant? That is, we’d like to estimate the
velocity of an object during a time interval which is too small to measure directly. Since velocity is a measure
of the change in position over time, it is possible to use techniques developed in calculus to estimate how a
continuously varying function of position vs. time changes during a very short time interval. Let’s start by
considering how we might determine the slope of a continuous function and proceed from there.

Activity 4: Defining the Slope or Tangent

(a) In the figure below, what is the equation for the average slope of the curve at the highlighted point in terms
of x1, X3, t1, and t2?

Position

Time

(b) How is the value of the slope related to the average velocity in the time interval [t1, t2] ?

(c) Since the rate of change of position is increasing as time goes on (so that the position "curve" is not linear),
how can you calculate a more accurate value of the slope? Hint: Feel free to use different x and t values in your
"calculation" to correspond to a different time interval.
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(d) How would you find the "exact" value of the slope at the point in time of interest?

(e) Look up the formal definition of a derivative in your calculus book and list it below. Usually it has to do with
f(x) and how it changes with x.

(f) Notice that in our position vs. time graph we are interested in how x changes with t. Thus, we would use the
notation x(t) to indicate that x is a function of t. By letting x play the role of f and t play the role of x, rewrite
the definition of the derivative.

(g) How might the instantaneous value of velocity at the highlighted point be related to the derivative of x with
respect to t at that same point?

(h) Suppose that x(t) = t> + 1, where x is in centimeters and t is in seconds. What is the derivative of this
function with respect to time? What is its instantaneous velocity?

(i) What is the instantaneous velocity, v, in cm/s at t = 1s? At t = 2 s?

Acceleration as the Slope of a Velocity Graph

Just as velocity is the rate of change of position, acceleration is the rate of change of velocity. How do we find the
acceleration of an object at a single instant (i.e. during a time interval which is too small to measure directly).
Since acceleration is the rate of change of velocity, the acceleration of an object is given by the slope of a smooth
curve drawn through its velocity vs. time graph.

Let’s apply this graphical analysis approach to the task of finding the instantaneous acceleration for the cart
motion described in Activity 1.

Activity 5: Accelerations from the Cart Data

(a) Refer to the data that you analyzed and recorded in the table in Activity 1. Use Cricket Graph to fit the
velocity (y axis) vs. time (x axis) data with a line. Label the resulting graph and put a copy in your notebook.
The slope of the line represents the acceleration of the cart. Report its value in the space below.
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(b) How does the value for acceleration which you determined from the slope compare to those you determined
earlier from the average accelerations at the mid-point of each time interval between average velocity values. In
other words, how does the slope compare with the averages reported in column 5 of the table in Activity 1? Find
the average and standard deviation of the elements in column 5 of the table and report them in the space below.

(You can use Cricket Graph for this.)

oes the acceleration determined by the slope lie within one standard deviation of the average of the average
d) Does th leration det ined by the sl lie withi tandard deviati f th ge of th g
accelerations?
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15 Gravity and Free Fall'®

Name Section Date

Objectives

To explore the phenomenon of gravity and study the nature of motion along a vertical line near the earth’s surface.
Overview

When an object falls close to the surface of the earth, there is no obvious force being applied to it. Whatever
is causing it to move is invisible. Most people casually refer to the cause of falling motions as the action of
"gravity." What is gravity? Can we describe its effects mathematically? Can Newton’s laws be interpreted in
such a why that they can be used for the mathematical prediction of motions that are influenced by gravity? In
this investigation we will study the phenomenon of gravity for vertical motion. You will need:

Apparatus

e A tennis ball.
e A video analysis system (Adobe Premier and VideoPoint).
e The Demon Drop video.

e Graphing software (Cricket Graph).

Vertical Motion: Describing How Objects Rise and Fall

Let’s begin the study of the phenomenon of gravity by predicting the nature of the motion of an object, such as
a tennis ball, when it is tossed up and then allowed to fall vertically near the surface of the earth. This is not
easy since motion happens pretty fast! To help you with this prediction you should toss a ball in the laboratory
several times and see what you think is going on.

Activity 1: Predicting the Motion of a Tossed Ball

(a) Toss a ball straight up a couple of times and then describe how you think it might be moving when it is moving
upward. Some possibilities include: (1) rising at a constant velocity; (2) rising with an increasing acceleration;
(3) rising with a decreasing acceleration; or (4) rising at a constant acceleration. What do you think?

(b) Explain the basis for your prediction.

(c) Now describe how you think the ball might be moving when it is moving downward. Some possibilities
include: (1) falling at a constant velocity; (2) falling with an increasing acceleration; (3) falling with a decreasing
acceleration; or (4) falling at a constant acceleration. What do you think?

(d) Explain the basis for your prediction.

101990-93 Dept. of Physics and Astronomy, Dickinson College. Supported by FIPSE (U.S. Dept. of Ed.) and NSF. Portions of
this material have been modified locally and may not have been classroom tested at Dickinson College.
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(e) Do you expect the acceleration when the ball is rising to be different in some way than the acceleration when
the ball is falling? Why or why not?

(f) What do you think that the acceleration will be at the moment when the ball is at its highest point? Why?

The motion of a tossed ball is too fast to observe carefully by eye without the aid of special instruments. In the
next activity we will use a video analysis system to study the motion of a freely falling object. The Demon Drop
is a popular ride at the Cedar Run Amazement Park in Sandusky, Ohio. It allows 8 people to get into a little
cage and experience free fall. Physics teacher Bob Speers of Firelands College in Huron Ohio took a video tape
of the drop which you can analyze using the VideoPoint software. You will use a sequence of these video frames
and mathematical modeling techniques to find an equation that describes the fall.

Activity 2: Analyzing the Motion of the Demon Drop

(a) Determine the y position of the Demon Drop at different times during the motion. To do this:

1. Start up VideoPoint by going to the Apple Menu in the upper left corner of the screen and click and drag
down to highlight VideoPoint alias. Click the mouse in the window titled "About VideoPoint".

2. Click on Open Movie and select the Demon Drop video.

3. VideoPoint will request the number of objects you want to track in the movie. Enter 1" in the space
provided and click OK. You will now see several windows. One contains the movie and has control buttons
and a slider along the bottom of the frame to control the motion of the film. Experiment with these controls
to learn their function. Another window below the movie frame contains position and time data and a third
window to the right of the frame describes the coordinate system in use.

4. This is a good time to calibrate the scale. We will use the distance between the horizontal struts on the
tower which is 4.0 m. Under the Movie menu highlight Scale Movie. A dialog box will appear. Enter
the distance between the struts and set Scale Type to Fixed. Click Continue. Move the cursor over the
frame and click on two adjacent struts.

5. You are now ready to record the position and time data. Go to the first frame of interest. Move the cursor
over the frame and it will change into a small circle with an attached label. Place the circle over the object
of interest in the frame and click. The x and y positions will be stored and the film advanced one frame.
Move the circle over the position of the object in the frame and repeat. Continue this process until you
have mapped out the motion of the demon drop cage.

6. When you have entered all the points you want, click on the Data Table window below the movie frame.
Scroll down through the data table to find your data. Click and drag across all the rows and columns of
the entries to highlight all of your data. Under the Edit menu highlight Copy.

7. Start up Cricket Graph by going to the Apple Menu in the upper left corner of the screen and click and
drag down to highlight Cricket Graph alias. You will see a window with a set of blank rows and columns.
Click the mouse in the upper left box and under the Edit menu highlight Paste. The data your just copied
from VideoPoint should now fill the table and you can analyze it with the methods described in Appendix
C: Introduction to Cricket Graph.
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8. Use Cricket Graph to plot a graph of y vs. t. See Appendix C: Introduction to Cricket Graph for
details. Affix a copy of the graph to the unit.

(c) What is the initial value of y (usually denoted yq) in the coordinate system you chose?

(d) By examining your data table, calculate the approximate value of the initial velocity of the cage in the y-
direction. Include the sign of the velocity and its units. (Use the convention that on the y-axis up is positive and
down is negative.)

(e) Examine the graph of your data. What does the nature of this motion look like? Constant velocity, constant
acceleration, an increasing or decreasing acceleration? How does your observation compare with the prediction
you made for the cage on its way down in Activity 17

(f) Using the convention that on the y-axis up is positive and down is negative, is the acceleration positive or
negative (i.e. in what direction is the magnitude of the velocity increasing)?

(g) If you think the object is undergoing a constant acceleration, use the modeling technique you used before to
find an equation that describes y as a function of t as the cage drops. Hints: (1) You might try to model the
system with kinematic equation number 1. (2) Since you are dealing with the second dimension (i.e. the vertical
dimension), you should replace x with y and xq with yo. Write the equation of motion in the space below. Then
use coefficients of time to find the values of a, vo and yo with the appropriate units. Note: Since the acceleration
is caused by gravity, our notation for it will be g rather than just a. Also, when you have found a good fit to the
data, print it and attach a copy to this unit.

1. The equation of motion with proper units is: y =

2. The acceleration with proper sign and units is: g =

3. The initial velocity with proper sign and units is: vog =

4. The initial position with proper sign and units is: yg =

In the next activity we will use a video analysis system to study the motion of a freely falling object. You will
use a sequence of these video frames and mathematical modeling techniques to find an equation that describes
the fall.

Activity 3: Analyzing the Motion of the Tennis Ball
(a) Make a movie of a tennis ball in flight by following these steps.
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1. Turn on the video camera and center the field of view on the region where you will toss the ball. This region
should be about 2 meters from the camera to get a large enough area for the flight of the ball. Place a ruler
or meter stick somewhere in the field-of-view where it won’t interfere with the motion. This ruler will be
user later to determine the scale.

2. Make a movie of the tennis ball being dropped from rest. Make sure most of the trajectory is visible to the
camera. See Appendix D: Video Analysis for details on making the movie. When you save the movie
file give it the name Ball.

(b) Determine the vertical position, y, of the tennis ball at different times during the motion. To do this follow the
instructions in Appendix D: Video Analysis to the movie data. Prepare this last file for analysis by following
the instructions in the last section of Appendix D.

(c) Use Cricket Graph to plot a graph of y vs. t. See Appendix C: Introduction to Cricket Graph for
details. Affix a copy of the graph to the unit.

(d) Where did you place your origin? What is the initial value of y (usually denoted yg) in the coordinate system
you chose?

(e) By examining your data table, calculate the approximate value of the initial velocity of the ball in the y-
direction. Include the sign of the velocity and its units. (Use the convention that on the y-axis up is positive and
down is negative.)

(f) Examine the graph of your data. What does the nature of this motion look like? Constant velocity, constant
acceleration, an increasing or decreasing acceleration? How does your observation compare with the prediction
you made earlier in this unit for the ball on its way down?

(g) Using the convention that on the y-axis up is positive and down is negative, is the acceleration positive or
negative (i.e., in what direction is the magnitude of the velocity increasing)?

(h) If you think the object is undergoing a constant acceleration, use the fitting capability of Cricket Graph (see
Appendix C: Introduction to Cricket Graph for details) to find an equation that describes y as a function
of t as the ball drops. Hints: (1) You might try to model the system with a second order equation like the
kinematic equation for uniformly accelerated motion. (2) Write the equation of motion in the space below. Then
use coefficients of the best-fit equation to find the values of a, vg and yg with the appropriate units. Note: Since
the acceleration is caused by gravity, our notation for it will be g rather than just a. Also, when you have found
a good fit to the data, print it and attach a copy to this unit.

1. The equation of motion with proper units is: y =
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2. The acceleration with proper sign and units is: g =

3. The initial velocity with proper sign and units is: vg

4. The initial position with proper sign and units is: yo
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16 Acceleration of Gravity

Name Section Date
Objective

To determine the acceleration of gravity near the surface of the earth.

Overview

In a previous activity, you performed a video analysis of an object in free fall to determine the equation of motion
and to extract a value for the acceleration of gravity near the surface of the earth. Now we will make a more
accurate determination of the acceleration of gravity by timing the motion of a freely falling object. The "picket
fence" has evenly spaced black bars on a piece of clear plastic. When dropped through the photogate, the bars
interrupt the light beam. By measuring the distance between the bars, and using the time measurements of the
photogate, the acceleration of the freely falling picket fence can be calculated.

Apparatus
o Science Workshop 750 Interface
¢ Photogate
o Picket fence

e DataStudio software (Free Fall application)
Note: On using the "Picket Fence"

1. When performing free-fall experiments, place a box with packing material under the experiment to cushion
the fall of the picket fence.

2. For accurate results drop the picket fence through the photogate vertically.
3. To achieve vertical alignment of the picket fence hold it between your thumb and forefinger, centered at the
top of the bar, before releasing.
Activity 1: Position and Velocity Graphs

(a) Consider an object in free fall near the surface of the earth. Sketch your predictions for the position vs. time
and velocity vs. time graphs of the motion of the object using dashed lines on the axes below. Assume that the
positive position axis is down.
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(b) Test your predictions by measuring the free fall of the picket fence. Open the Free Fall application. Have one
person hold the picket fence in a vertical position above the gap between the arms of the photogate. Have another
person start recording data and then have the first person drop the picket fence through the photogate. Stop the
recording once the picket fence has passed completely through the photogate. The computer will display graphs
of position versus time and velocity versus time. Sketch the results on the above axes using solid lines.

(c) How do your predictions compare with the results of the measurements?

(d) What can you say about the magnitude and sign of the acceleration in this case?

Activity 2: Determining the Acceleration of Gravity

(a) Fit the velocity vs. time graph to determine the acceleration. Repeat this procedure to get a total of 20 good
runs and record your results in a data table below. For one of the runs, print the graph window and put a copy
in your notebook at the end of this unit.

(b) Use Cricket Graph to find the mean and standard deviation for the acceleration measurements and record
the results below in the form g = Mean § o.

(c) Compare your average acceleration with the standard value of 9.80 m/s?. This is done by calculating the
% difference. The % difference is calculated by subtracting the accepted value from your value, dividing by the
accepted value and multiplying by 100.

(d) Does your mean acceleration fall within one standard deviation of the accepted value? Is there any indication
of a systematic error? Explain.
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17 Human Reaction Time

Name Section Date

Objectives:

e Application of the free-fall concept
e Appreciation of the magnitude of reaction time

Introduction

Since you now know the magnitude of gravitational acceleration, you can determine your reaction time from the
distance a meter stick drops before you catch it.

Apparatus:

e meter stick
e stop watch

Activity: [Note: everyone should determine their individual reaction time.]
1. With a lab partner holding a meter stick vertically from the 0.0 end, hold your thumb and index finger close
to, but not touching, opposite sides of the stick at the 50.0-cm mark.

2. The holder should release the stick without warning and you should try to grasp it as quickly as possible.
Record the position at which you caught the stick.

3. Repeat the exercise five times. Then calculate the average position and the characteristic displacement, s,
of the stick before you can catch it.

|P1|P2|P3|P4|P5|AV€.P|S:50.0—P|

4. Calculate your reaction time, t. (show calculations)

Reaction time =t =

Questions:

1. How many feet would a car traveling 55 mi./hr travel during your reaction time? (show calculations)

2. Could you catch a dropped dollar bill (15.5 cm long) if your fingers were initially at the a) center, b) bottom?
Use the experimental data just taken to justify your answers.
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18 The Tossed Ball

Name Section Date

Objectives:

e Application of the free-fall concept
o Investigation of linear motion in two directions with constant acceleration

Introduction

In the Free Fall investigation, you determined the acceleration of objects allowed to fall from rest. In this lab you
will study this sort of motion with an initial velocity.

Predictions

If you throw a ball straight up into the air, releasing it at the level of the table-top with enough velocity so
that it just reaches the top of a two-meter stick resting on the floor, how long will the ball’s flight take from its
release until it hits the floor? List all your assumptions and the measurements you will make, and show all your
calculations in making this prediction.

Apparatus:

e 2-meter stick
e tennis ball
e 2 stop watches

Activity:

1. To test your predictions, stand the two-meter stick on its end. One of the experimenters should be positioned
to view the high end of the stick.

2. A second experimenter throws the ball up in such a way that the ball is released at the level of the table-top
and just reaches the top of the two-meter stick. You might try grasping the table-edge with your non-
throwing arm extended out over the floor. Throw from under this extended arm, releasing the ball as your
two arms make contact. One or more stop watches should be started at the instant of release. Repeat as
necessary until the maximum height of the ball is as close to two-meters as possible.

3. Time the flight of the ball from its release until it hits the floor. When you get a good toss, record the value
and compare it to your prediction.

Time predicted Time measured
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Questions:

1. You throw a ball straight up in the air. Some time later, the ball falls to the ground. Is the acceleration
constant during the entire flight of the ball? Explain.

2. What is (are) the value(s) and direction(s) of the acceleration at the instant the ball is released? At its
highest point? On the way down? Just before it hits the floor?

3. Does your measurement agree with your prediction? Explain any discrepancy.

4. What was the initial velocity of the ball?

5. What was the ball’s velocity when it reached the level of the table-top on its way down?

6. What was the ball’s velocity when it hit the ground?
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19 Independence of Vertical and Horizontal Motion
Name Section Date
Objective:
e Determine the relationship between vertical and horizontal motion
Apparatus:

e two coins
e ruler

Activity:
1. Place a coin in the far corner of the table nearest the center aisle of the room. (See figure.) Lay a ruler
next to the coin, parallel to the edge of the table along the aisle, allowing several centimeters at the end to

hang over the far edge. Place a coin on the portion of the ruler hanging over the edge. Hold the ruler in
place with a finger one the opposite end.

tap sharply here

hold her\ ’/ /coin 2

N g

coin 1 > /

2. With the ruler held, tap the side of the ruler opposite the coin sharply so that the coin on the table will be
knocked over the edge of the table.

3. Both coins should land on the floor. Note, by sight or hearing, which hits the ground first.

4. Sketch the motion of the two coins.

Questions:

1. Which coin hit the floor first? Explain.

2. What was the acceleration of each of the coins? Explain.

3. Which coin had the greatest initial velocity? Explain.

4. Which coin had the greatest final velocity? Explain
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20 The Ski Jump

Name Section Date

Objectives:

e Introduce projectile motion
e Discover the angular dependence for trajectories

Note: The ski jump works by releasing the metal ball to roll down the channel and recording where it lands. For the
purposes of laboratory exercise, the ball should be released from the same vertical height for all trials; use the horizontal
support attached to the tall rod as a convenient reference point. The launch point is connected to a horizonal support
attached to a short rod. This horizonal support rotates when you move the base of the tall rod nearer to or farther from
the shorter rod. This rotation determines the angle at which the jump originates. The launching angle may be determined
with a ruler and protractor by holding the ruler against the track in parallel with the launch point and then measuring
the angle above the horizontal with the protractor (see figure below).

Apparatus:

jump chute

metal ball

protractor and ruler

two wooden boards

sheets of white and carbon paper

Activity:

1. Set up the jump and landing surface so that the launch point and landing surface are at the same height.

2. With the benefit of several trial runs at different angles, decide where you should tape a piece of white paper
down so all jumps will land on the paper. Cover the paper with a piece of carbon paper, ink side down.

3. Attempt several jumps each at a number of different angles, say 20, 30, 37, 45, 53, 60, and 70 degrees.
Circle the impact points for a given angle and label them before proceeding to the next angle.

4. Note the relative ranges of the ball’s flight as a function of the launching angle:

90



Questions:

1. Is the range always the same, or does it depend on the angle? Describe the dependence, if any.

2. At which angle is the range a maximum?

3. How are the ranges and angles related on either side of the maximum?

4. How do you think this angular dependence would change for landing surfaces at different heights? Test your
predictions.
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21 Projectile Motion!!

Name Section Date

Objectives

To understand the experimental and theoretical basis for describing projectile motion as the superposition of
two independent motions: (1) a body falling in the vertical direction, and (2) a body moving in the horizontal
direction with no forces.

Apparatus

e A tennis ball.
e A video analysis system (Adobe Premier and VideoPoint).

e Graphing and curve fitting software (Cricket Graph).

Activity 1: Predicting the Two-Dimensional Motion of a Tossed Ball

(a) Toss a tennis ball up at an angle of about 60° with the horizon a couple of times. Sketch the motion and
describe it in words below. What is the shape of the trajectory?

(b) Let’s consider the horizontal and vertical components of the motion separately. What do you think is the
horizontal motion of the ball? Is it motion with constant velocity? Constant acceleration? Or is it some other
kind of motion? Hint: What is the force acting on the ball in the horizontal direction (after it is released)?

(c) What do you think is the vertical motion of the ball? Is it motion with constant velocity? Constant acceler-
ation? Or is it some other kind of motion? Hint: What is the force acting on the ball in the vertical direction
(after it is released)?

The two-dimensional motion of a tossed ball is too fast to observe carefully by eye without the aid of special
instruments. In the next activity we will use a video analysis system to study the motion of a small ball launched at
an angle of about 60° with respect to the horizontal. You are to use the video analysis software and mathematical
modeling techniques to find the equations that describe: (a) the trajectory (y vs. x), (b) the horizontal motion
(x vs. t), and (c) the vertical motion (y vs. t) of the projectile.

Activity 2: Analyzing Projectile Motion
(a) Make a movie of a tennis ball in flight by following these steps.

111990-93 Dept. of Physics and Astronomy, Dickinson College. Supported by FIPSE (U.S. Dept. of Ed.) and NSF. Portions of
this material have been modified locally and may not have been classroom tested at Dickinson College.
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1. Set up the video camera and center the field of view on the region where you will toss the ball. This region
should be about 2 meters from the camera to get a large enough area for the flight of the ball. Place a ruler
or meter stick somewhere in the field-of-view close to the plane of the motion of the ball where it won’t
interfere with the motion. This ruler will be user later to determine the scale.

2. Make a movie of the tennis ball flying through the air with a significant component of its initial velocity in
the horizontal direction (i.e., don’t toss it straight up). Make sure most of the complete trajectory is visible
to the camera. See Appendix D: Video Analysis for details on making the movie. When you save the
movie file give it the name Projectile.

(b) Determine the position of the projectile at different times during the motion. To do this task follow the
instructions in the second section of Appendix D: Video Analysis for recording and calibrating the position
data. When you are analyzing the movie place the origin at the position of the ball in your first frame. Do this
by clicking on the arrow symbol on the menu bar to the left of the movie frame. The cursor will take the shape
of an arrow when you place it over the frame. Move the point of the cursor’s arrow to the origin. Click and drag
the cursor and move the origin to the position of the ball in the first frame and release. This sets the origin at the
location of the ball at the initial time. When you have placed the origin at the desired spot, click on the circular
icon at the top of the menu bar to the left of the movie frame. This returns the cursor to a circle that marks the
position of the ball.

(c) Launch Cricket Graph and read in the data as described in Appendix D. See Appendix C: Introduction
to Cricket Graph for details on using Cricket Graph. Make a plot of the vertical position (y) versus the
horizontal position (x). Determine the equation that describes the trajectory of the projectile. When you have
found a good fit to the data, print the graph and attach a copy to the unit. Write the equation for the trajectory
of the projectile in the space below. What is the shape of the trajectory? Does the result agree with your earlier
prediction?

(d) Determine the equation that describes the horizontal motion of the projectile by plotting the horizontal
position (x) versus time (t) using Cricket Graph. Find a good fit to the data with Cricket Graph. When you have
found a good fit to the data, print the graph and attach a copy to the unit. What kind of motion is it? Does the
result agree with your earlier prediction?

1. The equation for the horizontal component of the motion with proper units is: x =

2. The horizontal component of the acceleration with proper sign and units is: a, =

3. The horizontal component of the initial velocity with proper sign and units is: vo, =

4. The initial x position with proper units is: xg =

(e) Determine the equation that describes the vertical motion of the projectile by plotting the vertical position
(y) versus time (t). Find a good fit to the data. When you have found a good fit to the data, print the graph
and attach a copy to the unit. What kind of motion is it? Does the result agree with your earlier prediction?
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. The equation for the vertical component of the motion with proper units is: y =

2. The vertical component of the acceleration with proper sign and units is: a, =

3. The vertical component of the initial velocity with proper sign and units is: vo, =

4. The initial y position with proper units is: yo =

(f) Does it appear that projectile motion is simply the superposition of two types of motion that we have already
studied? Explain.
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22 Uniform Circular Motion!?

Name Section Date

Objective

To explore the phenomenon of uniform circular motion and the acceleration needed to maintain it.
Overview

You have recently studied projectile motion. In this unit we are going to explore another phenomenon in two
dimensions, uniform circular motion. In particular, you will develop a mathematical description of the centripetal
acceleration that keeps an object moving in a circle. You will start by watching a toy "airplane" suspended from
a string fly in a circle.

Apparatus

e The "airplane".
e A video analysis system(Adobe Premier and VideoPoint).

e Graphing software (CricketGraph).

Activity 1: Observing an Airplane Undergoing Circular Motion

(a) Put on your safety glasses and wear them until your instructor announces that they can be removed. Turn
on the engine of the airplane suspended from the string. Be careful to stay clear of the propeller. Launch the
airplane into circular motion by giving it a gentle push. If it doesn’t quickly settle into steady circular motion,
catch it and try launching it in the opposite direction. Sketch the motion and describe it in words below.

(b) How would you describe the speed of the airplane? How would describe the velocity? Would you say that
this is accelerated motion? Why?

(c) What is the definition of acceleration? (Remember that acceleration is a vector!)

(d) Are velocity and speed the same thing? Is the velocity of the airplane constant? (Hint: Velocity is a vector
quantity!)

121990-93 Dept. of Physics and Astronomy, Dickinson College. Supported by FIPSE (U.S. Dept. of Ed.) and NSF. Portions of
this material have been modified locally and may not have been classroom tested at Dickinson College.
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(e) In light of your answers to (c) and (d), would you like to change your answer to part (b)? Explain.

The two-dimensional motion of the airplane is too fast to observe carefully so we will use a video system to record
the motion of the airplane and to analyze the movie frame-by-frame. You will use the video analysis system to
investigate the direction of the velocity of the circling airplane and the direction of its acceleration.

Activity 2: Analyzing Circular Motion
(a) Make a movie of the airplane in flight by following these steps.

1. Turn on the video camera and center the field-of-view on the region where the plane will fly. This region
should be about 1 meter from the camera to get a large enough area for the flight of the plane. Mount a
ruler or meter stick somewhere in the field-of-view where it won’t interfere with the motion. This ruler will
be used later to determine the scale.

2. Launch the airplane into circular motion and wait until it settles into steady, circular flight. Record several
revolutions of the airplane while holding the ruler in view of the camera and save the movie as the file
Airplane. See Appendix D: Video Analysis for details on making movies and saving them in a file.

(b) Determine the position of the airplane during one complete revolution. To do this task follow the instructions
in the second section of Appendix D: Video Analysis for recording and calibrating a data file entitled Airplane
Data. Prepare this last file for analysis by following the instructions in the last section of Appendix D. The file
should contain three columns with the values of time, x-position, and y-position for one complete revolution.

(c) Make a graph of the trajectory of the airplane during one full revolution. See Appendix C: Introduction
to Cricket Graph for details on using the graphing software. When you make your plot make sure the x and y
axes cover the same size range otherwise you will distort the path of the airplane. Print the graph and attach a
copy to the unit.

1. Is the motion circular? What is your evidence?

2. Make a sketch of the position vector and the velocity vector at one point on the trajectory. How did you
arrive at this choice? How is the velocity vector related to the path of the airplane?

3. What would happen to the path of the plane if you cut the string? Explain.
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(d) Launch the airplane into uniform circular motion. You are going to investigate what happens to the trajectory
after the string is cut. Be sure you are wearing your eye protection. After the plane settles into steady, circular
flight start recording a movie of the plane. After it completes one revolution use the scissors to cut the string
just above the horizontal metal bar. BE CAREFUL to avoid letting the plane strike anyone or any object except
the floor. Halt recording and save the movie as Airplane 2.

(e) Make a plot of the trajectory of the airplane after the string was cut and for at least one full revolution before.
Is the trajectory circular before the string was cut? Does the trajectory of the plane after the string was cut agree
with the prediction you made earlier? Explain. Print the graph and attach a copy to the unit.

Using Vectors to Diagram How Velocity Changes

By now you should have concluded that since the direction of the motion of an object undergoing uniform circular
motion is constantly changing, its velocity is also changing and thus it is accelerating. We would like you to figure
out how to calculate the direction of the acceleration and its magnitude as a function of the speed v of an object
such as a ball as it revolves and as a function of the radius of the circle in which it revolves. In order to use vectors
to find the direction of velocity change in circular motion, let’s review some rules for adding velocity vectors.

1 2 3
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1. To Draw Velocities: Draw an arrow representing the velocity, vi, of the object at time t;. Draw another
arrow representing the velocity, va, of the object at time to.

2. To Draw Velocity Change: Find the change in the velocity Av = v, - v during the time interval described
by At = ty - t;. Start by using the rules of vector sums to rearrange the terms so that vi + Av = vs.
Next place the tails of the two velocity vectors together halfway between the original and final location of
the object. The change in velocity is the vector that points from the head of the first velocity vector to the
head of the second velocity vector.

3. To Draw Acceleration: The acceleration equals the velocity change Av divided by the time interval t needed
for the change. Thus, a is in the same direction as Av but is a different length unless ( At = 1). Thus,
even if you do not know the time interval, you can still determine the direction of the acceleration because
it points in the same direction as Av.

The acceleration associated with uniform circular motion is known as centripetal acceleration. You will use the
vector diagram technique described above to find its direction.

Activity 3: The Direction of Centripetal Acceleration
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(a) Determine the direction of motion of the ball shown below if it is moving counter-clockwise at a constant
speed. Note that the direction of the ball’s velocity is always tangential to the circle as it moves around. Draw
an arrow representing the direction and magnitude of the ball’s velocity as it passes the dot just before it reaches
point A. Label this vector vy.

“Just” after — 4—"duzt” before

(b) Next, use the same diagram to draw the arrow representing the velocity of the ball when it is at the dot just
after it passes point A. Label this vector vs.

(c) Find the direction and magnitude of the change in velocity as follows. In the space below, make an exact copy
of both vectors, placing the tails of the two vectors together. Next, draw the vector that must be added to vector
v1 to add up to vector v, ; label this vector Av. Be sure that vectors v; and v, have the same magnitude and
direction in this drawing that they had in your drawing in part (a)!

(d) Now, draw an exact copy of Av on your sketch in part (a). Place the tail of this copy at point A. Again,
make sure that your copy has the exact magnitude and direction as the original Av in part (c).

(e) Now that you know the direction of the change in velocity, what is the direction of the centripetal acceleration,
a.?

(f) If you redid the analysis for point B at the opposite end of the circle, what do you think the direction of the
centripetal acceleration, a., would be now?
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(g) As the ball moves on around the circle, what is the direction of its acceleration?

Using Mathematics to Derive How Centripetal Acceleration Depends on Radius and Speed

You haven’t done any experiments yet to see how centripetal acceleration depends on the radius of the circle and
the speed of the object. You can use the rules of mathematics and the definition of acceleration to derive the
relationship between speed, radius, and magnitude of centripetal acceleration.

Activity 4: How Does ac Depend on v and r?

(a) Do you expect you would need more centripetal acceleration or less centripetal acceleration to cause an object
moving at a certain speed to rotate in a smaller circle? In other words, would the magnitude, a., have to increase
or decrease as r decreases if circular motion is to be maintained? Explain.

(b) Do you expect you would need more centripetal acceleration or less centripetal acceleration to cause an object
to rotate at a given radius r if the speed v is increased? In other words, would the magnitude, a., have to increase
or decrease as v increases if circular motion is to be maintained? Explain.

You should have guessed that it requires more acceleration to move an object of a certain speed in a circle of
smaller radius and that it also takes more acceleration to move an object that has a higher speed in a circle
of a given radius. Lets use the definition of acceleration in two-dimensions and some accepted mathematical
relationships to show that the magnitude of centripetal acceleration should actually be given by the equation

v
e = — [Eq.1]
r

In order to do this derivation you will want to use the following definition for acceleration

@ =20 87 gy

Activity 5: Finding the Equation for a,

(a) Refer to the diagram below. Explain why, at the two points shown on the circle, the angle between the
position vectors at times t; and ts is the same as the angle between the velocity vectors at times t; and t,. Hint:
In circular motion, velocity vectors are always perpendicular to their position vectors.
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(b) Since the angles are the same and since the magnitudes of the displacements never change (i.e., r=r; = r2)
and the magnitudes of the velocities never change (i.e., v = vi = v2), use the properties of similar triangles to
explain why 4% = Ar,
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(c) Now use the equation in part (b) and the definition of < a > to show that (a.) = % =

—~
>
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(d) The speed of the object as it rotates around the circle is given by v = %. Is the change in arc length,

As, larger or smaller than the magnitude of the change in the position vector, Ar? Explain why the arc length
change and the change in the position vector are approximately the same when t is very small (so that the angle
q becomes very small) i.e., why is As ~ Ar?

(e) If As ~ Ar, then what is the equation for the speed in terms of Ar and At?

(f) Using the equation in part (c), show that as At — 0, the instantaneous value of the centripetal acceleration
is given by Eq. 1.
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23 Force and Motion I'3

Name Section Date

Objectives

e To learn how to use a force probe to measure force.
e To understand the relationship between forces applied to an object and its motions.

e To find a mathematical relationship between the force applied to an object and its acceleration.

Overview

In the previous labs, you have used a motion detector to display position-time, velocity-time and acceleration-time
graphs of the motion of different objects. You were not concerned about how you got the objects to move, i.e.
what forces (pushes or pulls) acted on the objects. From your experiences, you know that force and motion are
related in some way. To start your bicycle moving, you must apply a force to the pedal. To start up your car,
you must step on the gas pedal to get the engine to apply a force to the road through the tires.

But, exactly how is force related to the quantities you used in the previous unit to describe motion—position,
velocity and acceleration? In this unit you will pay attention to forces and how they affect motion. You will
apply forces to a cart, and observe the nature of its resulting motion graphically with a motion detector.

Apparatus

e Force probe

Variety of hanging masses

Low friction pulley and string

Motion detector

e Dynamics cart and track

Science Workshop 750 Interface

DataStudio software (V, A & F Graphs application)

Measuring Forces

In this investigation you will use a force probe to measure forces. The force probe puts out a voltage signal
proportional to the force applied to the arm of the probe. Physicists have defined a standard unit of force called
the newton, abbreviated N. For your work on forces and the motions they cause, it will be more convenient to
have the force probe read directly in newtons rather than voltage. Before each measurement you should zero the
force probe by removing all forces and pushing the TARE button.

Motion and Force

Now you can use the force probe to apply measured amounts of force to an object. You can also use the motion
detector, as in the previous units, to examine the motion of the object. In this way you will be able to establish
the relationship between motion and force.

Activity 1: Pushing and Pulling a Cart

In this activity you will move a cart by pushing and pulling it with your hand. You will measure the force,
velocity and acceleration. Then you will be able to look for relationships between the applied force and the
motion quantities, to see which is (are) related to force.
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Figure 1: Equipment setup for qualitative measurements of force and motion.

(a) Set up the cart, force probe and motion detector on the level track as shown in Figure 1. Measure and record
the mass of the cart and force probe assembly.

(b) Suppose you grasp the hook on the force probe and move the cart forwards and backwards in front of the
motion detector. Do you think that either the velocity or the acceleration graph will look like the force graph?
Is either of these motion quantities related to force? That is to say, if you apply a changing force to the cart, will
the velocity or acceleration change in the same way as the force?

(c) To test your predictions, open the V, A & F Graphs application. Grasp the end of the force probe arm and
start acquiring data. When you hear the clicks, pull the cart away from the motion detector, and quickly stop it.
Then push it back towards the motion detector, and again quickly stop it. Be sure that the cart never gets closer
than 0.15 m away from the detector and be careful of the wires. Repeat until you get a good run, and adjust the
sampling time and scale of the axes if necessary. Sketch your graphs on the axes below.

131990-93 Dept. of Physics and Astronomy, Dickinson College. Supported by FIPSE (U.S. Dept. of Ed.) and NSF. Portions of
this material may have been modified locally and may not have been classroom tested at Dickinson College.
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(d) Does either graph—velocity or acceleration-resemble the force graph? Which one? Explain.

(e) Based on your observations, does it appear that either the velocity or acceleration of the cart might be related
to the applied force? Explain.

Activity 2: Speeding Up

You have seen in the previous activity that force and acceleration seem to be related. But just what is the
relationship between force and acceleration?

(a) Suppose you have a cart with very little friction, and that you pull this cart with a constant force as shown

103



below on the force-time graph. Sketch on the axes below the velocity-time and acceleration-time graphs of the
cart’s motion.

Velocity
(@)

Acceleration
o

Force
o

Time

(b) Describe in words the predicted shape of the velocity vs. time and acceleration vs. time graphs for the cart.

(c) Test your predictions. Set up the pulley, cart, string, motion detector and force probe as shown in Figure 2.
The cart should be the same mass as before. Zero the force probe. Hang 50 g from the end of the string. Start
the data acquisition. Release the cart when you hear the clicks of the motion detector. Be sure that there is
enough slack in the force probe cables to complete the motion and catch the cart before it crashes into the pulley.
Repeat until you get good graphs in which the cart is seen by the motion detector over the entire motion. Sketch
the actual velocity, acceleration and force graphs for the motion of interest on the axes below and indicate the
scale on the axes. Draw smooth graphs; don’t worry about small bumps.
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Figure 2: Equipment setup for quantitative measurements of force and motion.
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(d) Is the force which is applied to the cart by the string constant, increasing or decreasing? Explain based on
your graph.

(e) How does the acceleration graph vary in time? Does this agree with your prediction? What kind of acceleration
corresponds to a constant applied force?
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(f) How does the velocity graph vary in time? Does this agree with your prediction? What kind of velocity
corresponds to a constant applied force?

(g) Use the Smart Tool to determine the average force and the average acceleration and record them below. Find
the mean values only during the time interval when the force and acceleration are nearly constant. See Appendix
B for details on the use of the Smart Tool feature of DataStudio.

Activity 3: Acceleration from Different Forces

In the previous activity you have examined the motion of a cart with a constant force applied to it. But, what
is the relationship between acceleration and force? If you apply a larger force to the same cart (same mass as
before) how will the acceleration change? In this activity you will try to answer these questions by applying
different forces to the cart, and measuring the corresponding accelerations.

(a) Suppose you pulled the cart with a force about twice as large as before. What would happen to the acceleration
of the cart? Explain.

(b) Test your prediction by replacing the 50-g mass with a 100-g mass and creating graphs of the motion as
before. Repeat until you have a good run. Sketch the results on the axes below. Don’t forget to put the scale on
the axes.

106



Acceleration (m/s/s) Velocity (m/s)

Force (N)

——————— B i i e Rl

| | | | |

| | | | |

| | | | |

T T T T T

| | | | |

| | | | |
I D L B L B

| | | | |

| | | | |

| | | | |

Il Il Il Il Il

| | | | |

| | | | |

| | | | |
——————— B i i e Rl

| | | | |

| | | | |

| | | | |

T T T T T

| | | | |

| | | | |
I D L B L B

| | | | |

| | | | |

| | | | |
_______ [ |

| | | | |

| | | | |

| | | | |
——————— B i i e Rl

| | | | |

| | | | |

| | | | |
0

Time (s)

(¢) Use the Smart Tool to find the average force and the average acceleration and record them below. Find the
mean values only during the time interval when the force and acceleration are nearly constant.

(d) How did the force applied to the cart compare to that with the smaller force in Activity 27

(e) How did the acceleration of the cart compare to that caused by the smaller force in Activity 27 Did this agree
with your prediction? Explain.

Activity 4: The Relationship Between Acceleration and Force

If you accelerate the same cart (same mass) with another force, you will then have three data points—enough data
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to plot a graph of acceleration vs. force. You can then find the mathematical relationship between acceleration
and force.

(a) Accelerate the cart with a force roughly midway between the other two forces tried. Use a hanging mass
about midway between those used in the last two activities. Record the mass below.

(b) Graph velocity, acceleration and force. Sketch the graphs on the axes in Activity 3 using dashed lines.

(c) Find the mean acceleration and force, as before, and record the values in the table below. Also, enter the
values from the previous two activities in the table.

Average Force (N) | Average Acceleration (m/s?)

Activity 2

Activity 3

Activity 4

(d) Determine the mathematical relationship between the acceleration of the cart and the force applied to the
cart by fitting the data with a function. Label and print the graph showing the best fit and put a copy in your
notebook at the end of this unit.

(e) Does there appear to be a simple mathematical relationship between the acceleration of a cart (with fixed
mass) and the force applied to the cart (measured by the force probe mounted on the cart)? Write down the
equation you found and describe the mathematical relationship in words.

(f) If you increased the force applied to the cart by a factor of ten, how would you expect the acceleration to
change? How would you expect the acceleration-time graph of the cart’s motion to change? Explain based on
your graphs.

(g) If you increased the force applied to the cart by a factor of ten, how would you expect the velocity-time graph
of the cart’s motion to change? Explain based on your graphs.

Comment: The relationship which you have been examining between the acceleration of the cart and the applied
force is known as Newton’s Second Law.

Homework

1. A force is applied which makes an object move with the acceleration shown below. Assuming that friction is
negligible, sketch a force-time graph of the force on the object on the axes below.
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Acceleration
o

Force
o

Time (s)

Explain your answer:

2. Roughly sketch the velocity-time graph for the object in question 1 on the axes below.

+

Velocity
o

0 1 2 3 4 5 6
Time (s)

3. A cart can move along a horizontal line (the + position axis). It moves with the velocity shown below.

+

Velocity
o

0 1 2 3 4 5
Time (s)

Assuming that friction is so small that it can be neglected, sketch on the axes that follow the acceleration-time
and force-time graphs of the cart’s motion.
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Acceleration
o

Force
o

Time (s)

Explain both of your graphs.

Questions 4-6 refer to an object which can move in either direction along a horizontal line (the + position axis).
Assume that friction is so small that it can be neglected. Sketch the shape of the graph of the force applied to
the object which would produce the motion described.

4. The object moves away from the origin with a constant acceleration.

Force
o

Time

5. The object moves toward the origin with a constant acceleration.

Force
o

Time

6. The object moves away from the origin with a constant velocity.
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Force
o

Time

Questions 7 and 8 refer to an object which can move along a horizontal line (the + position axis). Assume that
friction is so small that it can be ignored. The object s velocity-time graph is shown below.

Velocity
o

Time (s)

7. Sketch the shapes of the acceleration-time and force-time graphs on the axes below.

+

Acceleration
o

Force
o

0 1 2 3 4 5
Time (s)

8. Suppose that the force applied to the object were twice as large. Sketch with dashed lines on the same axes
above the force, acceleration, and velocity.

Questions 9 refer to an object which can move along a horizontal line (the + position axis). Assume that friction
is so small that it can be ignored. The object s velocity-time graph is shown below.
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9. Sketch the shapes of the acceleration and force graphs on the axes below.

+
0

uoneIa|92y

92104

Time (s)
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24 Force and Motion IT!*

Name Section Date

Objective

To understand the relationship between the direction of the force applied to an object and the direction of the
acceleration of the object.

Overview

In the previous lab you examined the one-dimensional motions of an object caused by a single force applied to
the object. You have seen that when friction is so small that it can be ignored, a single constant applied force
will cause an object to have a constant acceleration. (The object will speed up at a steady rate.)

Under these conditions, you have seen that the acceleration is proportional to the applied force, if the mass of
the object is not changed. You saw that when a constant force is applied to a cart, the cart speeds up at a
constant rate so that it has a constant acceleration. If the applied force is made larger, then the acceleration is
proportionally larger. This allows you to define force more precisely not just in terms of the stretches of rubber
bands and springs, but as the entity (the "thing") that causes acceleration.

The goal of this lab is to continue to develop the relationship between force and acceleration, an important part
of the first two of Newton’s famous laws of motion. You will explore motions in which the applied force (and
hence the acceleration of the object) is in a different direction than the object’s velocity. In this case the object
is slowing down in the sense that its speed is decreasing.

Apparatus

o Science Workshop 750 Interface

Force probe

Variety of hanging masses

Low friction pulley and string

Motion detector

Dynamics cart (with flag) and track

DataStudio software (V, A & F Graphs application)

Speeding Up and Slowing Down

So far you have looked at cases where the velocity, force and acceleration all have the same sign (all positive).
That is, the vectors representing each of these three vector quantities all point in the same direction. For example,
if the cart is moving toward the right and a force is exerted toward the right, then the cart will speed up. Thus
the acceleration is also toward the right. The three vectors can be represented as:

Velocity Acceleration Force
> —_—> —_—>
v a F

If the positive x direction is toward the right, then you could also say that the velocity, acceleration and also force
are all positive. In this investigation, you will examine the vectors representing velocity, force and acceleration
for other motions of the cart. This will be an extension of your earlier observations of changing motion.

141990-93 Dept. of Physics and Astronomy, Dickinson College. Supported by FIPSE (U.S. Dept. of Ed.) and NSF. Portions of
this material have been modified locally and may not have been classroom tested at Dickinson College.
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Activity 1: Slowing Down

Set up the cart, pulley, hanging mass and motion detector as shown below. Now when you give the cart a
push away from the motion detector, it will slow down after it is released. In this activity you will examine the
acceleration and the applied force.

Flag Motion detector\
Force sensor

(a) Suppose that you position the cart 0.15 m from the motion detector and give it a push away from the motion
detector and release it. Draw below vectors which might represent the velocity, force and acceleration of the cart
at each time after it is released and is moving toward the right. Be sure to mark your arrows with @, @, or

as appropriate.

|
1
X X % X3 Positive x direction

»
|

(b) If the positive x direction is toward the right, what are the signs of the velocity, force and acceleration after
the cart is released and is moving toward the right?

(c) To test your predictions:

1. Zero the force probe.
2. Hang a 50-g mass from the end of the string.
3. Use the V, A & F Graphs application to graph the motion.

4. Test to be sure that the motion detector sees the cart during its complete motion, and that the string and
force probe cable are not interfering with the motion detector. You may need to move the motion detector
to the side slightly so that it does not see the string. Also make sure that the cables to the motion detector
do not impede the motion of the cart. Remember that the back of the cart must always be at least 0.15
meter from the motion detector.
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5. Start recording data. When the motion detector starts clicking, give the cart a short push away from the
motion detector and then let it go. Stop the cart before it reverses its direction. Repeat until you get a
good run.

6. Sketch your velocity, acceleration and force graphs on the axes below. Label the time scale on these axes.
Indicate with an arrow the time when the push stopped.
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(d) Did the signs of the velocity, force and acceleration agree with your predictions? If not, can you now explain
the signs?

(e) Did the velocity and acceleration both have the same sign? Explain these signs based on the relationship
between acceleration and velocity.
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(f) Did the force and acceleration have the same sign? Were the force and acceleration in the same direction?
Explain.

(g) Based on your observations, draw below vectors which might represent the velocity, force and acceleration
for the cart at the same instant in time. Do these agree with your predictions? If not, can you now explain the
directions of the vectors?

(h) After you released the cart, was the force applied by the falling mass constant, increasing or decreasing?
Explain why this kind of force is necessary to cause the observed motion of the cart.

Activity 2: Speeding Up Toward the Motion Detector

Using the same setup as in the last activity, you can start with the cart at the opposite end of the table from the
motion detector and release it from rest. It will then be accelerated toward the motion detector as a result of the
force applied by the falling mass.

(a) Suppose that you release the cart from rest and let it move toward the motion detector. Draw on the diagram
below vectors which might represent the velocity, force and acceleration of the cart at each time after it is released
and is moving toward the left. Be sure to mark your arrows with v, a, or F as appropriate.

|
1
X3 % X X0 Positive x direction

»
|

(b) What are the signs of the velocity, force and acceleration after the cart is released and is moving toward the
motion detector? (The positive x direction is toward the right.)

(c) Test your predictions. Use a hanging mass of 100 g. Start recording data. When you hear the motion detector,
release the cart from rest as far away from the motion detector as possible. Catch the cart before it hits the
motion detector. Repeat until you get a good run. Sketch your graphs on the above axes with dashed lines.
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(d) Which of the signs—velocity, force and/or acceleration are the same as in the previous activity—where the cart
was slowing down and moving away, and which are different? Explain any differences in terms of the differences
in the motion of the cart.

(e) Based on your observations, draw below vectors which might represent the velocity, force and acceleration
for the cart at the same instant in time. Do these agree with your predictions? If not, can you now explain the
directions of the vectors?

(f) Write down a simple rule in words which describes the relationship between the direction of the applied force
and the direction of the acceleration for any motion of the cart.

(g) Is the direction of the velocity always the same as the direction of the force? Is the direction of the acceleration
always the same as the direction of the force? In terms of its magnitude and direction, what is the effect of a
force on the motion of an object?

Homework

Questions 1-6 refer to a toy car which can move in either direction along a horizontal line (the + position axis).

(oo

Assume that friction is so small that it can be ignored. Sketch the shape of the graph of the applied force which
would keep the car moving as described in each statement.

1. The toy car moves away from the origin with a constant velocity.
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Force
o

Time

2. The toy car moves toward the origin with a constant velocity.

+

Force
o

Time

3. The toy car moves away from the origin with a steadily decreasing velocity (a constant acceleration).

+

Force
o

Time

4. The toy car moves away from the origin, speeds up and then slows down.

+

Force
o

Time

5. The toy car moves toward the origin with a steadily increasing speed ( a constant acceleration).

+

Force
o

Time

6. The toy car is given a push away form the origin and released. It continues to move with a constant velocity.
sketch the force after the car is released.
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Force
o

Time
7. A cart is moving toward the right and speeding up, as shown in the diagram below. Draw arrows above the
cart representing the magnitudes and directions of the net (combined) forces you think are needed on the cart at

the times shown to maintain its motion with a steadily increasing velocity.

t-=0 t.=1s t2:23 t3:3s

»
|

|
1
Xy X X X3 Positive x direction

Explain the reasons for your answers.
8. If the positive direction is toward the right, what is the sign of the force at t = 2 sec in question 7. Explain.

9. A cart is moving toward the right and slowing down, as shown in the diagrams below. Draw arrows above the
cart representing the magnitudes and directions of the net (combined) forces you think are needed on the cart at
t =0s,t =1s, etc. to maintain its motion with a steadily decreasing velocity.

t=0 t1=ls t2=25 t3=3s

L LJg L J L J

»
|

|
1
X X ) X3 Positive x direction

Explain the reasons for your answers.

10. If the positive direction is toward the right, what is the sign of the force at t = 2 sec in question 97 Explain.
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11. A toy car can move in either direction along a horizontal line (the + position axis).

(o]

Assume that friction is so small that it can be ignored. A force toward the right of constant magnitude is applied
to the car. Sketch on the axes below using a solid line the shape of the acceleration-time graph of the car.

+

Acceleration
o

Time

Explain the shape of your graph in terms of the applied force.
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25 Combining Forces®

Name Section Date

Objectives

e To understand how different forces can act together to make up a combined force.
e To establish a definition of combined force as that which changes the motion of an object.

e To understand the motion of an object with no force applied to it and how Newton’s First Law describes
this motion.

Overview

In this unit, you will explore what happens when more than one force is applied to an object. Also, you will be
asked to consider the special case when the object moves with a constant velocity, so that the object’s acceleration
is zero. What combination of forces must be applied to an object to keep it moving with a constant velocity when
there is almost no friction? You can answer this question by collecting force and motion data again with the force
probe and motion detector. The answer to this question will lead you to the discovery of Newton’s First Law (in
a situation where friction can be neglected).

Apparatus

e Force probe
e Motion detector

e Dynamics cart (with flag) and track

Low friction pulleys (2) and string

Variety of hanging masses

Science Workshop 750 Interface

DataStudio software (V, A & F Graphs application)

Net Force: Combining Applied Forces

As you know, vectors are mathematical entities which have both magnitude and direction. Thus a one-dimensional
vector can have a direction along the positive x-axis or along the negative x-axis. Vectors pointing in the same
direction add together and vectors pointing in opposite directions subtract from each other. Quantities which
have vector behavior are often denoted by a letter with a little arrow above it or by a boldface letter (i.e. F).
The sum of several vectors is often denoted by placing a summation sign in front of a vector symbol (i.e. F). In
the next two activities you will investigate how combined forces change the motion of an object.

Activity 1: Two Forces in the Same Direction

(a) Suppose you apply two 0.5-N forces to the cart in the same direction. How will the motion compare with the
motion you observed in the previous unit for a 1-N force?

(b) Test your predictions. Set up a second pulley next the first one, attach a second string from the force probe
hook over the second pulley, and hang 50 g from each string. Graph the motion as in the previous unit. Repeat
until you get a good run and sketch the results on the axes below. Don’t forget to label the axes.

151990-93 Dept. of Physics and Astronomy, Dickinson College. Supported by FIPSE (U.S. Dept. of Ed.) and NSF. Portions of
this material may have been modified locally and may not have been classroom tested at Dickinson College.
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(c) Do the results agree with your predictions? Explain.

(d) Draw arrows in the space below that represent a scale drawing of the magnitudes and directions of the forces
applied to the cart in this activity and the previous one.

Activity 2: Two Equal Forces in Opposite Directions

(a) Suppose two equal and opposite forces were applied to the cart. What would be the resulting motion?

(b) Test your predictions. Move one of the pulleys to the other end of the table and hang 100 g from each string.
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Release the cart. Does the resulting motion agree with your predictions? Explain.

(c) Draw a force diagram to scale below.

Activity 3: Two Unequal Forces in Opposite Directions

(a) Suppose you hang 150 g from the string above the motion detector and 50 g from the string at the other end
of the table. What will be the resulting motion and how will it compare with the motions observed in Activities
1 and 27

(b) Test your predictions by graphing the motion. Repeat until you get a good run and sketch your results as
dashed lines on the axes in Activity 2.

(c) Do the results agree with your predictions? Explain.

(d) Draw a force diagram (to scale) for this situation in the space below.

(e) Do one-dimensional forces seem to behave like one-dimensional vectors? Why or why not?

(f) When more than one force is acting on an object, what is it that determines the acceleration of the object?

Activity 4: Motion at a Constant Velocity

(a) Suppose the cart is moving with the velocity which is shown on the velocity-time graph below. Sketch on the
axes below the acceleration-time graph of the cart, and the force-time graph of the combined force after the cart
begins moving.
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Velocity (m/s)
o

Acceleration (m/s/s)
o

Force (N)
o

Time (s)

(b) Describe in words the acceleration of the cart and the combined force needed to keep it moving at a constant
velocity.

(c) Test your prediction. Remove the strings from the force probe and give the cart a push away from the motion
detector. Notice that the cart slows down and eventually stops. This is due to the small amount of friction that
exists. Replace one of the strings and hang a small mass from the string over the pulley at the far end of the table
to balance the frictional force. Push the cart to see if it moves with approximately constant velocity. Adjust the
hanging mass such that the cart moves with approximately constant velocity. Then graph the motion of the cart.
Repeat until you get a good run and sketch the results on the axes below. Don’t forget to label the time scale on
the axes. If your hand was still in contact with the cart after the graphing started, indicate with an arrow the
time when the push stopped.
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(d) Do the graphs agree with your predictions? If not, how do they differ?

(e) What happened to the force of the push after you released the cart? Explain.

(f) If you give the cart a short push toward the motion detector, how will the graphs change compared to the
ones in this activity for a short push away from the detector?
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Comment: In this activity you have looked at a situation where the combined force acting on the cart is zero. As
you have seen, the velocity of the cart does not change. The cart either moves with a constant velocity, or remains
at rest. The law, which you have examined in this investigation, describing the motion when the combined force
acting on an object is zero is known as Newton’s First Law.

Homework
In questions 1-4, assume that friction is so small that it can be ignored.

1. The spring scale in the diagram below reads 10.5 N.

F

—

The cart moves toward the right with an acceleration toward the right of 3.50 m/s/s. Now two forces are applied
to the cart with two different spring scales as shown below. The spring scale F; still reads 10.5 N.

PR o 5 e 2

The cart now moves toward the right with an acceleration toward the right of 5.50 m/s/s. What does spring scale
F5 read? Show your calculations, and explain.

2. Now two forces are applied to the cart with two different spring scales as shown below. The spring scale F;
still reads 10.5 N.

The cart now moves toward the right with an acceleration toward the right of 2.50 m/s/s. What does spring scale
F, read? Show your calculations, and explain.

3. Again two forces are applied to the cart with two different spring scales as shown below. The spring scale Fy
still reads 10.5 N.
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The cart moves with a constant velocity toward the right. What does spring scale F5 read? Show your calculations,
and explain.

4. Again two forces are applied to the cart with two different spring scales as shown below. The spring scale F;
still reads 10.5 N.

The cart moves toward the left with an acceleration toward the left of 2.50 m/s/s. What does spring scale F
read? Show your calculations, and explain.
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26 Force, Mass and Acceleration'®

Name Section Date

Objectives

e To develop a definition of mass in terms of an object’s motion under the influence of a force.
e To understand the relationship among the force applied to an object, the mass of the object and its motion.

e To find a mathematical relationship between the acceleration of an object and its mass when a constant
force is applied—Newton’s Second Law.

e To examine the quantitative relationship between force, mass and acceleration—Newton’s Second Law—in
terms of the SI units (N for force, kg for mass, and m/s/s for acceleration).

e To pull all of the observations together and state Newton’s First and Second Laws of Motion for motion in
one dimension, along a straight line for any number of forces acting on an object.

Apparatus

e Force probe

e Motion detector

e Dynamics cart and track

e Variety of masses to increase the mass of the cart
e Triple-beam balance

e Low friction pulley and string

e Variety of hanging masses

o Science Workshop 750 Interface

e DataStudio software (V, A & F Graphs)

Overview

In this lab you will continue to develop the first two of Newton’s famous laws of motion. You will do this by
combining careful definitions of force and mass with observations of the mathematical relationships among force,
mass and acceleration.

You have seen that the acceleration of an object is directly proportional to the combined or net force acting on
the object. If the combined force is not zero, then the object will accelerate. If the combined force is constant,
then the acceleration is also constant. These observations are part of Newton’s Second Law of Motion.

You have also seen that for an object to move at a constant velocity (zero acceleration) when friction is negligible,
the combined or net force on the object should be zero. The law which describes constant velocity motion of an
object is Newton’s First Law of Motion. Newton’s First and Second Laws of Motion are very powerful! They
allow you to relate the force on an object to its subsequent motion. Therefore, when the nature of the force(s)
acting on an object is known, then Newton’s laws of motion allow you to make mathematical predictions of the
object’s motion.

161990-93 Dept. of Physics and Astronomy, Dickinson College. Supported by FIPSE (U.S. Dept. of Ed.) and NSF. Portions of
this material may have been modified locally and may not have been classroom tested at Dickinson College.

128



In the first part of this lab you will study how the amount of "stuff" (mass) you are accelerating with a force
affects the magnitude of the acceleration. What if the mass of the object were larger or smaller? How would this
affect the acceleration of the object for a given combined force?

In the second part you will study more carefully the definitions of the units in which we express force, mass and
acceleration.

Finally, in the last part, you will examine the motion of an object caused by a force applied to it when friction is
large enough so that it cannot be ignored.

Force, Mass and Acceleration

In previous activities you have applied forces to a cart and examined its motion. Up until now, you have always
used a cart with the same mass. But when you apply a force to an object, you know that its mass has a large effect
on the object’s acceleration. For example, compare the different accelerations that would result if you pushed a
1000 kilogram (metric ton) automobile and a 1 kilogram cart, both with the same size force!

Activity 1: Acceleration and Mass

You can easily change the mass of the cart by attaching masses to it, and you can apply the same force to the cart
by using appropriate hanging masses to accelerate the cart each time. By measuring the acceleration of different
mass carts, you can find a mathematical relationship between the acceleration of the cart and its mass, with the
applied force kept constant.

(a) Set up the pulley, cart, string, motion detector and force probe as shown below. (Be sure that the cable from
the force probe doesn’t interfere with the motion of the cart, and is out of the way of the motion detector.)

—_

(b) We will define a mass scale in which the unit is the mass of the cart (including the force probe), called one
cart mass. An equal arm balance can be used to assemble a combination of masses equal to one cart mass. If
this combination of masses is divided in half, each half is 0.5 cart mass. Use the balance in this way to assemble
masses which you can add to the cart to make the cart’s mass equal to 1.5, 2.0. 2.5 and 3.0 cart masses. Label
these masses.

(c) Zero the force probe by pressing the TARE button on the probe.
(d) Now add masses to make the cart’s mass 2.0 cart masses.

(e) Open the V, A & F Graphs application. Hang 100 g from the end of the string. Start recording data and
release the car from rest when you hear the clicks of the motion detector. Repeat until you get a good run. Sketch
the graphs on the axes below. Don’t forget to label the axes.
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(f) Use the Smart Tool to determine the average force and average acceleration during the time interval when
they are nearly constant, and record them in the third row of the table below.

Mass of Cart | Average Applied | Average Acceleration
(cart masses) Force (N) (m/s?)

1.0

1.5

2.0

2.5

3.0

(g) Suppose that you halve the mass of the cart back to 1.0 cart masses, and accelerate it with the same applied
force. How would the acceleration compare with that of the 2.0 cart masses?
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(h) Test your prediction. Remove the masses you added earlier which doubled the mass of the cart to 2.0 cart
masses.

Comment: You want to accelerate the cart with the same applied force. As you may have noticed, the force
applied to the force probe by the string decreases once the cart is released. (You will examine why this is so in
a later lab.) This decrease depends on the size of the acceleration. Therefore, in order to keep the applied force
constant, you may need to change the hanging mass.

Adjust the hanging mass until the force probe reading while the cart is accelerating is the same as the force you
recorded in the first row of the table above. When you have found the correct hanging mass, graph the motion of
the cart. Measure the average force and average acceleration of the cart during the time interval when the force
and acceleration are nearly constant and record these values in the first row of the table.

(i) Did the acceleration agree with your prediction? Explain.

(j) Now make the mass of the cart 1.5 cart masses, and accelerate it again with the same size force. (Don’t forget
to adjust the hanging mass, if necessary.) Measure the average force and acceleration of the cart, and record
these values in the table. Repeat for masses of 2.5 and 3.0 cart masses.

(k) Does the acceleration of the cart increase, decrease or remain the same as the mass of the cart is increased?

(1) Use Cricket Graph to plot the acceleration (y axis) as a function of the cart mass (x axis) and to find the best
fit to the data. When you have found the best fit, print the graph and put a copy in your notebook. (Note: In
Cricket Graph, an exponent with parenthesis around it means that it is negative.)

(m) What appears to be the relationship between acceleration and mass of the cart, when the applied force is
kept constant?

(n) In the previous lab, you found that the acceleration of the cart was proportional to the combined applied
force, when the mass of the cart was not changed. State in words the general relationship between the applied
force, the mass and the acceleration of the cart which you have found in these two labs. If the combined force is
Y F, the mass is m and the acceleration is a, write a mathematical relationship which relates these three physical
quantities.

Force & Mass Units

So far you have been measuring force in standard units called newtons. Where does this unit come from? By
contrast, we have our own private units for mass, measuring mass in cart masses. If one group were using a large
wooden cart in their force and motion experiments, and another group were using a small aluminum cart with
smaller mass, they would have different values for mass, and would observe different accelerations for "one cart
mass pulled by one newton." It’s time to discuss standard units for force and mass.

It would be nice to be able to do a mechanics experiment in one part of the world and have scientists in another
part of the world be able to replicate it or at least understand what actually happened. This requires that
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people agree on standard units. In 1960 an international commission met to agree upon units for fundamental
quantities such as length, time, mass, force, electric current, pressure, etc. This commission agreed that the most
fundamental units in the study of mechanics are length, time, and mass. All other units including force, work,
energy, torque, rotational velocity, etc. which you encounter in your study of mechanics can be expressed as a
combination of these basic quantities. The fundamental International System or SI units along with the standard
unit for force are shown below.

Fundamental Units for Mechanics
Length: A meter (m) is the distance traveled by light in a vacuum during a time of 1/299,792,458 second.
Time: A second (s) is defined as the time required for a cesium-133 atom to undergo 9,192,631,770 vibrations.

Mass: A kilogram (kg) is defined as the mass of a platinum-iridium alloy cylinder kept at the International
Bureau of Weights and Measures in Sévres France. It is kept in a special chamber to prevent corrosion.

The Force Unit Expressed in Terms of Length, Mass, and Time
Force: A newton (N) is defined as that force which causes a 1 kg mass to accelerate at 1 m/s/s .

We want to be able to measure masses in kilograms and forces in newtons in our own laboratory. The following
activities are designed to give you a feel for standard mass and force units, and how they are determined in
the laboratory. Our approach in these activities is to use a standard force scale to calibrate the force probe in
newtons. Using your data from the previous investigation, you will see how you can establish a mass unit in
terms of your force and acceleration measurements. Then you will use a standard mass scale to get enough stuff
loaded on a cart to equal one kilogram of mass. Finally you can pull the cart with a force of about one newton
and see if it accelerates at something close to one meter per second per second. Warning: There will probably
be a noticeable amount of uncertainty associated with the necessary measurements.

Suppose you want to find the mass of an object in kilograms. You need to compare it to the one kilogram
platinum-iridium alloy cylinders at the International Bureau of Weights and Measures in France. It would be
nice to have a standard kilogram in your laboratory. You could go to France, but it is unlikely that they would
let you take the standard home with you!

Suppose, however, that you accelerate the standard mass with a constant force and measure the force and also
the resulting acceleration as accurately as possible. Next you would need to make a cylinder that seemed just like
the standard one and add or subtract stuff from it until it undergoes exactly the same acceleration with the same
constant force. Then within the limits of experimental uncertainty this new cylinder standard and the bureau
standard would have the same mass. If the comparison could be made to three significant figures, then the mass
of your new standard would be my, = 1.00 kg.

Suppose you head home with your standard mass. You wish to determine the mass of another object. You could
apply the same constant force, F, on the standard and on the other object, and measure both accelerations. Then,
according to Newton’s Second Law, F = ma,

F

Qother

F
Mmgtq = 1.00 kg = E Mother =

Since the constant force, F, applied to both masses was the same,

a

Mother = 1.00 kg Qoth
other

In fact, you have already done something similar in the last investigation.
Activity 2: Calculating One "cart mass" in Standard Units

(a) In Activity 1, you measured the force applied to a cart and the acceleration of the cart with 1.0, 1.5, 2.0, 2.5
and 3.0 cart masses. Turn back to your table of information from that experiment, and copy the values of average
force and average acceleration into the second and third columns of the table below.
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Mass of Cart | Average Applied | Average Acceleration Ratio of F/a Mass of cart
(cart masses) Force (N) (m/s?) (calculated mass) | from balance (kg)

1.0

1.5

2.0

2.5

3.0

In the discussion above, the mass in standard units was calculated using Newton’s second law by taking the ratio
of the combined (net) force on the object in newtons to the acceleration of the object measured in meters per
second per second. (b) For each row in the table, calculate the ratio of the force to acceleration and record it in
the fourth column.

(¢) According to the discussion, the values you just calculated should be the mass of the object in kilograms. Do
your numbers seem to make sense? What do you get for the value of 1.00 cart masses in kilograms? What do
you get for the value of 2.00 cart masses in kilograms?

Comment: Physicists call the quantity you have just calculated—the ratio of combined (net) force on an object
to its acceleration—the inertial mass of the object. You could continue to determine and compare masses by
accelerating them and taking force to acceleration ratios, but this process is pretty tedious. A simpler approach is
to use an electronic scale or a mechanical balance that has already been calibrated in kilograms using a standard
mass by somebody who is intelligent and knowledgeable! (The details of why such devices can give us correct
masses in kg will not be easy to understand fully until after gravitational forces are studied.)

(d) Compare your inertial mass calculations for 1.0, 1.5, 2.0, 2.5 and 3.0 cart masses with the values you get by
placing your cart on an electronic scale or mechanical balance. Record these values in the last column of the
table.

(e) Are your inertial masses reasonably consistent with your scale masses?

Comment: In your experiments, you have seen that the physical quantities force, mass and acceleration are
related through Newton’s Second Law. In the activity you have just done, you have used this relationship to
define inertial mass in terms of standard units of force, length and time. This is a good logical definition of
inertial mass. Historically, however, the units of mass, length and time were defined first as standards and the
unit of force was defined as a derived unit in terms of these standard units. Thus a newton of force is defined as
the force needed to accelerate 1.00 kg at 1.00 m/s/s. In the next activity you will examine this definition.

Activity 3: Does a Force of 1.0 N Applied to a 1.0 kg Mass Really Cause an Acceleration of 1.0
meter/second/second?

You have used mass and force measuring devices that have been provided for you. You could now see if everything
makes sense by accelerating one kilogram of mass with a force of about one newton and seeing if an acceleration
of about one meter per second per second results. Unfortunately, the carts with force probes that we have been
using typically have a mass greater than 1 kg. So we will accelerate a 2.0 kg cart with a 2.0 N force.

(a) What do you expect the acceleration to be in this case? Show the calculation below.
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(b) Test your prediction. Add masses to the cart so that the total mass is 2.0 kg. Set up the pulley, weighted
cart, string, motion detector and force probe as in Activity 1. Check the calibration of the force probe with a
force of 2.0 N (hanging mass of 200 g). Graph the motion and measure the acceleration that results from an
applied force on the force probe of 2 N. Adjust the hanging mass, if necessary, to get an applied force of close to
2 N while the cart is accelerating. (Comment: Be careful! Remember that when the cart is being held at rest the
same hanging mass will exert more applied force on the cart than when it is accelerating.) Once you get a good
run, measure the average values of force and acceleration, and record these values in a table below. Also record
the mass of the cart and the hanging mass.

(c) How close is your result to the expected value of acceleration? Calculate the % difference.

(d) A force of 5.4 N is applied to an object, and the object is observed to accelerate with an acceleration of 3.0
m/s/s. If friction is so small that it can be ignored, what is the mass of the object in kg? Show your calculation.

(e) An object of mass 39 kg is observed to accelerate with an acceleration of 2.0 m/s/s. If friction is negligible,
what is the force applied to the object in N? Show your calculation.

Comment: The main purpose of the last three labs has been to explore the relationship between the forces on
an object, the object’s mass, and its acceleration. You have been trying to develop Newton’s First and Second
Laws of Motion for one-dimensional situations in which all forces lie in a positive or negative direction along the
same line.

Activity 4: Newton’s Laws in Your Own Words

(a) Express Newton’s First Law (the one about constant velocity) in terms of the combined (net) force applied
to an object in your own words clearly and precisely.

(b) Express Newton’s First Law in equations in terms of the acceleration vector, the combined (net) force vector
applied to an object, and its mass.

IfSF = then @ = and T =
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(c) Express Newton’s Second Law (the one relating force, mass, and acceleration) in terms of the combined (net)
force applied to an object in your own words clearly and precisely.

(d) Express Newton’s Second Law in equations in terms of the acceleration vector, the combined (net) force vector
applied to an object, and its mass.

IfEﬁ#O then @ =

Homework

Questions 1 and 2 refer to a toy car which can move in either direction along a horizontal line (the + position

axis).

Assume that friction is so small that it can be ignored. A force toward the right of constant magnitude is applied
to the car.

1. Sketch on the axes below using a solid line the shape of the acceleration-time graph of the car.

Acceleration
o

Time

2. Suppose that the mass of the car were twice as large. The same constant force is applied to the car. Sketch on
the axes above using a dashed line the acceleration-time graph of the car. Explain any differences in this graph
compared to the acceleration-time graph of the car with the original mass.

3. When a force is applied to an object with mass equal to the standard kilogram, the acceleration of the mass is
3.30 m/s/s. (Assume that friction is so small that it can be ignored.) When the same magnitude force is applied
to another object, the acceleration is 2.20 m/s/s. What is the mass of this object? What would the object’s
acceleration be if a force twice as large were applied to it? Show your calculations.
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4. Given an object with mass equal to the standard kilogram, how would you determine if a force applied to it
has magnitude just equal to one newton? (Assume that friction is so small that it can be ignored.)

5. The spring scale in the diagram below reads 10.5 N. (Assume that friction is so small that it can be ignored.)

F

—

If the cart moves toward the right with an acceleration toward the right of 3.50 m/s/s, what is the mass of the
cart? Show your calculations, and explain.

6. The force applied to the cart in (5) by spring scale F; is still 10.5 N. The cart now moves toward the right
with a constant velocity. What are the magnitude and direction of the frictional force. Show your calculations
and explain. (Assume that friction can not be ignored.)

7. The force applied to the cart in (5) by spring scale F; is still 10.5 N. The cart now moves toward the right
with an acceleration toward the right of 1.75 m/s/s. What are the magnitude and direction of the frictional force.
Show your calculations and explain.

8. The force applied to the cart by spring scale F; is 10.5 N.

The cart now moves toward the right with a constant velocity. The frictional force has the same magnitude as in
(7). What does spring scale F5 read? Show your calculations, and explain.
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27 Newton’s 3rd Law, Tension, and Normal Forces!'”

Name Section Date

Objectives

e To investigate Newton’s 3rd law of motion.

e To explore the characteristics of two different types of passive forces: tension (in strings, ropes, springs, and
chains), and normal forces (which support objects affected by gravity).

Apparatus

e Spring scales (2)

Variety of masses

Rubber band

Various lengths of string

Pulleys (2)

An Introduction to Newton’s Third Law

In order to apply Newton’s laws to complex situations with strings, pulleys, inclined planes and so forth, we
need to consider a third force law formulated by Newton having to do with the forces of interaction between
two objects. In order to "discover" some simple aspects of the third law, you should make some straightforward
observations using 2 spring scales and a set of masses.

static pul!

Activity 1: Newton’s 3rd Law Forces of Interaction

Set up the situations shown in the diagram above and see if there are any circumstances in which the object
that is pulling and the object that is being pulled exert different forces on each other. Describe your conclusions
below. Note: You can drag the mass set block across the table for your dynamic observations.

In contemporary English, Newton’s third law can be stated as follows:

171990-93 Dept. of Physics and Astronomy, Dickinson College. Supported by FIPSE (U.S. Dept. of Ed.) and NSF. Portions of
this material may have been modified locally and may not have been classroom tested at Dickinson College.
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Newton’s Third Law

If one object exerts a force on a second object, then the second object exerts a force back on the first object which
is equal in magnitude and opposite in direction to that exerted on it by the first object.

In mathematical terms, using vector notation, we would say that the forces of interaction of object 1 on object 2
are related to the forces of interaction of object 2 on object 1 as follows:

Fia
_}
Fiz=-Fan 1
le

Newton actually formulated the third law by studying the interactions between objects when they collide. It is
difficult to understand the significance of this law fully without first studying collisions. Thus, we will consider
this law again in the study of collision processes.

Tension Forces

When you pull on one end of a rope attached to a crate, a force is transmitted down the rope to the crate. If you
pull hard enough the crate may begin to slide. Tension is the name given to forces transmitted in this way along
devices that can stretch such as strings, ropes, rubber bands, springs, and wires.

The end of the rope which is tied to the crate can apply a force to the crate only if you first pull on the other end
of the rope. Thus, tension, like friction, is a passive force that only acts in reaction to an active force. However,
the characteristics of tension are very different than those of friction. In order to analyze situations in which
objects are attached by strings, rubber bands, or ropes it is necessary to understand some attributes of tension
forces. We need to answer the following related questions:

1. (a) What is the mechanism for creating tension in strings, ropes, and rubber bands? (b) If a string exerts
a tension force on an object at one end, what is the magnitude and direction of the tension force it exerts
on another object at its other end?

2. What happens to the magnitude and directions of the tension forces at each end of a string and in the
middle of that string when the direction of the string is changed by a post or pulley?

3. Can a flexible force transmitter (like a string) support a lateral (or sideways) force?

Mechanisms for Tension and the Direction of Forces

For these observations you should stretch a rubber band and then a string between your hands as shown in the
diagram below. First, just feel the directions of the forces. Then add the spring scales and both feel and measure

the forces.
Your laft Your right
hand hand
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Activity 2: Tension Mechanisms & Force Directions

(a) Pull on the two ends of a rubber band. (Forget about the spring scales for now). Does the rubber band
stretch? What is the direction of the force applied by the rubber band on your right hand? On your left hand?

(b) Does the magnitude of the forces applied by the rubber band on each hand feel the same?

(c) Repeat this activity with a string instead of a rubber band. This time, use a spring scale at each end to
measure the forces at the ends of the string. Does the string stretch? (Look carefully!)

(d) If you pull by the same amount on the string as you did on the rubber band, does substituting the string
for the rubber band change anything about the directions and magnitudes of the tension forces exerted on each
hand?

(e) If the forces caused by the string on your left and right hands respectively are given by Fr; and Fro, what is
the equation that relates these two forces?

Tension Forces when a String Changes Direction

Suppose you were to hang equal masses of m = 0.5 kg in the various configurations shown below. Predict and
measure the tension in the string for each of the following situations.
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Activity 3: Tension and Direction Changes

5

(a) For each configuration shown above, predict the reading in newtons on each of the spring scales; these readings
indicate the forces that are transmitted by the tensions at various places along the string. Then measure all of
the forces and record their values. Note: Remember that m = 0.5 kg.

Predicted Force Magnitudes Measured Force Magnitudes
Fqa= N Fqa= N
Fp = N Fp = N
Fo = N Fo = N
Fp = N Fp = N
Fg = N Fg = N
Frp = N Fp = N
Fg = N Fg = N
Fg = N Fg = N
F; = N F; = N

(b) Based on Newton’s third law and the observations you just made, answer the following questions using vector
notation. If the muscle man in the diagram below is pulling to the left on a rope with a force of F = -(150 N)i.
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1) What is the magnitude and direction of the force that the rope is exerting on the man?

2) What force is the left-hand rope exerting on the monkey’s right arm?

3) What force is the spring scale experiencing on its left end?

5) What is the reading on the spring scale?

6) What force is the rope exerting on the tree?

7) What force is the tree exerting on the rope?

(1)

(2)

(3)

(4) What force is the spring scale experiencing on its right end?
()

(6)

(7)

(

¢) Summarize what your observations reveal about the nature of tension forces everywhere along a string.

Can a String Support Lateral Forces?

Take a look at the diagram below. Can the strongest member of your group stretch a string or rope so that it
is perfectly horizontal when a 10 kg mass is hanging from it? In other words, can the string provide a force that
just balances the force exerted by the mass?

Activity 4: Can a String Support a Lateral Force?

(a) Draw a vector diagram showing the directions of the forces exerted by the strings on the mass hook in the
diagram below. What would happen to the direction of the forces as § goes to zero? Do you think it will be
possible to support the mass when 8 = 07 Why?
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(b) Now, experiment with holding a mass horizontally with a string. What do you conclude about the ability of
a string to support a mass having a force which is perpendicular to the direction of the string?

Normal Forces

A book resting on a table does not move; neither does a person pushing against a wall. According to Newton’s
first law the net force on the book and on the person’s hand must be zero. We have to invent another type of
passive force to explain why books don’t fall through tables and hands don’t usually punch through walls. The
force exerted by any surface always seems to act in a direction perpendicular to that surface; such a force is
known as a normal force. Normal forces are passive forces because they seem to act in response to active forces
like pushing forces and gravitational forces.

Activity 5: Normal Forces

(a) The diagram below shows a block sliding along a table near the surface of the earth at a constant velocity.
According to Newton’s first law, what is the net force on the block? In other words, what is the vector sum of all
the forces on the block?

W= constant  — e
—r

(b) The net force is made up of four forces. What are the two active forces? What are the two passive forces? In
what direction does each one act? Draw a diagram indicating the direction of each of the forces.

Gravitational Force on a Mass on an Incline

Suppose that a block of mass m is perched on an incline of angle § as shown in the diagram below. Also suppose
that you know the angle of the incline and the magnitude and direction of the gravitational force vector. What

142



do you predict the magnitude of the components of the force vector will be parallel to the plane? Perpendicular
to the plane?

applied force needed
tohold maszs seady

I:Fg :Iperpendin:ular

Activity 6: Components of F; on an Incline

(a) The angle that the incline makes with the horizontal and the angle between Fpe,pendicuiar and Fy are the
same. Explain why.

(b) Choose a coordinate system with the x-axis parallel to the plane with the positive direction up the plane.
Using normal mathematical techniques for finding the components of a vector, find the values of Fpqreuer and
Fperpendicular @s a function of Fy and the angle of the incline .

(c) What is the equation for the magnitude of the normal force exerted on the block by the surface of the incline?
Hint: Use Newton’s first law and the knowledge that the block is not moving in a direction perpendicular to the
plane.
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28 Atwood’s Machine'®

Name Section Date

Objective
To apply tension concepts and Newton’s laws of motion to the analysis of Atwood’s machine.
Overview

Sometime before 1780, a physicist at Cambridge University named George Atwood devised a marvelous machine
for measuring the acceleration of a falling mass without the aid of high speed timers, motion detectors, or video
cameras. It consists of two masses connected to each other by means of a light string passing over a relatively
frictionless light pulley, as shown in the diagram below.

TN
Ao

I o

I

Atwood’s machine is not only historically important but it allows us to practice applying Newton’s laws and the
kinematic equations to the analysis of motion.

Apparatus

Smart pulley with photogate

String with 2 hooks

Small washers (15)
o Science Workshop 750 Interface

e DataStudio software (Atwood’s Machine application)

Activity 1: Predictions and Qualitative Observations

(a) Assume that the two masses are equal. If you pull down gently on one of them, what motion do you predict
will result? Explain your reasoning.

181990-93 Dept. of Physics and Astronomy, Dickinson College. Supported by FIPSE (U.S. Dept. of Ed.) and NSF. Portions of
this material may have been modified locally and may not have been classroom tested at Dickinson College.
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(b) Set up Atwood’s Machine with combinations of equal masses (same number of washers on each hook), pull on
one of them gently, and describe what you observe. How does your observation compare with your prediction?

(c) Suppose that m; is greater than m,. What do you expect to observe and why?

(d) Set up Atwood’s Machine with combinations of unequal masses, and describe what you observe. How do your
observations compare with your prediction?

Activity 2: Quantitative Observations

(a) Perform the following procedure to measure the acceleration of Atwood’s machine for different combinations
of masses.

1. Determine and record the mass of the two wire hooks using a laboratory balance.

2. Determine and record the mass of fifteen (15) washers. Calculate and record the average mass of one washer.

3. Construct a data table below with the column headings: Trial #, m;, my, m; - ma, Experimental Acceleration,
Theoretical Acceleration, and % Difference. Leave enough room to record data for seven trials.

4. Launch the Atwood’s Machine application from the Apple menu.

5. Place eight washers on one wire hook and seven on the other. Record the appropriate values in your data
table including the masses of the wire hooks. Let m; be the heavier mass.

6. Move m; upward until my almost touches the floor. Make sure the string is over the pulley and that the two
masses are motionless.

7. Start recording data and release m;, which will fall downward, pulling ms up. The computer will display a
graph of velocity versus time. Fit the data with a straight line. The slope of the line and mean-squared error
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(MSE) of the fit will also be displayed. Examine the graph. If you feel the line provides a good fit to the data,
record the slope in your data table. This is the acceleration in units of m/s?. If the fit is not good, repeat the
run.

8. Move one washer from ms to mj, record the appropriate masses in your data table, and repeat steps 6 and 7.
Note that the total mass of the system remains constant.

9. Repeat step 8 until mo consists of only one washer (and one wire hook). You will have a total of seven trials.

(b) Construct a graph of m; - my (vertical axis) versus experimental acceleration. Find the best fit to the data
to determine the mathematical relationship between the mass difference and the acceleration. Print the graph
showing the fit and put a copy in your notebook. Write the equation (with appropriate units) that describes the
data in the space below.

Activity 3: Derivation of Atwood’s Equation

(a) If the tension on the string is denoted by T, draw a diagram describing the forces on m;. Draw another
diagram showing the forces on my. Hint: Include the gravitational forces acting in the negative y-direction on
masses 1 and 2 and the tension forces acting upwards. Assume that m; is greater than ms.

(b) Write down an equation for the net force on m1 in terms of T, g, and m;. Use Newton’s second law to relate
this net force to the acceleration, a;, of m;.

(c) Next, write down an equation for the net force on ms in terms of T, g, and ms. Use Newton’s second law to
relate this net force to the acceleration as, of ms.

(d) Why can we say the acceleration of m; is a; = -a if the acceleration of ms is ap— a?

(e) Eliminate T from the two equations to show that the net acceleration for the Atwood’s machine is given by

1 — m1—m2
the equation a = e 9-
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(f) You have just derived the famous Atwood’s equation. Use this expression to calculate the theoretical acceler-
ation for each trial and record the values in the table in Activity 2.

(g) Compare the experimental acceleration with the theoretical acceleration by determining the % difference
between the two for each trial. Is there good agreement between the two values? Do the results verify Newton’s
Second Law of motion? Is there a systematic difference? If so, what might this be due to?

(h) Rearrange the expression you derived for the acceleration so that it is the equation of the graph you constructed
in Activity 2. Note that the slope of the graph contains g. Calculate g from the slope determined from your fit
and find the % difference between this value and the accepted value. How well do the two values agree? Can you
account for any difference?
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29 Friction and Applying the Laws of Motion!’

Name Section Date

Objectives

e To explore the characteristics of friction.

e To learn to use free body diagrams to make predictions about the behavior of systems which are acted on
by multiple forces in two and three dimensions.

Predicting and Measuring Friction Factors

If Newton’s laws are to be used to describe the sliding of a block in contact with a flat surface, we must postulate
the existence of a passive frictional force that crops up to oppose the applied force. There are two kinds of
frictional forces: static friction and kinetic or sliding friction, which is the friction between surfaces in relative
motion. We will concentrate on the study of kinetic friction for a sliding block.

Apparatus

e Wooden block with hook
e Spring scale
e Variety of masses

e Triple-beam balance

Activity 1: Prediction of Friction Factors

(a) List several parameters that might influence the magnitude of the kinetic frictional force.

(b) Describe how you might do an experiment to determine the effect of mass on the magnitude of the frictional
force.

Measuring the Effect of Mass on Kinetic Friction

Let’s determine how mass actually influences the frictional force. Perform the experiment that you designed in
the previous activity to determine how the frictional force varies with mass.

Activity 2: Friction Data and Analysis

(a) Create a data table for the frictional force as a function of mass in the space below. You should make at least
5-7 measurements.

191990-93 Dept. of Physics and Astronomy, Dickinson College. Supported by FIPSE (U.S. Dept. of Ed.) and NSF. Portions of
this material may have been modified locally and may not have been classroom tested at Dickinson College.
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(b) Graph the frictional force (vertical axis) versus the mass and find the best fit to the data. Print the graph
showing the fit and put a copy in your notebook. Write the equation (with appropriate units) that describes the
data in the space below.

(c) Look up kinetic friction in the index of your text. Read about the coefficient of sliding friction, ug, and figure
out how to determine py from the fit to your data. Calculate puy for the block sliding on the table. How does
your value compare with the appropriate value in the table in your text?

Theories of Friction

No material is perfectly "smooth and flat." Any surface when examined under a microscope is full of irregularities.
It is usually assumed that sliding friction forces result from the rubbing of rough surfaces, i.e. from the interlocking
of surface bumps during the sliding process. How reasonable is this explanation for sliding friction?

Activity 3: What Surfaces Have High Friction?

(a) Which kinds of surfaces do you think will have the most friction rough ones or smooth ones? Why?

(b) Examine the table of coefficients of friction in a text. Do the values listed in this table support your predictions?
Are you surprised?

The fact that smooth surfaces sometimes have more sliding friction associated with them than rough surfaces
has led to the modern view that other factors such as adhesion (i.e. the attraction between molecules on sliding
surfaces) also play a major role in friction. Predicting the coefficient of sliding friction for different types of
surfaces is not always possible and there is much yet to be learned about the nature of the forces that govern
sliding friction. Most authors of introductory physics texts still tend, incorrectly, to equate smooth surfaces with
"frictionless ones" and to claim that the rubbing of rough surfaces is the cause of friction.

Free Body Diagrams-Putting It All Together

You have made a series of observations which hopefully led you to reconstruct Newton’s three laws of motion and
some of its ramifications for yourself. In summary the laws are:

Newton’s First Law: If the net force acting on an object is zero its acceleration is zero. [If ¥F = 0 then a =
0 so that v = constant or zero.]

Newton’s Second Law: The net force on an object can be calculated by multiplying its mass times its accel-
eration. [EF = mal]

Newton’s Third Law: Any two objects that interact exert forces on each other which are equal in magnitude
and opposite in direction. [F15 = -Fa]
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These three laws are incredibly powerful because an understanding of them allows you to either: (1) use a complete
knowledge of forces on a system of objects to predict motions in the system or (2) identify the forces on a system
of objects based on observations of its motions. In fact, you have already used a belief in Newton’s laws to identify
several active and passive "invisible" forces". The forces identified so far are shown in the table below.

| Active Forces | Passive Forces |
External Forces (pushes or pulls) F.; Tension Force T
Gravitational Force W = mg Normal Force N

Centripetal Force F, = ma. = m(v?/r?)(-r) | Static Friction Force f = usN
Kinetic Friction Force f = ;N

Using Free Body Diagrams to Predict Motions and Calculate Forces

The key to the effective application of Newton’s laws is to identify and diagram all the forces acting on each
object in a system of interest. The next step is to define a coordinate system and break the forces down into
components to take advantage of the fact that if ¥F = ma then ¥F, = ma, and XF, = ma,.

A free-body diagram consists of a set of arrows representing all the forces on an object, but NOT the forces that
the object exerts on other objects. To create a free-body diagram you should do as follows:

1. Draw arrows to represent all force acting on the object or objects in the system of interest.

2. Place the tail of each arrow at the point where the force acts on the object.
Each arrow should point in the direction of the force it represents.

The relative lengths of the arrows should, if possible, be made to correspond to the magnitudes of the forces.

A NS

A set of coordinate axis should be chosen and indicated and all of the arrows should be labeled using
standard notation to indicate the type of force involved.

Important Note: The idea of using a single force vector to summarize external forces that act in the same
direction is a useful simplification which is not real. For example, when a block rests on a table, we will say that
the table exerts a normal force on the block. It is conventional to draw a single upward arrow at the point where
the middle of the bottom surface of the block touches the table. This arrow actually represents the sum of all the
smaller forces at each point where the block touches the table. This is shown in the diagram below:

Lots of little support forces

TN

An Example of a Free-Body Diagram

Consider a block of mass m sliding on a rough inclined plane as shown in the diagram below. It has three forces
on it: (1) a gravitational force, (2) a normal force perpendicular to the surface of the plane, and (3) the friction
force opposing its motion down the plane.

Since the block is sliding it could either be moving at a constant velocity or with a constant acceleration. Thus,
it is possible that the vector sum of forces on it is not equal to zero in some cases. For example, if there is
accelerated motion, then: ¥F = N + W + f = ma
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Based on this example, try your hand at drawing the free body diagrams for the situations described below.
In each case, write the equation for the vector sum of forces. As always, be sure to put arrows over symbols
representing vector quantities.

Activity 4: Some Free-Body Diagrams

(a) A block slides freely down a smooth inclined plane.

e

B smooth plane

(b) A block is on a rough plane but is not moving due to static friction.

%

Eough Flane H

(c) A block is on a rough plane but the coefficient of friction between the block and the plane is small. The block
is sliding down the plane at a constant velocity so that kinetic friction is acting.

%

Rough Plane H

(d) The block is on a frictionless plane but is attached to a hanging mass of 2m by one of our famous "massless"
strings over a pulley. Construct free-body diagrams for the forces on the mass m and for the forces on the mass
2m.
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B smooth plane

Breaking the Forces into Components-An Example

Consider the case of the block sliding down a "smooth" plane with a negligible amount of friction. The free body
diagram and coordinate system chosen for analysis are shown in the figure below.

N

Taking components: W, = -W sin § and W, = -W cos §
There is no motion perpendicular to the surface so ¥F, =0 = N + W, so that N = -W, = W cos 6.

There is no balancing force for the x-component of W so according to Newton’s second law ¥F, = ma, = -W sin
0 = - mg sin 6 and therefore a, = - g sin 6.

Activity 5: Solving an Inclined Plane Problem

(a) Consider a block sliding down a rough inclined plane at a constant velocity. What is the net force on it?

(b) Refer to the free-body diagram you created for this situation in the last activity. Break the forces up into
components and apply Newton’s first law to find the equation for the coefficient of kinetic friction as a function
of m, 6, and g. You may need to consult a standard textbook for hints on how to tackle this problem.

%

Rough Plane H
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30 The Electrical and Gravitational Forces?

Name Section Date

I began to think of gravity extending to the orb of the moon, and . . . I deduced that the forces
which keep the planets in their orbs must be reciprocally as the squares of their distances from the
centers about which they revolve: and thereby compared the force requisite to keep the moon in her
orb with the force of gravity at the surface of the earth, and found them to answer pretty nearly. All
this was in the two plague years of 1665 and 1666, for in those days I was in the prime of my age for
invention, and minded mathematics and philosophy more than at any time since. - Isaac Newton

Objective
To understand the similarities of the gravitational and electrical forces.
Overview

The enterprise of physics is concerned ultimately with mathematically describing the fundamental forces of nature.
Nature offers us several fundamental forces, which include a strong force that holds the nuclei of atoms together,
a weak force that helps us describe certain kinds of radioactive decay in the nucleus, the force of gravity, and the
electromagnetic force.

Two kinds of force dominate our everyday reality-the gravitational force acting between masses and the Coulomb
force acting between electrical charges. The gravitational force allows us to describe mathematically how objects
near the surface of the earth are attracted toward the earth and how the moon revolves around the earth and
planets revolve around the sun. The genius of Newton was to realize that objects as diverse as falling apples and
revolving planets are both moving under the action of the same gravitational force.

KO Moon
Earth

@: 240,000
miles

i

falling
NAsS

Similarly, the Coulomb force allows us to describe how one charge "falls" toward another or how an electron
orbits a proton in a hydrogen atom.

201990-93 Dept. of Physics and Astronomy, Dickinson College. Supported by FIPSE (U.S. Dept. of Ed.) and NSF. Portions of
this material have been modified locally and may not have been classroom tested at Dickinson College.
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The fact that both the Coulomb and the gravitational forces lead to objects falling and to objects orbiting around
each other suggests that these forces might have the same mathematical form.

In this unit we will explore the mathematical symmetry between electrical and gravitational forces for two reasons.
First, it is beautiful to behold the unity that nature offers us as we use the same type of mathematics to predict
the motion of planets and galaxies, the falling of objects, the flow of electrons in circuits, and the nature of the
hydrogen atom and of other chemical elements. Second, what you have already learned about the influence of
the gravitational force on a mass can be applied to aid your understanding of the forces on charged particles.

Activity 1: Comparison of Electrical and Gravitational Forces

Let’s start our discussion of this comparison with the familiar expression of the Coulomb force exerted on charge
1 by charge 2.

U Lz
rut
Verctor \ 0.9, .
F, = k, 127
9 I g il
k,=899x 10°N nf 1o

Charles Coulomb did his experimental investigations of this force in the 18th century by exploring the forces
between two small charged spheres. Much later, in the 20th century, Coulomb’s law enabled scientists to design
cyclotrons and other types of accelerators for moving charged particles in circular orbits at high speeds.

Newton’s discovery of the universal law of gravitation came the other way around. He thought about orbits first.
This was back in the 17th century, long before Coulomb began his studies. A statement of Newton’s universal
law of gravitation describing the force experienced by mass 1 due to the presence of mass 2 is shown below in
modern mathematical notation:
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About the time that Coulomb did his experiments with electrical charges in the 18th century, one of his contem-
poraries, Henry Cavendish, did a direct experiment to determine the nature of the gravitational force between two
spherical masses in a laboratory. This confirmed Newton’s gravitational force law and allowed him to determine
the gravitational constant, G. A fact emerges that is quite amazing. Both types of forces, electrical and gravita-
tional, are very similar. Essentially the same mathematics can be used to describe orbital and linear motions due
to either electrical or gravitational interactions of the tiniest fundamental particles or the largest galaxies. This
statement needs to be qualified a bit when electrons, protons and other fundamental particles are considered.
A new field called quantum mechanics was developed in the early part of this century to take into account the
wave nature of matter, which we don’t actually study in introductory physics. However, even in wave mechanical
calculations electrical forces like those shown above are used.

Activity 2: The Electrical vs. the Gravitational Force
Examine the mathematical expression for the two force laws.

(a) What is the same about the two force laws?

(b) What is different? For example, is the force between two like masses attractive or repulsive? How about
two like charges? What part of each equation determines whether the like charges or masses are attractive or
repulsive?

(c) Do you think negative mass could exist? If there is negative mass, would two negative masses attract or repel?

Which Force is Stronger— Electrical or Gravitational?

Gravitational forces hold the planets in our solar system in orbit and account for the motions of matter in galaxies.
Electrical forces serve to hold atoms and molecules together. If we consider two of the most common fundamental
particles, the electron and the proton, how do their electrical and gravitational forces compare with each other?
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Let’s peek into the hydrogen atom and compare the gravitational force on the electron due to interaction of its
mass with that of the proton to the electrical force between the two particles as a result of their charge. In order
to do the calculation you’ll need to use some well known constants.

Electron: m, = 9.1 x 1073 kg, q. =- 1.6 x1071° C

Proton: m, = 1.7 x 1072" kg, q, = +1.6 x 107° C

Distance between the electron and proton: r = 1.0 x 107° m

Activity 3: The Electrical vs. the Gravitational Force in the Hydrogen Atom

(a) Calculate the magnitude of the electrical force on the electron. Is it attractive or repulsive?

(b) Calculate the magnitude of the gravitational force on the electron. Is it attractive or repulsive?

(c) Which is larger? By what factor (i.e. what is the ratio)?

(d) Which force are you more aware of on a daily basis? If your answer does not agree with that in part (c),
explain why.

Activity 4: The Gravitational Force of the Earth

(a) Use Newton’s law to show that the magnitude of the acceleration due to gravity on an object of mass at a
height h above the surface of the earth is given by the following expression.

GM,
(R. + h)*

Hint: Because of the spherical symmetry of the Earth you can treat the mass of the Earth as if it were all
concentrated at a point at the Earth’s center.

(b) Calculate the acceleration due to gravity of a mass m at the surface of the earth (h=0). The radius of the
earth is R, ~ 6.38 x 10® km and its mass M, ~ 5.98 x 1024 kg. Does the result look familiar? How is this
acceleration related to the gravitational acceleration g?
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(c) Use the equation you derived in part (a) to calculate the acceleration due to gravity at the ceiling of the room
you are now in. How does it differ from the value at the floor? Can you measure the difference in the lab using
the devices available?

(d) Suppose you travel halfway to the moon. What is the new value of the acceleration? Can you measure the
difference? (Recall that the earth-moon distance is about 384,000 km.)

(e) Is the gravitational acceleration "constant", g, really a constant? Explain.

(f) In part (d) you showed that there is a significant gravitational attraction halfway between the earth and the
moon. Why, then, do astronauts experience weightlessness when they are orbiting a mere 120 km above the
earth?
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31 Centripetal Force?!

Name Section Date

Objective

To explore the phenomenon of uniform circular motion and the accelerations and forces needed to maintain it.
Overview

In a previous unit you began the study of the application of Newton’s laws to projectile motion. In this unit we
are going to consider the application of Newton’s laws to another phenomenon in two dimensions. Since Newton’s
laws can be used to predict types of motion or the conditions for no motion, their applications are useful in many
endeavors including human body motion, astrophysics, and engineering.

You will explore uniform circular motion, in which an object moves at a constant speed in a circle. In particular,
you will develop a mathematical description of centripetal acceleration and the force needed to keep an object
moving in a circle.

Apparatus

e An airplane.
e A video analysis system (Adobe Premier and VideoPoint).

e A spring scale. Graphing software (CricketGraph).

Moving in a Circle at a Constant Speed

When a race car speeds around a circular track, or when David twirled a stone at the end of a rope to clobber
Goliath, or when a planet like Venus orbits the sun, they undergo uniform circular motion. Understanding
the forces which govern orbital motion has been vital to astronomers in their quest to understand the laws of
gravitation.

But we are getting ahead of ourselves, for as we have done in the case of linear and projectile motion we will begin
our study by considering situations involving external applied forces that lead to circular motion in the absence
of friction. We will then use our belief in Newton’s laws to see how the circular motions of the planets can be
used to help astronomers discover the laws of gravitation.
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211990-93 Dept. of Physics and Astronomy, Dickinson College. Supported by FIPSE (U.S. Dept. of Ed.) and NSF. Portions of
this material have been modified locally and may not have been classroom tested at Dickinson College.
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Let’s begin our study with some very simple considerations. Suppose an astronaut goes into outer space, ties a
ball to the end of a rope, and spins the ball so that it moves at a constant speed.

Activity 1: Uniform Circular Motion

(a) Consider the figure above. What is the speed of a ball that moves in a circle of radius r = 2.5 m if it takes
0.50 s to complete one revolution?

(b) The speed of the ball is constant! Would you say that this is accelerated motion?

(c) What is the definition of acceleration? (Remember that acceleration is a vector!)

(d) Are velocity and speed the same thing? Is the velocity of the ball constant? (Hint: Velocity is a vector
quantity!)

(e) In light of your answers to (c) and (d), would you like to change your answer to part (b)? Explain.

Using Vectors to Diagram How Velocity Changes

By now you should have concluded that since the direction of the motion of an object undergoing uniform circular
motion is constantly changing, its velocity is also changing and thus it is accelerating. We would like you to figure
out how to calculate the direction of the acceleration and its magnitude as a function of the speed v of an object
such as a ball as it revolves and as a function of the radius of the circle in which it revolves. In order to use vectors
to find the direction of velocity change in circular motion, let’s review some rules for adding velocity vectors.
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1. To Draw Velocities: Draw an arrow representing the velocity, vy, of the object at time t;. Draw another

arrow representing the velocity, vo, of the object at time to.

2. To Draw Velocity Change: Find the change in the velocity Av = v, - v; during the time interval described
by At = t3 - t;. Start by using the rules of vector sums to rearrange the terms so that vi + Av = va.
Next place the tails of the two velocity vectors together halfway between the original and final location of
the object. The change in velocity is the vector that points from the head of the first velocity vector to the

head of the second velocity vector.

3. To Draw Acceleration: The acceleration equals the velocity change Av divided by the time interval t needed
for the change. Thus, a is in the same direction as Av but is a different length unless ( At = 1). Thus,
even if you do not know the time interval, you can still determine the direction of the acceleration because

it points in the same direction as Av.

The acceleration associated with uniform circular motion is known as centripetal acceleration. You will use the

vector diagram technique described above to find its direction.

Activity 2: The Direction of Centripetal Acceleration

(a) Determine the direction of motion of the ball shown below if it is moving counter-clockwise at a constant
speed. Note that the direction of the ball’s velocity is always tangential to the circle as it moves around. Draw
an arrow representing the direction and magnitude of the ball’s velocity as it passes the dot just before it reaches

point A. Label this vector v;.

"Just” after — +—"Just” before

(b) Next, use the same diagram to draw the arrow representing the velocity of the ball when it is at the dot just

after it passes point A. Label this vector v.

(c) Find the direction and magnitude of the change in velocity as follows. In the space below, make an exact copy
of both vectors, placing the tails of the two vectors together. Next, draw the vector that must be added to vector
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v1 to add up to vector v, ; label this vector Av. Be sure that vectors v; and v, have the same magnitude and
direction in this drawing that they had in your drawing in part (a)!

(d) Now, draw an exact copy of Av on your sketch in part (a). Place the tail of this copy at point A. Again,
make sure that your copy has the exact magnitude and direction as the original Av in part (c).

(e) Now that you know the direction of the change in velocity, what is the direction of the centripetal acceleration,
a.?

(f) If you re did the analysis for point B at the opposite end of the circle, what do you think the direction of the
centripetal acceleration, a., would be now?

(g) As the ball moves on around the circle, what is the direction of its acceleration?

(h) Use Newton’s second law in vector form (XF = ma ) to describe the direction of the net force on the ball as
it moves around the circle.

(i) If the ball is being twirled around on a string, what is the source of the net force needed to keep it moving in
a circle?
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Using Mathematics to Derive How Centripetal Acceleration Depends on Radius and Speed

You haven’t done any experiments yet to see how centripetal acceleration depends on the radius of the circle and
the speed of the object. You can use the rules of mathematics and the definition of acceleration to derive the
relationship between speed, radius, and magnitude of centripetal acceleration.

Activity 3: How Does a, Depend on v and r?

(a) Do you expect you would need more centripetal acceleration or less centripetal acceleration to cause an object
moving at a certain speed to rotate in a smaller circle? In other words, would the magnitude, a., have to increase
or decrease as r decreases if circular motion is to be maintained? Explain.

(b) Do you expect you would need more centripetal acceleration or less centripetal acceleration to cause an object
to rotate at a given radius r if the speed v is increased? In other words, would the magnitude, a., have to increase
or decrease as v increases if circular motion is to be maintained? Explain.

You should have guessed that it requires more acceleration to move an object of a certain speed in a circle of
smaller radius and that it also takes more acceleration to move an object that has a higher speed in a circle
of a given radius. Lets use the definition of acceleration in two-dimensions and some accepted mathematical
relationships to show that the magnitude of centripetal acceleration should actually be given by the equation

v
e, = — [Eq.1]
T

In order to do this derivation you will want to use the following definition for acceleration

_m-u_Av [Eq. 2]

(@) to—t; At

Activity 4: Finding the Equation for a,

(a) Refer to the diagram below. Explain why, at the two points shown on the circle, the angle between the
position vectors at times t; and to is the same as the angle between the velocity vectors at times t; and t,. Hint:
In circular motion, velocity vectors are always perpendicular to their position vectors.
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(b) Since the angles are the same and since the magnitudes of the displacements never change (i.e., r=r; = r2)
and the magnitudes of the velocities never change (i.e., v = vi = v2), use the properties of similar triangles to

explain why % = %.
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(c) Now use the equation in part (b) and the definition of < a > to show that (a.) = ﬁ—;’ =

A
>
o~

&

(d) The speed of the object as it rotates around the circle is given by v = %. Is the change in arc length,

As, larger or smaller than the magnitude of the change in the position vector, Ar? Explain why the arc length
change and the change in the position vector are approximately the same when t is very small (so that the angle
q becomes very small) i.e., why is As ~ Ar?

(e) If As ~ Ar, then what is the equation for the speed in terms of Ar and At?

(f) Using the equation in part (c), show that as At — 0, the instantaneous value of the centripetal acceleration
is given by Eq. 1.

(g) If the object has a mass m, what is the equation for the magnitude of the centripetal force needed to keep the
object rotating in a circle (in terms of v, r, and m)? In what direction does this force point as the object rotates
in its circular orbit?

Experimental Test of the Centripetal Force Equation

The theoretical considerations in the last activity should have led you to the conclusion that, whenever you see
an object of mass m moving in a circle of radius r at a constant speed v, it must at all times be experiencing a
net centripetal force directed toward the center of the circle that has a magnitude of

v?
F, =ma. = m-— [Eq. 3]

Let’s check this out. Does this rather odd equation really work for an external force?
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To test the validity of the derivation we must compare it to experience. We will use a "toy" airplane suspended
from a string and flying in a circular path. We will use the video analysis system to measure the properties of the
motion and determine the horizontal and vertical components of the force exerted on the airplane using Equation
3. We will compare that result with a direct measurement of the tension in the string.

Activity 5: Verifying the F. Equation

(a) Measure the mass of the airplane and the length of the portion of the string that hangs below the horizontal
post with the hole in it. Record the values below.

(b) The airplane is suspended from a spring scale. The string should pass straight down from the scale through
the small hole in the horizontal post. The camera should be placed about 1 meter above the airplane. Turn on
the camera and center the spring scale in the frame by using the pendulum. Is the reading of the spring scale
consistent with the mass of the airplane? Mount a ruler somewhere in the camera’s field-of-view to serve as a
scaling object. Launch the plane into uniform circular motion. When the motion is steady record a movie of at
least one complete revolution and record the reading of the spring scale. See Appendix D: Video Analysis
for details. Save the movie in a file entitled Centripetal.

Fscale =

(c) Determine the position of the airplane during one complete revolution. To do this task follow the instructions in
the second section of Appendix D: Video Analysis for recording and calibrating a data file entitled Centripetal
Data. As you analyze the movie frame-by-frame, estimate to the nearest fraction of a frame the number of frames
for one complete revolution. Record your result. When you calibrate the time and position data, note the number
of frames per second of the movie and convert that number to the time interval between frames, At. What is the
time interval for one complete revolution? Prepare your file for analysis by following the instructions in the last
section of Appendix D. The file should contain three columns with the values of time, x-position, and y-position.

Nframe -
At =

trev =

(d) Make a graph of the trajectory of the airplane during one full revolution. See Appendix C: Introduction
to Cricket Graph for details on using the graphing software. When you make your plot make sure the x and y
axes cover the same size range otherwise you will distort the path of the airplane. Print your plot and attach it
to your write-up.

1. Is the motion circular? What is your evidence?

2. What is the radius of the motion? r =

(f) To test the validity of the expression for F, we must know the speed. Use the measurements of the radius of
the airplane’s trajectory and the time for one complete revolution to calculate the average speed.

Vave —

(g) Use your results for the mass, the average velocity of the airplane, and the radius of the circular motion to
predict the centripetal force exerted by the string.

F, =
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(h) We need one more piece of the puzzle to predict the tension in the string, namely, the vertical component of
the force exerted on the airplane by the string. Recall that we know r, the radius of the airplane’s circular path,
and R, the total length of the string that is actually rotating.

1. Using these two distances (r and R) calculate the angle the string makes with the horizontal.

0:

2. We determined the horizontal component of the force on the airplane in part (g). Now with the angle q
generate an expression for the vertical component exerted by the string and calculate it. Make a vector
diagram of the different components. Generate an expression for the total force acting on the airplane due
to the string and calculate the result.

(i) Compare your result for Fy;ping with the measurement of the spring scale Fy.qe. Within experimental uncer-
tainty, how well does your data support the hypothesis that F. =mv?/r?

(j) Discuss the major sources of uncertainty in this experiment.
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32 Kepler’s Laws??

Name Section Date

Objectives:

e The applicability of Kepler’s Laws
e The mass of the moon
Introduction
Based on data provided by Tycho Brahe, Johannes Kepler devised three laws of planetary motion:
1. The orbits of the planets are ellipses with the sun at one focus.
2. A line segment connecting the sun and a given planet sweeps out equal areas in equal time intervals.
3. The square of the period is proportional to the cube of the semi-major axis of the orbit.

Newton’s Law of Gravitation generalized these laws to apply to any two bodies in orbital motion about one
another.

Newton’s analysis led to the following formulation of Kepler’s Third Law:

. 472
TZ — 3 1
GM +m)" ()

where M and m are the two masses, T is the period of mutual revolution, G is the universal gravitational constant,
and a is the semi-major axis of their relative orbit.

Apparatus:
e ruler

Activity 1: The ellipse

Discussion An ellipse is the set of points in the plane for which the sum of the distances from two fixed points
is constant. The two points are called foci (the plural of focus). If the center of the ellipse is at the origin, then
the standard form of the equation of an ellipse is

Z i+l 2)

where the curve intercepts the z-axis at (a,0) and (—a,0), and the y-axis at (0,b) and (0, —=b). If a > b, then the
foci are at (£c,0), where ¢ = va? — b2. If a < b, then the foci are at (0, +c), where now ¢ = Vb? — a?. If a = b,
the ellipse is a circle. The departure from circularity is quantified with the term eccentricity, defined symbolically
as

£=— 3
: (3)
when a > b. If P is any point on the ellipse, then the sum of its distances from the foci is 2a for a > b, or 2b for
a < b. An ellipse can be drawn with a string tacked at the foci, pulling the string taut with a pencil, and running

the pencil around.

22 Adapted from Activities in Astronomy, D. Hoff, L. Kelsey, and J. Neff, Kendall/Hunt Publishing Co., 1978.
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1. Sketch an ellipse with an eccentricity of 1.

2. Sketch an ellipse with an eccentricity of 0.

Activity 2: Explorer 35 and Kepler’s Laws

Discussion Explorer 35 lifted off from Cape Kennedy on 19 July 1967, and entered orbit around the moon on
22 July. The satellite, weighing 230 lbs. (1.04.4 kg), carried instruments for measuring solar x-rays and energetic
particles; the solar wind in interplanetary space and its interaction with the moon; and the magnetic properties
of the moon. It continued operation until June 1973, having accomplished all its mission objectives.

The data?® below form a sample set of positions of Explorer 35 in its elliptical orbit about the moon. The time
interval between position measurements is 15 minutes. The unit of length is the radius of the moon. The center
of the coordinate system is the center of the moon.

1. Using Cricket Graph, plot the data and find the major axis and foci.

2. Find the semi-major axis, the minor axis, the semi-minor axis, the eccentricity, and the period of the orbit
(this last one, by inspection).

3. Verify Kepler’s First Law. [Hint: refer to the definition of an ellipse.]

4. Determine the areas swept out in a time interval at different points of the orbit and show that Kepler’s
Second Law is valid. [Hint: use triangles as an approximation.|

5. Using the Newtonian form of Kepler’s Third Law, find the mass of the moon in kilograms. [radius of the
moon = 1738 km; and G = 6.668 times 108 cm?/gm sec? = 8.642 x 10 !® km3 /kg hr?]

23From the NASA-Goddard Space Flight Center.

167



Questions:

1. Discuss variations in your measurements used to validate the First and Second Laws.

2. Noting the number of significant figures in the data, how do the variations in your measurements compare
to the uncertainties in the data?

3. Estimate the uncertainty in your determination of the mass of the moon. What has a greater effect,
uncertainties in a or those in 7'?
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Elapsed X Y Elapsed X Y
time time
(h) (m) (lunar radii) (lunar radii) | (h) (m) (lunar radii) (lunar radii)
0 00 -3.62 1.04 6 00 0.27 4.86
0 15 -3.46 0.63 6 15 -0.56 4.95
0 30 -3.25 0.20 6 30 -0.84 5.01
0 45 -2.97 -0.22 6 45 -1.12 5.03
1 00 -2.60 -0.65 7 00 -1.38 5.04
1 15 -2.14 -1.03 7 15 -1.64 5.00
1 30 -1.55 -1.37 7 30 -1.89 4.95
1 45 -0.85 -1.58 7 45 -2.14 4.87
2 00 -0.03 -1.59 8 00 -2.37 4.77
2 15 +0.78 -1.32 8 15 -2.59 4.65
2 30 1.45 -0.79 8 30 -2.80 4.50
2 45 1.87 -0.11 8 45 -2.99 4.33
3 00 2.09 +0.58 9 00 -3.17 4.14
3 15 2.16 1.22 9 15 -3.33 3.93
3 30 2.11 1.82 9 30 -3.49 3.69
3 45 1.99 2.35 9 45 -3.59 3.42
4 00 1.82 2.81 10 00 -3.69 3.15
4 15 1.61 3.22 10 15 -3.77 2.85
4 30 1.37 3.59 10 30 -3.81 2.52
4 45 1.11 3.90 10 45 -3.83 2.20
5 00 0.85 4.16 11 00 -3.81 1.83
5 15 0.58 4.40 11 15 -3.76 1.46
) 30 0.28 4.58 11 30 -3.65 1.06
) 45 0.00 4.74 11 45 -3.51 0.65
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33 Work and Power?*

Name Section Date

Objectives

e To extend the intuitive notion of work as physical effort to a formal mathematical definition of work as a
function of force and distance.

e To understand the concept of power and its relationship to work.
Apparatus

e Spring scale
e Wooden block with hook

e Variety of masses

The Concept of Physical Work

Suppose you are president of the Richmond Load 'n’ Go Co. A local college has three jobs available and will
allow you to choose which one you want before offering the other two jobs to rival companies. All three jobs pay
the same amount of money. Which one would you choose for your crew?

& JoBI1
Lifting 100
L0 Ik boes JOB?2
a distarnoe
R\ 790 faet,

a0 fr
Lifting 100 ofthe 501k
boxes a distance of 30 feet
along a I degree incline
on frictionless rollers

083 [ Lipi. 50
10 £ | 100 Ibboxes
+ adistance of
| 10 feet,

Activity 1: Choosing Your Job

Examine the descriptions of the jobs shown in figure above. Which one would you be most likely to choose? Least
likely to choose? Explain the reasons for your answer.

You obviously want to do the least amount of work for the most money. Before you reconsider your answers later
in this unit, you should do a series of activities to get a better feel for what physicists mean by work and how the
president of Load 'n’ Go can make top dollar.

241990-93 Dept. of Physics and Astronomy, Dickinson College. Supported by FIPSE (U.S. Dept. of Ed.) and NSF. Portions of
this material have been modified locally and may not have been classroom tested at Dickinson College.

170



In everyday language we refer to doing work whenever we expend effort. In order to get an intuitive feel for how
we might define work mathematically, you should experiment with moving your textbook back and forth along a
table top and a rougher surface such as a carpeted floor.

Activity 2: This is Work!

(a) Pick a distance of a meter or so. Sense how much effort it takes to push a heavy book that distance. How
much more effort does it take to push it twice as far?

(b) Pile another similar book on top of the original one and sense how much effort it takes to push the two books
through the distance you picked. Comment below.

(¢) From your study of sliding friction, what is the relationship between the mass of a sliding object and the
friction force it experiences? On the basis of your experience with sliding friction, estimate how much more force
you have to apply to push two books compared to one book.

(d) If the "effort" it takes to move an object is associated with physical work, guess an equation that can be used
to define work mathematically when the force on an object and its displacement (i.e., the distance it moves) lie
along the same line.

In physics, work is not simply effort. In fact, the physicist’s definition of work is precise and mathematical. In
order to have a full understanding of how work is defined in physics, we need to consider its definition in a very
simple situation and then enrich it later to include more realistic situations.

A Simple Definition of Physical Work: If an object that is moving in a straight line experiences a constant
force in the direction of its motion during the time it is undergoing a displacement, the work done by the external
force , Feyt, is defined as the product of the force and the displacement of the object.

W = FemgA.Z'

where W represents the work done by the external force, F.,; is the magnitude of the force, and Ax the displace-
ment of the object. Work done by a force is always positive!
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What if the force of interest and the displacement are in the opposite direction? For instance, what about the
work done against the force of sliding friction, F s, when a block slides down an inclined plane as a result of the
gravitational force? In this case we refer to work done against a force. This is given by

Wagainst = _FfAZU

Work done against a force is always negative!
Activity 3: Applying the Physics Definition of Work

(a) Does effort necessarily result in physical work? Suppose two guys are in an evenly match tug of war. They are
obviously expending effort to pull on the rope, but according to the definition of physical work, are they doing
any physical work? Explain.

(b) A wooden block with a mass of .30 kg is pushed along a sheet of ice that has no friction with a constant
external force of 10 N which acts in a horizontal direction. After it moves a distance of 0.40 m how much work
has been done on the block by the external force?

(¢) The same wooden block with a mass of .30 kg is pushed along a table with a constant external force of 10 N
which acts in a horizontal direction. It moves a distance of 0.40 m. However, there is a friction force opposing its
motion. Assume that the coefficient of sliding friction, uy, is 0.20.

direction of rootion
-
I?'T'r'in:’cin:nn O——- ﬁaxter’na]
PP FAFF

1. According to the definitions of work done by a force and work done against a force, what is the work
associated with the external force? Is work done by this force or against it? Is the work positive or
negative? Show your calculations.

2. According to the definitions of work, what is the work associated with the friction force? Is work done by
the friction force or against it? Is the work positive or negative? Show your calculations.

172



(d) Suppose you lift a 0.3 kg object through a distance of 1.0 m.

1. What is the work associated with the force that the earth exerts on the object? Is work done by this force
or against it? Is the work positive or negative? Show your calculations.

2. What is the work associated with the external force you apply to the object? Is work done by this force or
against it? Is the work positive or negative? Show your calculations.

Pulling at an Angle What Happens When the Force and the Displacement Are Not Along the
Same Line?

Let’s be more quantitative about measuring force and distance and calculating the work. How should work be
calculated when the external force and the displacement of an object are not in the same direction?

F
[
PP PRSPPI ?

To investigate this, you will use a spring scale to measure the force necessary to slide a block along the table at
a constant speed. Before you make your simple force measurements, you should put some weights on your block
so that it slides along a smooth surface at a constant velocity even when it is being pulled with a force that is 45
degrees from the horizontal.

Activity 4: Calculating Work

(a) Hold a spring scale horizontal to the table and use it to pull the block a distance of 0.5 meters along the
horizontal surface in such a way that the block moves at a constant speed. Record the force in newtons and the
distance in meters in the space below and calculate the work done on the block in joules. (Note that there is a
special unit for work the joule or J for short. One joule is equal to one newton times one meter, i.e. J = N.m)

(b) Repeat the measurement, only this time pull on the block at a 45° angle with respect to the horizontal. Pull
the block at about the same speed. Is the force needed larger or smaller than you measured in part (a)?
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(c) Assuming that the actual physical work done in part (b) is the same as the physical work done in part (a)
above, how could you enhance the mathematical definition of work so that the forces measured in part (b) could
be used to calculate work? In other words, use your data to postulate a mathematical equation that relates the
physical work, W, to the magnitude of the applied force, F, the magnitude of the displacement, As, and the angle,
0, between F and As. Explain your reasoning. Hint: sin 30° = .500, sin 45° = .707, cos 30° = .865, cos 45°
.707.

Work as a Dot Product

Review the definition of dot (or scalar) product as a special product of two vectors in your textbook, and convince
yourself that the dot product can be used to define physical work in general cases when the force is constant but
not necessarily in the direction of the displacement resulting from it.

W=Fe?

Activity 5: How Much Work Goes with Each Job?

(a) Re-examine the descriptions of the jobs shown in the figure on the first page of this section. What is the
minimum physical work done in job 17

(b) What is the minimum physical work done in job 27

(c) What is the minimum physical work is done in job 37

(d) Was your original intuition about which job to take correct? Which job should Richmond Load 'n’ Go try to
land?
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The Concept of Power

People are interested in more than physical work. They are also interested in the rate at which physical work can
be done. Average power, (P), is defined as the ratio of the amount of work done, AW, to the time interval, At,

it takes to do the work, so that

AW
Py=—.
(Py=—7;

Instantaneous power is given by the derivative of work with respect to time, or

aw
p=2
dt

If work is measured in joules and time in seconds then the fundamental unit of power is in joules/second where 1
joule/second equals one watt. However, a more traditional unit of power is the horsepower, which represents the
rate at which a typical work horse can do physical work. It turns out that 1 horsepower (or hp) = 746 watts =
746 joules/second.

Those of you who are car buffs know that horsepower is a big deal in rating high performance cars. The hp in a
souped-up car is in the hundreds. How does your stair climbing ability stack up? Let’s see how long it takes you
to climb the three stories of stairs in the science center.

Activity 6: Rate the Horsepower in Your Legs

(a) Determine the time it takes you to climb the three flights of stairs in the science center. Then measure the
height of the climb and compute the work done against the force of gravity.

(b) Compute the average power, (P), you expended in hp. How does this compare to the horsepower of your
favorite automobile? If you’re not into cars, how do you stack up against a horse?

175



34 Work and Kinetic Energy25

Name Section Date

Objectives

e To discover Hooke’s law.

e To understand the concept of kinetic energy and its relationship to work as embodied in the work-energy
theorem.

e To develop an understanding of the physical significance of mathematical integration.

The Force Exerted on a Mass by an Extended Spring

So far we have pushed and pulled on an object with a constant force and calculated the work needed to displace
that object. In most real situations the force on an object can change as it moves.

What happens to the average force needed to stretch a spring from 0 to 1 cm compared to the average force
needed to extend the same spring from 10 to 11 cm? How does the applied force on a spring affect the amount
by which it stretches, i.e. its displacement.

Apparatus

e A large spring
e A support rod to hang the spring
e A 2-meter stick

e A variety of masses

Activity 1: Are Spring Forces Constant?

Hang the spring from a support rod with the large diameter coils in the downward position. Extend the spring
from 0 to 1 cm. Feel the force needed to extend the spring. Extend the spring from 10 to 11 cm. Feel the force
needed to extend the spring again. How do the two forces compare? Are they the same?

The Force and Work Needed to Stretch a Spring

Now we would like to be able to quantify the force and work needed to extend a spring as a function of its
displacement from an equilibrium position (i.e. when it is "unstretched" ).

Activity 2: Force vs. Displacement for a Spring

(a) Measure the distance from the floor to the lower end of the spring and record this distance as sy below. Create
a data table in the space below with the column headings m (kg), s (m), Feze (N), x (m), Ax (m), <Fez:> (N),
AW (J), and Wiotar (J). Hang different masses in 0.100 kg increments up to 1.000 kg and measure the distance
from the floor to the lower end of the spring, s, for each mass. Record the values of m and s in the data table.
Calculate and record the external force, Fz¢, and the stretch of the spring, x (= s - s), for each mass.

251990-93 Dept. of Physics and Astronomy, Dickinson College. Supported by FIPSE (U.S. Dept. of Ed.) and NSF. Portions of
this material have been modified locally and may not have been classroom tested at Dickinson College.
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(b) Create a graph of F.;; (vertical axis) vs. x. Is the graph linear? If the force, F.;, increases with the
displacement in a proportional way, fit the data to find the slope of the line. Insert a copy of the graph into your
notebook. Use the symbol k to represent the slope of the line. What is the value of k? What are its units? Note:
k is known as the spring constant.

(c) Write the equation describing the relationship between the external force, F,¢, and the total displacement,
x, of the spring from its equilibrium using the symbols F.,¢, k, and x.

Note: Any restoring force on an object which is proportional to its displacement is known as a Hooke’s Law Force.
There was an erratic, contentious genius named Robert Hooke who was born in 1635. He played with springs
and argued with Newton.

Calculating Work when the Force is not Constant

We would like to expand the definition of work so it can be used to calculate the work associated with stretching a
spring and the work associated with other forces that are not constant. A helpful approach is to plot the average
force needed to move an object for each successive displacement Ax as a bar graph like that shown in the figure
below. The figure shows a graph representing the average applied force causing each unit of displacement of an
object. This graph represents force that is not constant but not the force vs. displacement of a typical spring.

Note: The bar graph below is intended to illustrate mathematical concepts. Any similarity between the values of
the forces in the bar graph and any real set of forces is purely coincidental. In general, the force causing work to
be done on an object is not constant.

B =
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midpoint of each dizplacernent &K
E _ :....w .....
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Each
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Activity 3: Force vs. Distance in a Bar Graph

(a) Calculate the width of each displacement, Ax, and the average external force, <F.;;>, for each displacement
and record the values in the table above. Plot <F.,;> vs. x as a bar graph on the grid below.
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How can we calculate the work done in stretching the spring? We can use several equivalent techniques: (1) adding
up little pieces of <F.;> Ax, (2) finding the area under the "curve" you created, or (3) using mathematical
integration.

All three methods should yield about the same result. If you have not yet encountered integrals in a calculus
course, you can compare the results of using the first two methods. If you have studied integrals in calculus you
may want to consult your instructor or the textbook about how to set up the appropriate definite integral to
calculate the work needed to stretch the spring.

Activity 4: Calculation of Work

(a) Calculate the work needed to stretch the spring by adding up small increments of <F.;;> Ax in your table.
Also record the running sum in the table and summarize the result below. Don’t forget to specify units.

Wtotal -

(b) Calculate the work needed to stretch the spring by computing the area under the curve in the graph of <F,;>
vs. x that you just created.

(c) How does adding up the little rectangles in part (a) compare to finding the area under the curve in part (b)?

Note that in the limit where the x values are very small the sum of <F¢;;> Ax, known by mathematicians as the
Riemann sum, converges to the mathematical integral and to the area under the curve.

Defining Kinetic Energy and Its Relationship to Work
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What happens when you apply an external force to an object that is free to move and has no friction forces on
it? Obviously it should experience an acceleration and end up being in a different state of motion. Can we relate
the change in motion of the object to the amount of work that is done on it?

Let’s consider a fairly simple situation. Suppose an object is lifted through a distance s near the surface of the
earth and then allowed to fall. During the time it is falling it will experience a constant force as a result of the
attraction between the object and the earth glibly called the force of gravity. You can use the theory we have
already developed for the gravitational force to compare the velocity of the object to the work done on it by the
gravitational field as it falls through a distance y. This should lead naturally to the definition of a new quantity
called kinetic energy, which is a measure of the amount of "motion" gained as a result of the work done on the
mass.

Activity 5: Equations for Falling v vs. y

(a) An object of mass m is dropped near the surface of the earth. What is the magnitude and direction of its
acceleration g?

(b) If the object has no initial velocity and is allowed to fall for a time t under the influence of the gravitational
force, what kinematic equation describes the relationship between the distance the object falls, y, and its time of
fall, t? Assume yo = 0.

(c) Do you expect the magnitude of the velocity to increase, decrease or remain the same as the distance increases?
Note: This is an obvious question!!

(d) Differentiate the equation you wrote down in part (b) to find a relationship between v, the acceleration g,
and time t.

(e) Eliminate t from the equations you obtained in parts (b) and (d) to get an expression that describes how the
velocity, v, of the falling object depends on the distance, y, through which it has fallen.

You can use the kinematic equations to derive the functional relationship you hopefully discovered experimentally
in the last activity. If we define the kinetic energy (K) of a moving object as the quantity K = (1/2)mv?, then we
can relate the change in kinetic energy as an object falls to the work done on it. Note that for an object initially
at rest the initial kinetic energy is K; = 0, so the change in kinetic energy is given by the difference between the
initial and final kinetic energies. AK = K; - K; = (1/2)mv>.

Activity 6: Computing Work and Kinetic Energy of a Falling Mass

(a) Suppose the mass of your falling object is 0.35 kg. What is the value of the work done by the gravitational
force when the mass is dropped through a distance of y = 1.2 m?
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(b) Use the kinematic equation you derived in Activity 5(e) that relates v and y to find the velocity of the falling
object after it has fallen 1.2 m.

(c) What is the kinetic energy of the object before it is dropped? After it has fallen 1.2 m? What is the change
in kinetic energy, AK, as a result of the fall?

(d) How does the work done by the gravitational force compare to the kinetic energy change, AK, of the object?

Activity 7: The Mathematical Relationship between Work and Kinetic Energy Change During a
Fall

(a) Since our simplified case involves a constant acceleration, write down the equation you derived in Activity
5(e) to describe the speed, v, of a falling object as a function of the distance y which it fell.

(b) Using the definition of work, show that W = mgy when the object is dropped through a distance y.

(c) By combining the equations in parts (a) and (b) above, show that in theory the work done on a mass falling
under the influence of the gravitational attraction exerted on it by the earth is given by the equation W = AK.

You have just proven an example of the work-energy theorem which states that the change in kinetic energy of
an object is equal to the net work done on it for all the forces acting on it.

W =AK [Work — Energy T heorem]

Although you have only shown the work-energy theorem for a special cases where no friction is present, it can be
applied to any situation in which the net force can be calculated. For example, the net force on an object might
be calculated as a combination of applied, spring, gravitational, and friction forces.
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35 Conservation of Mechanical Energy?®

Name Section Date

Objectives

e To understand the concept of potential energy.

e To investigate the conditions under which mechanical energy is conserved.
Apparatus

e VideoPoint software
o Vertical Toss movie

e CricketGraph software

Overview

The last unit on work and energy culminated with a mathematical proof of the work-energy theorem for a mass
falling under the influence of the force of gravity. We found that when a mass starts from rest and falls a distance
y, its final velocity can be related to y by the familiar kinematic equation

’UJ% =7 +2gy or gy = = (vfc —v7) [Eq. 1]

where vy is the final velocity and v; is the initial velocity of the mass.

We believe this equation is valid because: (1) you have derived the kinematic equations mathematically using
the definitions of velocity and constant acceleration, and (2) you have verified experimentally that masses fall at
a constant acceleration. We then asked whether the transformation of the mass from a speed v; to a speed vy is
related to the work done on the mass by the force of gravity as it falls.

The answer is mathematically simple. Since F; = mg, the work done on the falling object by the force of gravity
is given by
Wy = Fyy = mgy [Eq. 2]

But according to Equation 1, gy = (1/2)v} - (1/2)v}, so we can re-write Equation 2 as

1 1
Wy, =mgy = §mv12c - imv? [Eq. 3]

The (1/ 2)mv?c is a measure of the motion resulting from the fall. If we define it as the energy of motion, or, more
succinctly, the kinetic energy, we can define a work-energy theorem for falling objects:

W=AK [EqA4]

or, the work done on a falling object by the earth is equal to the change in its kinetic energy as calculated by the
difference between the final and initial kinetic energies.

If external work is done on the mass to raise it through a height y (a fancy phrase meaning "if some one picks
up the mass"), it now has the potential to fall back through the distance y, gaining kinetic energy as it falls.
Aha! Suppose we define potential energy to be the amount of external work, Wey:, needed to move a mass at

261990-93 Dept. of Physics and Astronomy, Dickinson College. Supported by FIPSE (U.S. Dept. of Ed.) and NSF. Portions of
this material may have been modified locally and may not have been classroom tested at Dickinson College.
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constant velocity through o distance y against the force of gravity. Since this amount of work is positive while the
work done by the gravitational force has the same magnitude but is negative, this definition can be expressed
mathematically as

U=Wet=mgy  [Eq.5]

Note that when the potential energy is a maximum, the falling mass has no kinetic energy but it has a maximum
potential energy. As it falls, the potential energy becomes smaller and smaller as the kinetic energy increases.
The kinetic and potential energy are considered to be two different forms of mechanical energy. What about the
total mechanical energy, consisting of the sum of these two energies? Is the total mechanical energy constant
during the time the object falls? If it is, we might be able to hypothesize a law of conservation of mechanical
energy as follows: In some systems, the sum, E, of the kinetic and potential energy is a constant. This hypothesis
can be summarized mathematically by the following statement.

E =K + U = constant [Eq. 6]

The idea of mechanical energy conservation raises a number of questions. Does it hold quantitatively for falling
masses? How about for masses experiencing other forces, like those exerted by a spring? Can we develop an
equivalent definition of potential energy for the mass-spring system and other systems and re-introduce the
hypothesis of conservation of mechanical energy for those systems? Is mechanical energy conserved for masses
experiencing frictional forces, like those encountered in sliding?

In this unit, you will explore whether or not the mechanical energy conservation hypothesis is valid for a falling
mass.

Is Mechanical Energy Conserved for a Falling Mass?

Is the mechanical energy conservation hypothesis stated above valid for a falling mass? In other words, is
mechanical energy conserved within the limits of uncertainty? You will analyze a video entitled Vertical Toss
to obtain data for the vertical position of a ball that was tossed in the laboratory as a function of time. This
should give you the information you need to calculate the position and average velocity of the ball at each time.
You can then calculate the kinetic and potential energy for the tossed ball in each frame and see if there is any
relationship between them.

The vertical toss movie was taken at 30 frames per second. The vertical stick in the picture is 2.00 m long. Be
sure to calibrate using this data. Assume the ball has a mass of m = 0.321 kg.

Activity 1: Mechanical Energy for a Falling Mass
Before you actually do the calculations using data, let’s do a little predicting;:

(a) Where is U a maximum? A minimum?

(b) Where is K a maximum? A minimum?

(c) If mechanical energy is conserved what should the sum of K+ U be for any point along the path of a falling
mass?
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Activity 2: Energy Analysis for a Falling Mass

(a) Perform a video analysis of the Vertical Toss movie to obtain the position of the the ball as a function of time.
See Appendix D for details. Copy the data into CricketGraph.

(b) Calculate the vertical distance the ball moves during the time intervals between adjacent frames. To do this:

1. Double-click on the column ID number of column 4. The entire column will be highlighted. The column ID
(C4) appears in the upper left corner of the data window.

2. Type "=NDIF(C3,1)" without the quotes and hit return. This command calculates the difference between a
cell in column 3 (C3) and the adjacent one. The distance traveled between adjacent frames will be displayed
in column 4. Verify the results for one or two cells.

3. Label the column dy (m).
(c) Calculate the average velocity for each time interval. To do this:

1. Double-click on the column ID number of column 5.

2. Type "=C4/0.0333", without quotes, and then hit return. Note that the time interval between adjacent
frames is 0.0333 s.

3. Choose Numeric Format... from the Options menu and set the format for 3 decimal places to the right
of the decimal point. The average velocity for each time interval will be displayed in column 5. Verify the
results for one or two cells.

4. Label the column v (m/s).
(d) Calculate the kinetic energy K for each frame (the mass of the ball is 0.321 kg). To do this:

1. Double-click on the column ID number of column 6.

2. Type "=0.321*C5*C5/2", without the quotes, and then hit return.

3. Change the numeric format to 3 decimal places to the right of the decimal point and verify the results.
4

. Label the column K(J).

(e) Calculate the potential energy U for each frame in column 7.
(f) Calculate the total energy E = K + U for each frame in column 8.

(g) Do the maximum and minimum values for each agree with what you predicted?

(h) Create a graph of K, U, and E vs. time. Put all three on the same graph. Print the graph and put a copy in
your notebook.

(i) Is the sum of K and U what you predicted? Does mechanical energy appear to be conserved within experimental
uncertainties? How would you estimate the value of the experimental uncertainty?

Mechanical Energy Conservation
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How do people in different reference frames near the surface of the earth view the same event with regard to
mechanical energy associated with a mass and its conservation? Suppose the president of your college drops a
2.0 kg water balloon from the second floor of the administration building (10.0 meters above the ground). The
president takes the origin of his or her vertical axis to be even with the level of the second floor. A student standing
on the ground below considers the origin of his coordinate system to be at ground level. Have a discussion with
your classmates and try your hand at answering the questions below.

Activity 3: Mechanical Energy and Coordinate Systems

(a) What is the value of the potential energy of the balloon before and after it is dropped according to the
president? According to the student? Show your calculations and don’t forget to include units!

The president’s perspective is that y = 0.0 m at t = 0 s and that y = 10.0 m when the balloon hits the student):
U; =
Uy =

The student’s perspective is that y = 10.0 m at t = 0 s and that y = 0.0 m when the balloon hits):

Uy =

Note: If you get the same potential energy value for the student and the president you are on the wrong track!

(b) What is the value of the kinetic energy of the balloon before and after it is dropped according to the president?
According to the student? Show your calculations. Hint: Use a kinematic equation to find the velocity of the
balloon at ground level.

President’s perspective:
K; =

Ky =

Student’s perspective:

Note: If you get the same values for both the student and the president for values of the kinetic energies you are
on the right track!

(c) What is the value of the total mechanical energy of the balloon before and after it is dropped according to

the president? According to the student? Show your calculations. Note: If you get the same values for both the

Presidents perspective:

184



E; =

(d) Why don’t the two observers calculate the same values for the mechanical energy of the water balloon?

(e) Why do the two observers agree that mechanical energy is conserved?
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36 Conservative and Non-Conservative Forces?’

Name Section Date

Objectives

e To investigate the conditions under which mechanical energy is conserved.

e To relate conservative and non-conservative forces to the net work done by a force when an object moves
in a closed loop.

Is Mechanical Energy Conserved for a Sliding Object?

In the last two sessions you should have found that mechanical energy is conserved for a freely falling object.
Let’s investigate whether mechanical energy is conserved when an object slides down an inclined plane in the
presence of a friction force.

In this activity you will raise the incline just enough to allow the block to slide at a constant velocity (see the
figure below). By measuring the velocity you can determine if mechanical energy is conserved.

A

Apparatus

e Wooden block with hook

e Board to use as an incline S
e Spring scale

e Meter stick

e Variety of masses

e Triple-beam balance

e Stop watch

Activity 1: Is Mechanical Energy Conserved for a Sliding Block?

(a) Raise the incline until the block slides at a constant velocity once it is pushed gently to overcome the static
friction force. What is the potential energy of the block at point A relative to the bottom of the ramp? Show
your data and calculation.

(b) What is the velocity of the block as it travels down the incline? Show your data and calculation.

271990-93 Dept. of Physics and Astronomy, Dickinson College. Supported by FIPSE (U.S. Dept. of Ed.) and NSF. Portions of
this material may have been modified locally and may not have been classroom tested at Dickinson College.
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(c) What is the kinetic energy of the block at the bottom of the incline? Does it change as the block slides? Show
your calculation.

(d) What is the potential energy change, U, of the block when it reaches point B? Explain.

(e) Assuming the initial kinetic energy (just after your starter shove) is the same as the final kinetic energy, what
is the kinetic energy change, K, of the block when it reaches point B?

(f) Is mechanical energy conserved as a result of the sliding. Cite the evidence for your answer.

As you examine the activities you just completed you should conclude that the conservation of mechanical energy
will probably only hold in situations where there are no friction forces present.

Conservative and Non-Conservative Forces

Physicists have discovered that certain conservative forces such as gravitational forces and spring forces do no
total work on an object when it moves in a closed loop. Other forces involving friction are not conservative and
hence the total work these forces do on an object moving in a closed loop is not zero. In this next activity you
will try to determine the validity of this assertion.

= |

2 b

It is not hard to see that a gravitational force does no net work when an object moves at a constant speed through
a complete round trip. In the above figure, it takes negative external work to lower a mass from point a to point b,
as the force of gravity takes care of the work. On the other hand, raising the mass from point b to point a requires
positive external work to be done against the force of gravity, and thus the net work done by the gravitational
force for the complete trip is zero. When a frictional force is present it always does net work on an object as it
undergoes a round trip. For example, when a block slides from point a to point b on a horizontal surface, it takes
work to overcome the frictional force that opposes the motion. When the block slides back from point b to point
a, the frictional force still opposes the motion of the block so that net work is done. Let’s make this idea more
concrete by sliding a block around a horizontal loop on your lab table in the presence of a frictional force and
computing the work it does. Then you can raise and lower the block around a similar vertical loop and calculate
the work the gravitational force does.
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Activity 2: Are Frictional Forces Conservative According to the Loop Rule?

(a) Put masses on the wooden block and use the spring scale to pull the block around a rectangular path on your
table top at constant velocity. Draw arrows along the path for the direction of motion and the direction of the
force you exert on the block. List the measured forces and distances for each of the four segments of the path to
calculate the work you do around the entire path a to b to a as shown.

@ b
@ 5 ;
d
3 table top
| I

(b) What is the change in K as you progress around the loop?

(c¢) Is the frictional force conservative or non-conservative (i.e. is the total work done by the friction force zero or
non-zero)? Explain.

(d) Is mechanical energy conserved? Explain.

Let’s return once again to our old friend the gravitational force and apply an external force to move the same block
(without the masses) in a vertical loop above the table. Be very, very careful to pay attention to the direction of
the gravitational force relative to the direction of the motion. Remember that work is the dot product of this force
and the displacement in each case so that the work done by the gravitational force when the block moves up and
when it moves down are not the same. What happens to the work when the gravitational force is perpendicular
to the direction of motion, as is the case in moving from left to right and then later from right to left?
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Activity 3: Are G-Forces Conservative?

(a) Use the spring scale and raise and lower the wooden block around a rectangular path above your tabletop at
a constant speed without allowing it to slide at all. Draw arrows along the path for the direction of motion and
the direction of the gravitational force exerted on the block. Use your measured distances, the measurement of
the mass of the block and the dot product notation to calculate the work done by the gravitational force on the
block over the entire path a to b to a as shown. Be careful not to let the block slide on the table or rub against
it. Don’t forget to specify the units! Hints: (1) In path 1 Ax = x1 - x0, Ay = y1 - yo etc. (2) Keep track of the
signs. For which paths is the work negative? Positive?

(b) Is the gravitational force conservative or non-conservative according to the loop rule? Explain.

The Conservation of "Missing" Energy

We have seen in the case of the sliding block that the Law of Conservation of Mechanical Energy does not seem to
hold for forces involving friction. The question is, where does the "missing" energy AE go when frictional forces
are present? All the energy in the system might not be potential energy or kinetic energy. If we are clever and
keep adding new kinds of energy to our collection, we might be able to salvage a Law of Conservation of Energy.
If we can, this law has the potential to be much more general and powerful than the Law of Conservation of
Mechanical Energy.

Activity 4: What Happens to the Missing Energy?
(a) Rub the sliding block back and forth vigorously against your hand? What sensation do you feel?

(b) How might this sensation account for the missing energy?
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Physicists call the energy which is lost by a system as a result of work done against frictional forces thermal
energy. This thermal energy may lead to an increase in the system’s internal energy. Using the symbol E;,: to
represent the change in internal energy of a system that experiences frictional forces allows us to express the Law
of Conservation of Total Energy mathematically with the expression

E =U + K + AE;,; = constant

We are not prepared in this part of the course to consider the nature of internal energy or its actual measurement,
so the Law of Conservation of Energy will for now remain an untested hypothesis. However, we will re-consider
the concept of internal energy later in the course when we deal with heat and temperature.
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37 Momentum and Momentum Change?®

Name Section Date

Objectives

e To understand the definition of momentum and its vector nature as it applies to one- dimensional collisions.

To reformulate Newton’s second law in terms of change in momentum, using the fact that Newton’s "motion"
is what we refer to as momentum.

To develop the concept of impulse to explain how forces act over time when an object undergoes a collision.

To use Newton’s second law to develop a mathematical equation relating impulse and momentum change
for any object experiencing a force.

Overview

In the next few units we will explore the forces of interaction between two or more objects and study the changes
in motion that result from these interactions. We are especially interested in studying collisions and explosions
in which interactions take place in fractions of a second or less. Early investigators spent a considerable amount
of time trying to observe collisions and explosions, but they encountered difficulties. This is not surprising, since
the observation of the details of such phenomena requires the use of instrumentation that was not yet invented
(such as the high speed camera). However, the principles of the outcomes of collisions were well understood by
the late seventeenth century, when several leading European scientists (including Sir Isaac Newton) developed
the concept of quantity -of-motion to describe both elastic collisions (in which objects bounce off each other) and
inelastic collisions (in which objects stick together). These days we use the word momentum rather than motion
in describing collisions and explosions.

We will begin our study of collisions by exploring the relationship between the forces experienced by an object and
its momentum change. It can be shown mathematically from Newton’s laws and experimentally from our own
observations that the integral of force experienced by an object over time is equal to its change in momentum.
This time-integral of force is defined as a special quantity called impulse, and the statement of equality between
impulse and momentum change is known as the impulse momentum theorem.

Apparatus
e Dynamics carts (2) and track

Defining Momentum

In this session we are going to develop the concept of momentum to predict the outcome of collisions. But you
don’t officially know what momentum is because we haven’t defined it yet. Lets start by predicting what will
happen as a result of a simple one-dimensional collision. This should help you figure out how to define momentum
to enable you to describe collisions in mathematical terms.

>

Dickinson
Momentum
Trans Fer. Ea_.
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281990-93 Dept. of Physics and Astronomy, Dickinson College. Supported by FIPSE (U.S. Dept. of Ed.) and NSF. Portions of
this material may have been modified locally and may not have been classroom tested at Dickinson College.
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It’s early fall and you are driving along a two lane highway in a rented moving van. It is full of all of your
possessions so you and the loaded truck were weighed in at 8000 lbs. You have just slowed down to 15 MPH
because you’re in a school zone. It’s a good thing you thought to do that because a group of first graders is just
starting to cross the road. Just as you pass the children you see a 2000 lb sports car in the oncoming lane heading
straight for the children at about 80 MPH. What a fool the driver is! A desperate thought crosses your mind.
You figure that you just have time to swing into the oncoming lane and speed up a bit before making a head-on
collision with the sports car. You want your truck and the sports car to crumple into a heap that sticks together
and doesn’t move. Can you save the children or is this just a suicidal act? For simulated observations of this
situation you can use two carts of different masses set up to stick together in trial collisions.

Activity 1: Can You Stop the Car?

(a) Predict how fast you would have to be going to completely stop the sports car. Explain the reasons for your
prediction.

(b) Try some head on collisions with the carts of different masses to simulate the event. Describe some of your
observations. What happens when the less massive cart is moving much faster than the more massive cart? Much
slower? At about the same speed?

(c) Based on your intuitive answers in parts (a) and (b) and your observations, what mathematical definition
might you use to describe the momentum (or motion) you would need to stop an oncoming vehicle traveling with
a known mass and velocity?

Just to double check your reasoning, you should have come to the conclusion that momentum is defined by the
vector equation

T =m7.
Expressing Newton’s Second Law Using Momentum

Originally Newton did not use the concept of acceleration or velocity in his laws. Instead he used the term
"motion", which he defined as the product of mass and velocity (a quantity we now call momentum). Let’s
examine a translation from Latin of Newton’s first two laws (with some parenthetical changes for clarity).

Newton’s First Two Laws of Motion
1. Every body continues in its state of rest, or of uniform motion in o right line, unless it is compelled to
change that state by forces impressed on it.
2. The (rate of) change of motion is proportional to the motive force impressed: and is made in the direction

in which that force is impressed.

The more familiar contemporary statement of the second law is that the net force on an object is the product
of its mass and its acceleration where the direction of the force and of the resulting acceleration are the same.
Newton’s statement of the law and the more modern statement are mathematically equivalent, as you will show.
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Activity 2: Re-expressing Newton’s Second Law

(a) Write down the contemporary mathematical expression for Newton’s second law relating net force to mass
and acceleration. Please use vector signs and a summation sign where appropriate.

(b) Write down the definition of instantaneous acceleration in terms of the rate of change of velocity. Again, use
vector signs.

d? _ d(m?)

(c) It can be shown that if an object has a changing velocity and a constant mass then m <z~ -
why.

Explain

(d) Show that SF = m@ = %

(e) Explain in detail why Newton’s statement of the second law and the mathematical expression SF = % are
two representations of the same statement, i.e. are logically equivalent.

Momentum Change and Collision Forces
What’s Your Intuition?

You are sleeping in your sister’s room while she is away at college. Your house is on fire and smoke is pouring
into the partially open bedroom door. The room is so messy that you cannot get to the door. The only way to
close the door is to throw either a blob of clay or a super ball at the door there’s not enough time to throw both.

Activity 3: What Packs the Biggest Wallop-A Clay Blob or a Super ball?

Assuming that the clay blob and the super ball have the same mass, which would you throw to close the door the
clay blob (which will stick to the door) or the super ball (which will bounce back with almost the same velocity
it had before it collided with the door)? Give reasons for your choice, using any notions you already have or any
new concepts developed in physics such as force, momentum, Newton’s laws, etc. Remember, your life depends
on it!

Momentum Changes

It would be nice to be able to use Newton’s formulation of the second law of motion to find collision forces, but
it is difficult to measure the rate of change of momentum during a rapid collision without special instruments.
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However, measuring the momenta, of objects just before and just after a collision is usually not too difficult. This
led scientists in the seventeenth and eighteenth centuries to concentrate on the overall changes in momentum
that resulted from collisions. They then tried to relate changes in momentum to the forces experienced by an
object during a collision. In the next activity you are going to explore the mathematics of calculating momentum
changes.

Activity 4: Predicting Momentum Changes

Which object undergoes the most momentum change during the collision with a door the clay blob or the super
ball? Explain your reasoning carefully.

Let’s check your reasoning with some formal calculations of the momentum changes for both inelastic and elastic
collisions. This is a good review of the properties of one-dimensional vectors. Recall that momentum is defined
as a vector quantity that has both magnitude and direction. Mathematically, momentum change is given by the

equation
=p}—Pi

where P} is the initial momentum of the object just before and p} is its final momentum just after a collision.
Activity 5: Calculating 1D Momentum Changes

(a) Suppose a dead ball (or clay blob) is dropped on a table and "sticks" in such a way that it has an initial
momentum just before it hits of p} = —PiyJ Where ] is a unit vector pointing along the positive y axis. Express
the final momentum of the dead ball in the same vector notation.

(b) What is the change in momentum of the clay blob as a result of its collision with the table? Use the same
type of unit vector notation to express your answer.

(c) Suppose that a live ball (or a super ball) is dropped on a table and "bounces" on the table in an elastic
collision so that its speed just before and just after the bounce are the same. Also suppose that just before it
bounces it has an initial momentum p; = —DiyJ where § j is a unit vector pointing along the positive y-axis. What
is the final momentum of the ball in the same vector notation? Hint: Does the final 7 vector point along the +y
or y axis?

(d) What is the change in momentum of the ball as a result of the collision? Use the same type of unit vector
notation to express your result.

(e) The answer is not zero. Why? How does this result compare with your prediction? Discuss this situation.

(f) Suppose the mass of each ball is 0.2 kg and that they are dropped from 1 m above the table. Using this value
for mass of the balls and a calculated value for the velocity of each of the balls just before they hit the table, you
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can calculate the momentum just before the collision p¢ for each of the balls. Also calculate the momentum of
the balls just after the collision p} and the change in momentum AP for each ball. Show your calculations in
the space below.

Applying Newton’s Second Law to the Collision Process (The Egg Toss)

Suppose somebody tosses you a raw egg and you catch it. In physics jargon, one would say (in a very official tone
of voice) that "the egg and the hand have undergone an inelastic collision." What is the relationship between the
force you have to exert on the egg to stop it, the time it takes you to stop it, and the momentum change that
the egg experiences? You ought to have some intuition about this matter. In more ordinary language, would you
catch an egg slowly or fast?

Activity 6: Momentum Changes and Average Forces on an Egg: What’s Your Intuition?

(a) If you catch an egg of mass m that is heading toward your hand at speed v what is the magnitude of the
momentum change that it undergoes?

(b) Does the total momentum change differ if you catch the egg more slowly or is it the same?

(c) Suppose the time you take to bring the egg to a stop is At. Would you rather catch the egg in such a way
that At is small or large. Why?

(d) What do you suspect might happen to the average force you exert on the egg while catching it when At is
small?
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b

fAt = change in momentum Fm=¢h“"9“ in momertum

You can use Newton’s second law to derive a mathematical relationship between momentum change, force, and
collision times for objects. This derivation leads to the impulse- momentum theorem. Let’s apply Newton’s
second law to the egg catching scenario.

Activity 7: Force and Momentum Change

(a) Sketch an arrow representing the magnitude and direction of the force exerted by your hand on the egg as
you catch it.

:"J.r.-’
J iy

(b) Write the mathematical expression for Newton’s second law in terms of the net force and the time rate of
change of momentum. (See Activity 2(e) for details.)

(c) Explain why, if F is a constant during the collision lasting a time At , then % = %.

(d) Show that for a constant force F the change in momentum is given by Ap = F At. Note that for a constant
force, the term F' At is known as the impulse given to one body by another.
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38 Impulse, Momentum, and Interactions®
Name Section Date
Objectives

e To verify the relationship between impulse and momentum experimentally.

e To study the forces between objects that undergo collisions and other types of interactions in a short time
period.

Apparatus

e Dynamics cart with flag and track

Force transducer

Photogate

Science Workshop 750 Interface

DataStudio software (Impulse-Momentum application)

The Impulse-Momentum Theorem

Real collisions, like those between eggs and hands, a Nerfball and a wall, or a falling ball and a table top are
tricky to study because t is so small and the collision forces are not really constant over the time the colliding
objects are in contact. Thus, we cannot calculate the impulse as F t. Before we study more realistic collision
processes, let’s redo the theory for a variable force. In a collision, according to Newton’s second law, the force
exerted on a falling ball by the table top at any infinitesimally small instant in time is given by

7= % [Eq. 1]

To describe a general collision that takes place between an initial time t; and a final time t; , we must take the
integral of both sides of the equation with respect to time. This gives

fﬁdt:/f%dh(ﬁ}—ﬁ):Aﬁ [Eq.2]

ti ti

Impulse is a vector quantity defined by the equation

T [ Pa  [(Be3

t;
By combining equations [2] and [3] we can formulate the impulse-momentum theorem in which

T=A7 [BEq4

If you are not used to mathematical integrals and how to solve them yet, don’t panic. If you have a fairly smooth
graph of how the force F varies as a function of time, the impulse integral can be calculated as the area under
the F-t curve.

291990-93 Dept. of Physics and Astronomy, Dickinson College. Supported by FIPSE (U.S. Dept. of Ed.) and NSF. Portions of
this material may have been modified locally and may not have been classroom tested at Dickinson College.

197



Let’s see qualitatively what an impulse curve might look like in a real collision in which the forces change over
time during the collision. In particular, let’s consider the collision of a Nerfball with a wall as shown below.

—

i N g: E\: Eﬁ E E:

Activity 1: Predicting Collision Forces That Change

(a) Suppose a Nerfball is barreling toward a wall and collides with it. If friction is neglected, what is the net force
exerted on the object just before it starts to collide?

(b) When will the magnitude of the force on the ball be a maximum?
(¢) Roughly how long does the collision process take? Half a second? Less? Several seconds?

(d) Attempt a rough sketch of the shape of the force the wall exerts on a moving object during a collision.

t(=)

Verification of the Impulse-Momentum Theorem

To verify the impulse-momentum theorem experimentally we must show that for an actual collision involving a
single force on an object the equation

ty
Fdt = AP
t;

holds, where the impulse integral can be calculated by finding the area under the curve of a graph of F vs. t.
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In this experiment you will investigate this theorem by measuring the impulse and the change in momentum of a
cart undergoing a one-dimensional collision. The experimental setup is shown in the figure below. The end of the
track with the motion detector should be raised about 1.5 cm so that, when released, the cart will collide with the
force probe. The force probe will measure the force as a function of time during the collision. The motion detector
is used to measure the velocity of the glider before and after the collision. You will use the Impulse-Momentum
application to make these measurements.

Activity 2: Verification of the Impulse-Momentum Theorem

(a) Measure and record the mass of the cart m.

(b) Construct a data table in the space below with the column headings Trial #, Area, v;, and vy. Make enough
room to record 10 trials.

(c) Open the Impulse-Momentum application from the Apple menu. Hold the cart about half-way up the track
and press the TARE button on the force sensor. Start recording data and release the cart. Stop recording data
after the cart collides with the force transducer and bounces back. The computer will then display graphs of
velocity and force versus time.
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(d) Determine the area under the force vs. time graph and record the value in your data table. See Appendix
B Introduction to DataStudio for instructions on how to determine the area under a curve.

(e) Use the smart tool to find the velocity just before the collision and the velocity just after the collision from
the velocity versus time graph. Record these values in your data table.

(f) Repeat parts (¢) through (e) nine times. Be sure to press the TARE button on the force sensor before each
run. Print the graphs for one of your trials.

(g) Construct another data table in the space below with the column headings Trial #, I, Ap, and % Diff. For
each trial, calculate and record the impulse, I, and the change in momentum, Ap, in kg.m/s. Also, determine the
% difference between the two for each trial. Also, show a sample calculation of I, Ap, and % Diff for one of your
trials.

(h) Do your results verify the impulse-momentum theorem within experimental uncertainty? Explain.

(i) Is there any indication of a systematic uncertainty? What are the possible sources of error?
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39 Newton’s Laws and Momentum Conservation®’
Name Section Date
Objectives

e To study the forces between objects that undergo collisions and other types of interactions in a short time
period.

e To formulate the Law of Conservation of Momentum as a theoretical consequence of Newton’s laws and to
test it experimentally.

Apparatus

e A tennis ball.

e A video analysis system (Adobe Premier and VideoPoint).
e Graphing and curve fitting software (Cricket Graph).

e 2 force probes

e 2 dynamics carts

e A track, a pendulum bob, and a level.

o Science Workshop 750 Interface

e DataStudio software (Two Force Probes application)

Predicting Interaction Forces between Objects

We recently focused our attention on the change in momentum that an object undergoes when it experiences a
force that is extended over time (even if that time is very short!). Since interactions like collisions and explosions
never involve just one object, we would like to turn our attention to the mutual forces of interaction between two
or more objects. As usual, you will be asked to make some predictions about interaction forces and then be given
the opportunity to test these predictions.

Activity 1: Predicting Interaction Forces

(a) Suppose the masses of two objects are the same and that the objects are moving toward each other at the
same speed so that

mi=my and T = —T3

Predict the relative magnitudes of the forces between object 1 and object 2. Place a check next to your prediction!

Object 1 exerts more force on object 2.

301990-93 Dept. of Physics and Astronomy, Dickinson College. Supported by FIPSE (U.S. Dept. of Ed.) and NSF. Portions of
this material may have been modified locally and may not have been classroom tested at Dickinson College.
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The objects exert the same force on each other.
Object 2 exerts more force on object 1.

(b) Suppose the masses of two objects are the same and that object 1 is moving toward object 2, but object 2 is
at rest.

mi=ms and T > T3

Predict the relative magnitudes of the forces between object 1 and object 2. Place a check next to your prediction!
Object 1 exerts more force on object 2.
The objects exert the same force on each other.
Object 2 exerts more force on object 1.

(c) Suppose the mass of object 1 is much less than that of object 2 and that it is pushing object 2 that has a
dead motor so that both objects move in the same direction at speed v.

my € my and T =73

Predict the relative magnitudes of the forces between object 1 and object 2. Place a check next to your prediction.
Object 1 exerts more force on object 2.
The objects exert the same force on each other.
Object 2 exerts more force on object 1.

(d) Suppose the mass of object 1 is greater than that of object 2 and that the objects are moving toward each
other at the same speed so that
my >ms and Tl = —03
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Predict the relative magnitudes of the forces between object 1 and object 2. Place a check next to your prediction.
Object 1 exerts more force on object 2.
The objects exert the same force on each other.
Object 2 exerts more force on object 1.

(e) Suppose the mass of object 1 is greater than that of object 2 and that object 2 is moving in the same direction
as object 1 but not quite as fast so that

my>me and T > T3

Predict the relative magnitudes of the forces between object 1 and object 2. Place a check next to your prediction.
Object 1 exerts more force on object 2.
The objects exert the same force on each other.
Object 2 exerts more force on object 1.

(f) Suppose the mass of object 1 is greater than that of object 2 and that both objects are at rest until an
explosion occurs, so that
mi>me and T =73=0

Cbject? M

Predict the relative magnitudes of the forces between object 1 and object 2. Place a check next to your prediction.
Object 1 exerts more force on object 2.
The objects exert the same force on each other.
Object 2 exerts more force on object 1.

(g) Provide a summary of your predictions. What are the circumstances under which you predict that one object
will exert more force on another object?
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Measuring Mutual Forces of Interaction

In order to test the predictions you made in the last activity you can study gentle collisions between two force
probes attached to carts. You can strap additional masses to one of the carts to increase its total mass so it
has significantly more mass than the other. If a compression spring is available you can set up an "explosion"
between the two carts by compressing the spring between the force probes on each cart and letting it go. You
can make and display the force measurements with the Two Force Probes application. You can also determine
the areas under the force vs. time graphs to find the impulses experienced by the carts during the collisions. See
Appendix B Introduction to DataStudio for instructions on finding the area under a curve.

Activity 2: Measuring Slow Forces

(a) Play a gentle tug-of-war in which you push the ends of the two force probes back and forth for about 10
seconds with your partner using properly calibrated force probes. What do you observe about the mutual forces?

(b) Play a gentle tug-of-war in which you pull the ends of two force probes back and forth for about 10 seconds
with your partner using properly calibrated force probes. What do you observe about the mutual forces?

Now that you’re warmed up to this two force measurement technique go ahead and try some different types of
gentle collisions between two carts of different masses and initial velocities.

Activity 3: Measuring Collision Forces

(a) Use the two carts to explore various situations that correspond to the predictions you made about mutual
forces. Your goal is to find out under what circumstances one object exerts more force on another object. Describe
what you did in the space below and attach a printout of at least one of your graphs of force 1 vs. time and force
2 vs. time.

(b) What can you conclude about forces of interactions during collisions? Under what circumstances does one
object experience a different magnitude of force than another during a collision? How do the magnitudes and
directions of the forces compare on a moment by moment basis in each case?

(c) Do your conclusions have anything to do with Newton’s third law?
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(d) How does the vector impulse due to object 1 acting on object 2 compare to the impulse of object 2 acting on
object 1 in each case? Are they the same in magnitude or different? Do they have the same sign or a different
sign? Remember 7= tt,f dt.

Newton’s Laws and Momentum Conservation

In your investigations of interaction forces, you should have found that the forces between two objects are equal
in magnitude and opposite in sign on a moment by moment basis for all the interactions you studied. This is
of course a testimonial to the seemingly universal applicability of Newton’s third law to interactions between
ordinary masses. You can combine the findings of the impulse-momentum theorem (which is really another form
of Newton’s second law since we derived it mathematically from the second law) to derive the Law of Conservation
of Momentum shown below.

Law of Conservation of Momentum

X7 =pi+p2 = m +m = constant in time

where 1 refers to object 1 and 2 refers to object 2 and i refers to the initial momenta and f to the final momenta.
Activity 4: Deriving Momentum Conservation

(a) What did you conclude in the last activity about the magnitude and sign of the impulse on object 1 due to
object 2 and vice versa when two objects interact? In other words, how does I; compare to I5?

(b) Since you have already verified experimentally that the impulse-momentum theorem holds, what can you
conclude about how the change in momentum of object 1, Ap{, as a result of the interaction compares to the
change in momentum of object 2, AP3, as a result of the interaction? Remember T= ATp.

(c) Use the definition of momentum change to show that the Law of Conservation of Momentum ought to hold
for a collision, so that ¥ = p1} + P2, = m + W = constant in time.

In the next few units you will continue to study one- and two-dimensional collisions using momentum conservation.
Right now you will attempt to test the Law of Conservation of Momentum for a simple situation by using video
analysis. To do this you will make and analyze a video movie in which two carts of different masses undergo a
one-dimensional elastic collision. You may not be able to finish this in class, but you can complete the project
for homework.

Testing Momentum Conservation
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You just used theoretical grounds to derive momentum conservation. This idea still must be tested against
experiment. You will make this test by colliding two carts on a track and recording and analyzing their motion
before and after they hit.

Activity 5: Colliding Carts

(a) Make a movie of two carts colliding by following these steps.

1. Turn the camera on and center the track in the field-of-view. The camera should be about 1 m above the
center of the track where one cart (the target) will sit. The target cart should be located straight down
below the camera. Use the pendulum bob to position the camera and cart. Align the track so that it is
parallel to the border of the movie image. Make sure the track is flat by using the small level available at
each station. Place a ruler somewhere in the field-of-view where it won’t interfere with the collision. This
ruler will be user later to determine the scale.

2. Make a movie of one cart (the projectile) rolling into the other, stationary cart (the target). See Appendix
D: Video Analysis for details on making the movie. When you save the movie file give it the name
Collision.

(b) Determine the position of both carts (the target and the projectile) during the motion. To do this task
follow the instructions in Appendix D: Video Analysis for recording and calibrating the video data. Mark
two objects on each frame; click once on the projectile cart and once on the target cart. The data table should
contain five columns with the values of time, x and y positions of the projectile cart, and x and y positions of
the target cart. Note: Since this is a horizontal 1D collision the y-coordinates are of no interest. They should be
constant for each frame. If they are not, consult your instructor.

(c) Create graphs of position versus time for both carts. See Appendix C: Introduction to Cricket Graph
for more details. Print the graphs and attach them to your write-up.

(d) Use your data to calculate the momenta of carts 1 and 2 before the collision.

(e) Use the data to calculate the momenta of carts 1 and 2 after the collision.

(f) Within the limits of experimental uncertainty, does momentum seem to be conserved (i.e., is the total mo-
mentum of the two cart system the same before and after the collision)?
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40 Momentum Conservation and Center-of-Mass>!

Name Section Date

Objectives

To explore the applicability of conservation of momentum to the mutual interactions among objects that experi-
ence no external forces (so that the system of objects is isolated). You will calculate momentum changes for an
isolated system consisting of two very unequal masses and to observe momentum changes for a system consisting
of two equal masses.

Apparatus

e Two Pasco dynamics carts with equal masses (and springs, magnets, and velcro).
e A track for the carts.

e A video analysis system (Adobe Premier and VideoPoint).

Overview

You have now tested Newton’s third law under different conditions and it always seems to hold. The implications
of that are profound, because whenever an object experiences a force, another entity must also be experiencing
a force of the same magnitude. A single force is only half of an interaction. Whenever there are interactions
between two or more objects, it is often possible to draw a boundary around a system of objects and say there is
no net external force on it. A closed system with no external forces on it is known as an isolated system. Some
examples of isolated systems are shown in the figure below.

As a consequence of Newton’s laws, momentum is believed to be conserved in isolated systems. This means
that, no matter how many internal interactions occur, the total momentum of each of the systems pictured above
should remain constant. When one of the objects gains some momentum another part of the system must lose
the same amount of momentum. If momentum doesn’t seem to be conserved then we believe that there is an
outside force acting on the system. Thus, by extending the boundary of the system to include the source of that
force we can save our Law of Momentum Conservation. The ultimate isolated system is the whole universe. Most
astrophysicists believe that momentum is conserved in the universe!

You will begin this unit by examining a situation in which it appears that momentum is not conserved and then
seeing how the Law of Conservation of Momentum can hold when the whole isolated system is considered. In the
next activity you will make qualitative observations using two carts of equal mass moving toward each other at
the same speed. You will observe momentum changes for several types of interactions, including an elastic and
inelastic collision and an explosion.

Next, a new quantity, called the center-of-mass of a system, will be introduced as an alternate way to keep track
of the momentum associated with a system or an extended body. In the next unit, you will use this concept to
demonstrate that the Law of Conservation of Momentum holds for both one-dimensional and two-dimensional
interactions in isolated systems. Several other attributes of the center-of-mass of a system will be studied.

Examples of isolated systems in which the influence of outside forces is negligible are shown below.

311990-93 Dept. of Physics and Astronomy, Dickinson College. Supported by FIPSE (U.S. Dept. of Ed.) and NSF. Portions of
this material may have been modified locally and may not have been classroom tested at Dickinson College.
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When an Irresistible Force Meets an Immovable Object

Let’s assume that a superball and the moon (with an astronaut on it) are the objects in a closed system. (The
pull of the earth doesn’t affect the falling ball, the astronaut, or the moon nearly as much as they affect each
other.) Suppose that the astronaut drops the superball and it falls toward the moon so that it rebounds at the
same speed it had just before it hit. If momentum is conserved in the interaction between the ball and the moon,
can we notice the moon recoil?

Activity 1: Wapping the Moon with a Superball

(a) Suppose a ball of mass 0.20 kg is dropped and falls toward the surface of the moon so that it hits the ground
with a speed of 40 m/s and rebounds with the same speed. According to the Law of Conservation of Momentum,
what is the velocity of recoil of the moon?

O m=0.2 kg
l vi=4III mss

Mass of Moon: 7.4 x 1022 kq

(b) Will the astronaut notice the jerk as the moon recoils from him? Why or why not?
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(c) Consider the ball and the moon as an interacting system with no other outside forces. Why might the
astronaut (who hasn’t taken physics yet!) have the illusion that momentum isn’t conserved in the interaction
between the ball and the moon?

(d) Why might an introductory physics student here on earth have the impression when throwing a ball against
the floor or a wall that momentum isn’t conserved?

Collisions with Equal Masses: What Do You Know?

Let’s use momentum conservation to predict the results of some simple collisions. The diagrams below show
objects of equal mass moving toward each other. If the track exerts negligible friction on them then the two cart
system is isolated. Assume that the carts have opposite velocities so that 7} = -7;. To observe what actually
happens, you can use relatively frictionless carts with springs, magnets, and Velcro.

Activity 2: Predictions of the Outcome of Collisions

(a) Sketch a predicted result of the interaction between two carts that bounce off each other so their speeds
remain unchanged as a result of the collision. Use arrows to indicate the direction and magnitude of the velocity
of each object after the collision.

Eouncy Carts (w spring plungers or magnets) i
o W -5

o
n
)
[
&
-0

" -

(b) Observe a bouncy collision (also known as an elastic collision) and discuss whether or not the outcome was
what you predicted it to be. If not, draw a new sketch with arrows indicating the magnitudes and directions of the
velocities. What is the apparent relationship between the final velocities o7} and 93}? How do their magnitudes
compare to those of the initial velocities?

(c) Sketch the predicted result of the interaction between two objects that stick to other. Use arrows to indicate
the direction and magnitude of the velocity of each object after the collision.
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(d) Observe a sticky collision (also known as an inelastic collision) and discuss whether or not the outcome was
what you predicted it to be. If not, draw a new sketch with arrows indicating the magnitudes and directions of the
velocities. What is the apparent relationship between the final velocities 1?} and 13}? How do their magnitudes

compare to those of the initial velocities?

(e) Sketch a predicted result of the interaction between two objects that collide and then explode. Use arrows to
indicate the direction and magnitude of the velocity of each object after the collision.

" ™
Exploding Carts (w! loaded springs or gunpowder)
o v —-%
=
n
)
[
&
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(f) Observe an exploding or "superelastic" collision and discuss whether or not the outcome was what you predicted
it to be. If not, draw a new sketch with arrows indicating the magnitudes and directions of the velocities. What
is the apparent relationship between the final velocities 17} and 13}? How do their magnitudes compare to those

of the initial velocities?

(g) What is the total momentum (i.e., the vector sum of the initial momenta) before the collision or explosion in
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all three situations?

(h) Does momentum appear to be conserved in each case? Is the final total momentum the same as the initial
total momentum of the two cart system?

Defining a Center for a Two Particle System

What happens to the average position of a system in which two moving carts having the same mass interact with
each other? That is, what happens to <x> = (x1 + x2)/2 as time goes by? What might the motion of the
average position have to do with the total momentum of the system? To study this situation you will need a
video movie-making and analysis system. In making these observations you’ll need to look at the pattern of data
points that you place over the frames. You will not need to create graphs or work with numbers.

Activity 3: Motion of the Average Position

(a) Imagine interactions between identical carts moving toward each other at the same speed as described in
Activity 2. Do you expect the average position of the carts to move before, during, or after the collision or
explosion in each case? Might this have anything to do with the fact that the total momentum of such a system
is zero?

(b) Let’s use video analysis to study a real situation in which the total momentum of the system is not zero. Do
the following: (1)

1. Turn the video camera on and center the track in the field-of-view. The camera should be about 1 m above
the center of the track. Align the track so that it is parallel to the border of the movie image. Make sure the
track is flat by using the small level available at each station. Place a ruler somewhere in the field-of-view
where it won'’t interfere with the collision and parallel to one side of the field-of-view. This ruler will be
user later to determine the scale.

2. Use two carts that have small magnets placed at one end. Make a movie of the collision of two equal mass
carts moving in the same direction with different speeds. Orient the carts so they collide on the sides that
hold the magnets. See Appendix D: Video Analysis for details on making the movie. When you save
the movie file give it the name Collision.

(c) Determine the average position of both carts during the motion. To do this task follow the instructions in
Appendix D: Video Analysis for creating and calibrating a data table in VideoPoint. On each frame click
once on the point halfway between the centers of the two carts. When you are finished go to the Edit menu and
highlight Leave/Hide Trails.

How does the position average appear to move? Might this motion have anything to do with the fact that the
total momentum of the system is directed in one direction? What is your evidence?
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(¢) You should have found that if the momentum of the carts is constant then the average position moves at
a constant rate also. Suppose the masses of the carts are unequal? How does the average position of the two
objects move then? Lets have a look at a collision between unequal masses. Make and analyze a new movie as
you did before, but add a significant amount of mass to one of the carts. Once again track the motion of the
average position by clicking halfway between the centers of the two carts. Is the motion of this average position
uniform?

(d) You should have found the average position of a system of two unequal masses does not move at a constant
velocity. We need to define a new quantity called the center-of-mass that is at the center of two equal masses but
somewhere else when one of the masses is larger. Use the video analysis system and your movie to find a"center-
of-mass location." The center- of-mass is a location in the isolated system that moves at a constant velocity before,
during, and after the collision. Note: You should be able to make some intelligent guesses. Describe what you
tried and the outcomes in the space below. In the future you will develop a formal, mathematical definition of
the center-of-mass and learn about some of its important characteristics. Later, you will apply the center-of-mass
concept to the analysis of momentum conservation in two-dimensional collisions.

212



41 Two-Dimensional Collisions?3?

Name Section Date

Objectives

To test experimentally that the Law of Conservation of Momentum holds for two-dimensional collisions in isolated
systems.

Apparatus

e A set of ball bearings, pendulum bob, a protractor, a level, some carts, and a wooden board.

e A video analysis system (Adobe Premier and VideoPoint).

2-D Collisions Intelligent Guesses & Observations

Conservation of momentum can be used to solve a variety of collision and explosion problems. So far we have
only considered momentum conservation in one dimension, but real collisions lead to motions in two and three
dimensions. For example, air molecules are continually colliding in space and bouncing off in different directions.

You probably know more about two dimensional collisions than you think. Draw on your prior experience with
one-dimensional collisions to anticipate the outcome of several two dimensional collisions. Suppose you were a
witness to several accidents in which you closed your eyes at the moment of collision each time two vehicles
heading toward each other crashed. Even though you couldn’t stand to look, can you predict the outcome of the
following accidents?

You see car A enter an intersection at the same time as car B coming from its left enters the intersection. Car
B is the same make and model as car A and is traveling at the same speed. The two cars collide and bounce off
one another. What happens? Hint: You can use a symmetry argument, your intuition or a quick analysis of 1-D
results. For example, pick a coordinate system and think about two separate accidents: the x accident in which
car B is moving at speed vy, and car A is standing still, and the y accident in which car A is moving at speed
Vay = Vbe and car B is standing still.

The diagram below shows an aerial view of several possible two-dimensional accidents that might occur. The first
is a collision at right angles of two identical cars.

321990-93 Dept. of Physics and Astronomy, Dickinson College. Supported by FIPSE (U.S. Dept. of Ed.) and NSF. Portions of
this material may have been modified locally and may not have been classroom tested at Dickinson College.
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Activity 1: Qualitative 2-D Collisions

(a) Using the diagram above, draw a dotted line in the direction you think your two cars will move after a collision
between cars with equal masses and velocities. Explain your reasoning in the space below.

(b) Draw a dotted line for the direction the cars might move if car A were traveling at a speed much greater than
that of car B. Explain your reasoning in the space below.

(c) If instead of a car, the vehicle A were a large truck traveling at the same speed as car B, in what direction
will the vehicles move? Draw the dotted lines. Explain your reasoning in the space below.

(d) Now suppose that the two vehicles are traveling at the same speed. If the two vehicles were to stick together;
in what direction would they move after the collision, if they undergo a perfectly inelastic collision? Explain your
reasoning in the space below.

(e) Finally, set up these types of collisions. Observe each type of collision several times. Draw solid lines in the
diagram above for the results. How good were your predictions? Explain your reasoning in the space below.
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(f) What rules have you devised to predict more or less what is going to happen as the result of a two dimensional
collision?

Theory of 2D Momentum Conservation

Since momentum is a vector, the Law of Conservation of Momentum in two dimensions requires that if the vector
conservation equation is broken into components then the conservation law must also hold for each of the vector
components. Thus, if we consider the interaction of several objects, and if

P =pi; + P2 + D3 + ... = Pif +Paf + D3 + ... = aconstant
then
Yps = Pliz + P2iz + P3iz + - -. = Pifs + D2fz + P3jz + ... = a constant
and
Ypy = Priy + D2iy + P3iy + ... = P1fy + Payy + P3py + ... = a constant

If a coordinate system is chosen and a given momentum vector makes an angle § with respect to the designated
x-axis then the momentum vector can be broken into components in the usual way:

7= Pz/i\+py3'\=pcost9/i\+psin03\

Let’s consider an interaction in which a large mass collides with two smaller hard masses connected by a blob of
clay. Assume that this interaction causes the bundle of masses to divide into three fragments as shown in the
figure below.

_}
) A,
s p1| .,—I-"'
[ : pn. 8 m; ./’Ln:ntsuf
Mmasses
r'l"l1 mE
Before the Interaction After the Interaction

Activity 2: Taking Components

(a) Consider mass #1. Suppose m; = 2.0 kg and the speed vi; = 1.5 m/s. What is the initial x-component of
momentum? The initial y-component of momentum? Show your calculations.

Piiz =
P1iy =

(b) Consider mass #2. Suppose my, = 1.8 kg and the speed vo; = 2.3 m/s. If § = 40°, what is the initial
x-component, of momentum? The initial y-component of momentum? Show your calculations.
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Is Momentum Conserved in Two Dimensions?

During the last few sessions we have placed a lot of faith in the power of Newton’s second and third laws to
predict that momentum is always conserved in collisions. We have tested the conservation of momentum for
one-dimensional collisions and have shown mathematically and experimentally for one-dimensional collisions that
if momentum is conserved the center- of-mass of a system will move at a constant velocity regardless of how many
internal interactions take place. Now, let’s test whether a collision in an isolated two body system will conserve
momentum within the limits of experimental uncertainty.

Consider two ball bearings that are free to move in two dimensions on a table. We will record and analyze a video
of the two bearings colliding. You can then find the x- and y-components of the momentum for each bearing and
test the conservation of momentum in a closed system.

Activity 3: Testing the Conservation of Momentum

(a) Make a movie of two ball bearings colliding by following these steps.

1. Turn the camera on and center the wooden board in the field of view. The camera should be about 1 m
above the center of the board where one bearing(the target) will sit. The target bearing should be located
straight down below the camera. Use the pendulum bob to position the camera and bearing. Make sure the
board is flat by using the small level available at each station. Place a ruler somewhere in the field-of-view
where it won’t interfere with the collision and parallel to one edge of the field of view. This ruler will be
user later to determine the scale.

2. Make a movie of one bearing (the projectile) rolling into the other, stationary bearing (the target). See
Appendix D: Video Analysis for details on making the movie. Make the collision a glancing one so that
the projectile is scattered to some large angle (otherwise, you will only test momentum conservation in one
dimension).

(b) Determine the position of both bearings (the target and the projectile) during the motion. To do this task
follow the instructions in Appendix D: Video Analysis for creating, calibrating, and analyzing movie data.
On each frame click once on the projectile bearing and once on the target. The data table should contain five
columns with the values of time, x and y positions of the projectile, and x and y positions of the target. When you
calibrate the movie data, note the number of frames per second and record the time interval between successive
frames.

At =

(c) Record the masses of the two ball bearings.

m; — mo —

(d) Create a graph of vertical position versus horizontal position for the projectile. See Appendix C: Intro-
duction to Cricket Graph for more details. Make sure the x and y axes cover intervals of the same size so
the plot is not distorted. You can adjust the range of an axis by double-clicking anywhere along the axis and
modifying the parameters in the pop-up window that appears. Next, you need to plot the position of the target
on the same graph. Under the Graph menu in Cricket Graph drag down to Overlay Graph and then drag over
to the scatter plot icon and release the mouse. Select the vertical and horizontal position data for the target and
click OK. You should see both sets of data on a single graph. If not, try again. If there are still problems, consult
your instructor. Print the graph and attach it to this unit.

(e) Draw by eye a best fit line through the points corresponding to the trajectory of the projectile before the
collision. This line will become a new x-axis when you analyze the momentum components of the system. Draw
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best fit lines through the points for both ball bearings after the collision. What are the angles of the paths of the
target and projectile after the collision with respect to trajectory of the incoming projectile before the collision?

(f) Use the graph to measure the distance each bearing covered before and after the collision. What is the average
velocity for each ball bearing before and after the collision? (Hint: Use the value of At that you found earlier).

Vii = vif =

V2; = VoF =

(e) What are the momentum components for each ball bearing before and after the collision? What is the
momentum of the system before the collision along the path of the incoming projectile? What is the momentum
of the entire system after the collision? Within the limits of experimental uncertainty is momentum conserved?
What is your evidence? What are possible sources of uncertainty in your data?

Piiz = Piiy =
P2iz = P2iy =
Pifz = Pify =
P2fz = P2y =
Piz = DPiy =
Prz = Pry =
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42 Connecting Angular Displacement with Linear Displacement along
the Arc

Name Section Date

Objectives:

e Discover the relationship between arc length, radius, and angle
e Understand radian measure

Apparatus

e Wooden disks
o Meter stick

e String
Activity

1. With the string and meter stick, determine the circumference of the disk in cm.

circumference =

2. Calculate the disk’s diameter and radius.

diameter = radius =

3. Check that the meter stick is inserted in the base with the scale visible.

4. Be sure the string is attached at the 0-mark on the disk. Wind the string around the disk one full rotation
so that the 0-mark and the beginning of the string are at the bottom of the disk and the string is wound
around once in such a way that when you unwind it, you can pull it along the meter stick and the disk will
rotate counter-clockwise.

5. In this configuration, note the position of the tag on the string with reference to the meter stick.

6. While keeping the string taut, pull it gently to displace the tag five centimeters. Record in the table below
the angular position of the bottom of the disk.

7. Repeat step vi in five centimeter increments until the string is completely unwound.

8. Calculate the angular displacements and plot linear displacement versus angular displacement.
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(cm) (rad) (rad)

Questions:

1. Do your data points appear to fall on a line? Did you expect them to? Explain.

2. If you were to fit a line through these points, would that line go through the origin? Explain.

3. Fit a line through the data. Express in words the meaning of the slope. What is its physical interpretation?

4. If a bigger disk were used, what would your result be? For a given angular displacement of the bigger disk,
how would the linear displacement differ?

5. What is the ratio of some arc length to the radius of the disk?

6. The unit given for the angular displacement is rad, which is an abbreviation for radians. Express, in words,
the meaning of the term.

7. How many radians are in half the circumference of the disk? In the whole circumference?
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43 Introduction to Rotation®?

Name Section Date

Objectives

To understand the definitions of angular velocity and angular acceleration and the kinematic equations for rota-
tional motion on the basis of observations. We will discover the relationship between linear velocity and angular
velocity and between linear acceleration and angular acceleration.

Apparatus

e A rotator consisting of an axle, a metal disk, and a fixture to hold the disk.
e A stopwatch.

e A meter stick, drawing compass, flexible ruler, a protractor, and some string.

Overview

Earlier in the course, we studied centripetal force and acceleration, which characterize circular motion. In general,
however, we have focused on studying motion along a straight line as well as the motion of projectiles. We have
defined several measurable quantities to help us describe linear and parabolic motion, including position, velocity,
acceleration, force, and mass. In the real world, many objects undergo circular motion and/or rotate while they
move. The electron orbiting a proton in a hydrogen atom, an ice skater spinning, and a hammer which tumbles
about while its center-of-mass moves along a parabolic path are just three of many rotating objects.

Since many objects undergo rotational motion it is useful to be able to describe their motions mathematically.
The study of rotational motion is also very useful in obtaining a deeper understanding of the nature of linear and
parabolic motion.

We are going to try to define several new quantities and relationships to help us describe the rotational motion
of rigid objects, i.e., objects that do not change shape. These quantities will include angular velocity, angular
acceleration, rotational inertia and torque. We will then use these new concepts to develop an extension of
Newton’s second law to describe rotational motion for masses more or less concentrated at a single point in space
(e.g., the electron in the hydrogen atom) and for extended objects (like the tumbling hammer).

Rigid vs. Non-rigid Objects

We will begin our study of rotational motion with a consideration of some characteristics of the rotation of rigid
objects about a fixed axis of rotation. The motions of objects, such as clouds, that change size and shape as time
passes are hard to analyze mathematically. In this unit we will focus primarily on the study of the rotation of
particles and rigid objects around an axis that is not moving. A rigid object is defined as an object that can
move along a line or can rotate without the relative distances between its parts changing.

Shown in the figure below are examples of a non-rigid object in the form of a cloud that can change shape and
of a rigid object in the form of an empty coffee cup that does not change shape.

331990-93 Dept. of Physics and Astronomy, Dickinson College. Supported by FIPSE (U.S. Dept. of Ed.) and NSF. Portions of
this material may have been modified locally and may not have been classroom tested at Dickinson College.
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A hammer tossed end over end and an empty coffee cup are examples of rigid objects. A ball of clay that deforms
permanently in a collision and a cloud that grows are examples of non-rigid objects.

A Puzzler

Use your imagination to solve the rotational puzzler outlined below. It’s one that might stump someone who
hasn’t taken physics.

Activity 1: Horses of a Different Speed

You are on a white horse, riding off at sunset with your beau on a chestnut mare riding at your side. Your horse
has a speed of 4.0 m/s and your beau’s horse has a speed of 3.5 m/s, yet he/she constantly remains at your side.
Where are your horses? Make a sketch to explain your answer.

Review of the Geometry of Circles

Remember way back before you came to college when you studied equations for the circumference and the area
of a circle? Let’s review those equations now, since you’ll need them a lot from here on in.

Activity 2: Circular Geometry

(a) What is the equation for the circumference, C, of a circle of radius r? What are its units?

(b) What is the equation for the area, A, of a circle of radius r? What are its units?

(c) If someone told you that the area of a circle was A = r, how could you refute them immediately? What’s
wrong with the idea of area being proportional to r?

Distance from an Axis of Rotation and Speed

Let’s begin our study by examining the rotation of objects about a common axis that is fixed. What happens to
the speeds of different parts of a rigid object that rotates about a common axis? How does the speed of the object
depend on its distance from an axis? You should be able to answer this question by observing the rotational
speed of the rotator at each experimental station.
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Place the disk in the fixture and slowly rotate it a constant speed. The figure below shows the rotator and the
definition of angular displacement.

g8

Feference Axis

Activity 3: Spinning the Rotator Speed vs. Radius

(a) Measure how long it takes the white marker to sweep through a known angle. Record the time and the angle
in the space below.

(b) Calculate the distance of the paths traced out by outer edge of the white marker and the inner edge as it
rotated through the angle you just recorded. (Note: What do you need to measure to perform this calculation?)
Record your data below.

(c) Calculate the average speed of the outer edge of the white marker and the average speed of the inner edge of
the marker. How do they compare?

(d) Do the speeds seem to be related in any way to the distances of inner and outer edges of the white marker
from the axis of rotation? If so, describe the relationship mathematically.
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(e) As you rotate, does the distance from the axis of rotation to the outer edge of the white marker change?

(f) As you rotate, does the distance from the axis of rotation to the inner edge of the white marker change?

(g) At any given time during your rotation, is the angle between the reference axis and the inner edge of the white
marker the same as the angle between the axis and the outer edge of the white marker, or do the angles differ?

(h)At any given time during your rotation, is the rate of change of the angle between the reference axis and the
inner edge of the white marker the same as the rate of change of the angle between the axis and the outer edge,
or do the rates differ?

(i) What happens to the linear velocity, v, of the outer edge of the marker as it rotates at a constant rate? Hint:
What happens to the magnitude of the velocity, i.e., its speed? What happens to its direction?

(j) Is the outer edge of the white marker accelerating? Why or why not?

Radians, Radii, and Arc Lengths

An understanding of the relationship between angles in radians, angles in degrees, and arc lengths is critical in
the study of rotational motion. There are two common units used to measure angles degrees and radians.
1. A degree is defined as 1/360th of a rotation in a complete circle.

2. A radian is defined as the angle for which the arc along the circle is equal to its radius as shown in the
figure below.

A=1lradian

when 5=

A=1radian

In the next series of activities you will be relating angles, arc lengths, and radii for a circle.
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Activity 4: Relating Arcs, Radii, and Angles

(a) Let’s warm up with a review of same very basic mathematics. What should the constant of proportionality
be between the circumference of a circle and its radius? How do you know?

(b) Now, test your prediction. You and your partners should draw four circles each with a different radius.
Measure the radius and circumference of each circle. Enter your data into CricketGraph and fit it. Attach the
plot to your laboratory write-up and record your results below.

(c) What is the slope of the line that you see (it should be straight)? Is that what you expected? What is the %
discrepancy between the slope you obtained from your measurements and that which you predicted in part (a)?

(d) Approximately how many degrees are in one radian? Let’s do this experimentally. Using the compass draw a
circle and measure its radius. Then, use the flexible ruler to trace out a length of arc, s, that has the same length
as the radius. Next measure the angle in degrees that is subtended by the arc.

(e) Theoretically, how many degrees are in one radian? Please calculate your result to three significant figures.
Using the equation for the circumference of a circle as a function of its radius and the constant p=3.1415927...
figure out a general equation to find degrees from radians. Hint: How many times does a radius fit onto the
circumference of a circle? How many degrees fit in the circumference of a circle?

(e) If an object moves 30 degrees on the circumference of a circle of radius 1.5 m, what is the length of its path?
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(f) If an object moves 0.42 radians on the circumference of a circle of radius 1.5 m, what is the length of its path?

(g) Remembering the relationship between the speed of the outer edge of the rotator and the distance, r, from
the rotator’s axis the outer edge, what equations would you use to define the magnitude of the average "angular"
velocity, <w>?7 Hint: In words, <w> is defined as the amount of angle swept out by the object per unit time.
Note that the answer is not simply 6/t!

y

£h EE H

(h) How many radians are there in a full circle consisting of 360 degrees?

(i) When an object moves in a complete circle in a fixed amount of time, what quantity (other than time) remains
unchanged for circles of several different radii?

Relating Linear and Angular Quantities

It’s very useful to know the relationship between the variables s, v, and a, which describe linear motion and the
corresponding variables 6, w, and «, which describe rotational motion. You now know enough to define these
relationships.

Activity 5: Linear and Angular Variables

(a) Using the definition of the radian, what is the general relationship between a length of arc, s, on a circle and
the variables r and 6 in radians.

(b) Assume that an object is moving in a circle of constant radius, r. Take the derivative of s with respect to time
to find the velocity of the object. By using the relationship you found in part (a) above, show that the magnitude
of the linear velocity, v, is related to the magnitude of the angular velocity, w, by the equation v = wr.

(c) Assume that an object is accelerating in a circle of constant radius, r. Take the derivative of v with respect to
time to find the acceleration of the object. By using the relationship you found in part (b) above, show that the
linear acceleration, a;, tangent to the circle is related to the angular acceleration, a, by the equation a; = ar.
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The Rotational Kinematic Equations for Constant «

The set of definitions of angular variables are the basis of the physicist’s description of rotational motion. We
can use them to derive a set of kinematic equations for rotational motion with constant angular acceleration that
are similar to the equations for linear motion.

Activity 6: The Rotational Kinematic Equations

The figure below shows a massless string is wound around a spool of radius r. The mass falls with a constant
acceleration, a. Refer to this figure and answer the following questions.

birne =10 Hine =t

(a) What is the equation for # in terms of y and r?

(b) What is the equation for w in terms of v and r?

(c) What is the equation for « in terms of a and r?

(d) Consider the falling mass in the figure above. Suppose you are standing on your head so that the positive
y-axis is pointing down. Using the relationships between the linear and angular variables in parts (a), (b), and
(c), derive the rotational kinematic equations for constant accelerations for each to the linear kinematic equations
listed below. Warning: Don’t just write the analogous equations! Show the substitutions needed to derive the
equations on the right from those on the left.

1. v=vy + at w =
2. y =yo + vot + Sat? 6=
3. v? = v + 2ay w? =
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44 Newton’s Second Law for Rotation?*

Name Section Date

Objectives

To understand torque and its relation to angular acceleration and rotational inertia on the basis of both observa-
tions and theory.

Apparatus

¢ A Rotating Disk System

e A hanging mass of 300-400 g (for applying torque)

String

A meter stick and a ruler

A video analysis system (Adobe Premier and VideoPoint).

Overview

We have used the definition of rotational inertia, I, to determine a theoretical equation for the rotational inertia
of a disk. This equation was given by

1
I=§Mﬁ.

Does this equation adequately describe the rotational inertia of a rotating disk system? If so, then we should find
that, if we apply a known torque, 7, to the disk system, its resulting angular acceleration, a, is actually related
to the system’s rotational inertia, I, by the equation

T=Ia or a=r71/I

The purpose of this experiment is to determine if, within the limits of experimental uncertainty, the measured
angular acceleration of a rotating disk system is the same as its theoretical value. The theoretical value of angular
acceleration can be calculated using theoretically determined values for the torque on the system and its rotational
inertia.

Theoretical Calculations

You’'ll need to take some basic measurements on the rotating cylinder system to determine theoretical values for
I and 7. Values of rotational inertia calculated from the dimensions of a rotating object are theoretical because
they purport to describe the resistance of an object to rotation. An experimental value is obtained by applying
a known torque to the object and measuring the resultant angular acceleration.

Activity 1: Theoretical Calculations

(a) Calculate the theoretical value of the rotational inertia of the metal disk using basic measurements of its
radius and mass. Ignore the small hole in the middle in your calculation. Be sure to state units!

rq= My =

Iy =

341990-93 Dept. of Physics and Astronomy, Dickinson College. Supported by FIPSE (U.S. Dept. of Ed.) and NSF. Portions of
this material may have been modified locally and may not have been classroom tested at Dickinson College.
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(b)The rotating fixture that holds the disk has a complex shape. We have determined its moment of inertia
without the disk and recorded the result on the fixture. Record that value here. Be sure to state units.

I; =

(c) Calculate the theoretical value of the rotational inertia, I, of the whole system. Don’t forget to include the
units.

I=

(c) In preparation for calculating the torque on your system, summarize the measurements for the falling mass,
m, and the radius of the spool that has the string wrapped around it in the space below. Don’t forget the units!

m = rs =

(d) Calculate the theoretical value for the torque on the rotating system as a function of the magnitude of the
hanging mass and the radius, r,, of the spool.

Tth =

(e) Based on the values of torque and rotational inertia of the system, what is the theoretical value of the angular
acceleration of the disk? What are the units?

Qth =

Activity 2: Experimental Measurement of Angular Acceleration

(a) Place the video camera about 1 m above the rotator, align the camera with the center of the rotator using
the pendulum, and center the rotator in the field-of-view of the camera by viewing the rotator with the Adobe
Premier software. Use the small level to ensure the surface of the rotator is flat. Place a ruler of known length
in the field-of-view of the camera and parallel to one side of the frame.

(b) Place the rotator so the string will pass smoothly over the pulley and put 300-500 g of mass on the end of the
string. Release the rotator and use the video camera to record the motion of the disk for at least two full turns.
See Appendix D: Video Analysis for details.

(c) Determine the angular displacement of the rotator as a function of time. Be careful to place the origin of your
coordinate system on the axle of the rotator so the angular displacement you measure will be the desired one. To
do this task follow the instructions in Appendix D: Video Analysis for recording, calibrating, and analyzing
movie data file. The file should contain three columns with the values of time, x-position, and y-position for one
complete revolution.

(d) What is the expression for the angular displacement of the disk in terms of the x and y positions of the
marker that you recorded above? Note that these positions should be relative to an origin placed on the axle of
the rotator.

0:

(e) We want to graph the angular displacement of the disk as a function of time. To do this:
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1. Launch CricketGraph and copy the data from the data table in VideoPoint into CricketGraph. See Ap-
pendix C: Introduction to Cricket Graph for more details.

2. Calculate the angular displacement § in radians for the first row in the spreadsheet. Record the result here.

0 =

3. Calculating the angular position for all the data as we just did would be horribly tedious. However, we
can take advantage of CricketGraph’s spreadsheet capabilities to speed things up. To enter an equation for
column 4 in the Cricket Graph Data window double click on the box at the top of column 4 that has the
lone "4" in it. The cursor will now appear in the box at the very top of the Data window. In that window
use the following syntax to calculate the angular position,

= ATAN2(C2,C3)

where C2 refers to column 2 that contains the x values of the white marker’s position and C3 refers to
column 3 that contains the y values of the white marker’s position. The function "ATAN2" calculates the
inverse tangent from the ratio of the two arguments. Hit the "Enter" key when you are done. You may find
the column that contains the results of your calculation has a numeric format that is difficult to read. You
can adjust the number of significant digits that are displayed by clicking on the number at the top of the
column of interest and then highlighting Numeric Format under the Options menu of CricketGraph. You
will be presented with a pop-up window with choices for the number of significant digits to be displayed.

4. Does the value of the first row agree with the calculation you made in part (2) above? If it does not check
both calculations again. If that fails consult your instructor.

5. Graph the angular displacement (column 4) as a function of time (column 1). You will see discontinuous
jumps in your data because the function you used in part (3) always calculates angles in the range -7 to .
You must add different increments of 27, 47, etc. to adjust the scale of the angular displacement.

(f) We now want to extract the angular acceleration from the data.

1. To describe the time dependence of the angular displacement what type of polynomial should we use to fit
the data? How are the coeflicients of the polynomial related to the angular acceleration?

2. Fit the data with a polynomial and write the resulting equation for the time dependence of the angular
position in the space below. Be sure to include the proper units with the coefficients. Determine the
experimental value for the angular acceleration from the fit and record it below. Also, print a copy of your
plot with the fitted curve and the equation and put it in your notebook.

Compare your experimental results for a to your theoretical calculation of a for the rotating system. Present this
comparison with a summary of your data and calculated results.

Activity 3: Comparing Theory with Experiment

(a) Summarize the theoretical and experimental values of angular acceleration.

229



Qtp =

Qegp =

(b) Do theory and experiment agree within the limits of experimental uncertainty? What is the percent deviation?
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45 Rolling

Name Section Date
Objectives

To apply our understanding of rotation to the case of rolling without skidding and discover its fundamental
properties.

Apparatus

e A spool for rolling.
e A meter stick and a ruler

e A video analysis system (Adobe Premier and VideoPoint).

Overview

We have extensively studied the linear motion of objects and we recently began the study of rotational motion.
When something rolls it is combining both types of motion in one. In addition, the motion requires a unique
application of forces and it has some surprising characteristics that are often poorly understood. In this unit we
will investigate these unique features.

Activity 1: Rolling - Guesses and Predictions

To begin our investigation consider the following questions. You might find it useful to test some of your answers
by simply rolling the spool along the table and observing its motion.

1. In your own words, what is rolling?

2. How is the rotational motion related to the linear motion?

3. Make a sketch of the spool rolling and the forces acting on the spool. What is the effect, if any, of friction?
How would the motion change if there was no friction in the system at all?

Activity 2: Investigating Rolling

(a) Make a movie of the spool rolling along your laboratory table by following these steps.
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1. Turn the camera on and point it along the long axis of your table. The camera should be around 1 m from
where you will roll the spool along the surface of the table. Place a ruler somewhere in the field-of-view
where it won’t interfere with the motion and parallel to one edge of the field-of-view. This ruler will be user
later to determine the scale.

2. Practice rolling the spool in front of the camera a few times to make sure the camera is pointing so there
is no change in the vertical position of the center of the spool as it moves across the camera’s field-of-view.
Make a movie of the spool rolling at a constant speed along the table. See Appendix D: Video Analysis
for details on making the movie.

(b) Determine the position of a point on the rim of the spool and the center of the spool during the motion. To
do this task follow the instructions in Appendix D: Video Analysis for creating and calibrating movie data.
On each frame click first on the point on the rim and then on the center. Make sure the vertical position of
the center did not change much during the movie. If it did, check the orientation of your camera and retake the
movie. The file should contain five columns with the values of time, x and y positions of the point on the rim,
and x and y positions of the center of the spool.

(c) Create a plot of the horizontal position of the center of the spool versus time. See Appendix C: Introduction
to Cricket Graph for more details. Fit your data and extract the speed of the center of the spool. Print your
plot and attach it to your write-up. Measure the radius of the spool.

Vspool — Tspool =

(d) What is the general expression for the angular displacement of the point on the rim relative to the center of
the spool in terms of the x and y positions that you recorded above?

erz’m =

(e) We want to graph the angular displacement of the point on the rim relative to the center as a function of
time. To do this:

1. Calculate the angular displacement 8,.;,,, in radians for the first row in the Data window of Cricket Graph.
Record the result here.
0, =

2. Calculating the angular position for all the data as we just did would be horribly tedious. However, we can
take advantage of Cricket Graph’s spreadsheet capabilities to speed things up. To enter an equation for
column 6 in the Cricket Graph Data window double click on the box at the top of column 6 that has the
lone "6" in it. The cursor will now appear in the box at the very top of the Data window. In that window
use the following syntax to calculate the angular position,

= ATAN2(C2 — C4,C3 — C5)

where C2 refers to column 2 that contains the x values of the point on the rim, C3 refers to column 3 that
contains the y values of the point on the rim, C4 refers to the center of the spool’s x value, and C5 refers
to the center of the spool’s y value. The function "ATAN2" calculates the inverse tangent from the ratio
of the two arguments. Hit the "Enter" key when you are done. You may find the column that contains
the results of your calculation has a numeric format that is difficult to read. You can adjust the number of
significant digits that are displayed by clicking on the number at the top of the column of interest and then
highlighting Numeric Format under the Options menu of Cricket Graph. You will be presented with a
pop-up window with choices for the number of significant digits to be displayed.
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3. Does the value of the first row agree with the calculation you made in part (2) above? If it does not check
both calculations again. If that fails consult your instructor.

4. Graph the angular displacement (column 6) as a function of time (column 1). You will see discontinuous
jumps in your data because the function you used in part (3) always calculates angles in the range -7 to .
You must add different increments of 2w, 47, etc. to adjust the scale of the angular displacement. Do this,
print your plot and attach it to your write-up.

(f) Fit your graph of the angular displacement versus time and extract the angular speed. Calculate the ratio of
the speed of the center of the spool and the angular speed. What are the units of this ratio? Is it close in value
to any property of the spool? Is it related to any property of the spool? Why?

Wrim = Uspool/wrim =

(g) Make a plot of the vertical and horizontal components of the position of the point on the rim as a function
of time. Attach a copy of your plot to the unit. What is the speed of the point on the rim when it is in contact
with the table? Explain.

(h) How would you define rolling now? What is the role of friction?
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46 Moment of Inertia

Name Section Date
Objective

To investigate Newton’s second law of motion for rotating bodies by applying it to determine the moment of
inertia of a disk.

Moment of Inertia

In this experiment you will determine the moment of inertia of a body by applying Newton’s second law of motion
for rotating bodies. The moment of inertia of a body is a measure of the tendency of the body to resist a change
in its state of rotational motion. When a net external torque, t, acts on a rigid body free to rotate about some
axis, an angular acceleration, a, is produced which is proportional to the torque. The proportionality constant is
the moment of inertia, I, of the body. This is the rotational analog of Newton’s second law of motion.

The experimental setup is shown in the figure below. The apparatus consists of a mass, m, connected by a string
passing over two pulleys to the drum of a rotator.
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Apparatus

e Rotator

Smart pulley

Regular pulley

Variety of masses

String

Vernier caliper
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e 2-meter stick
o Science Workshop 750 Interface

e DataStudio software (Atwood’s Machine application)

Activity 1: Prediction for the Moment of Inertia

(a) Write the symbolic expression for Newton’s second law for rotating bodies in the space below.

(b) Write an expression for the net torque on the rotator in terms of the radius of the rotator drum, r, and the
magnitude of the net force supplied by the string, F.

(c) Write an expression for the angular acceleration of the rotator drum in terms of the radius of the drum, r,
and the acceleration of the hanging mass, a.

(d) Notice that the net force on the drum, F, is equal to the tension in the string, T, minus the frictional force,
f. Write an expression for F in terms of T and f.

(e) Apply Newton’s second law to the hanging mass to obtain an expression for the tension, T, in terms of m, g,
and a.

(f) The frictional force, f, can be determined by application of the principle of conservation of energy. If the mass,
m, falls a height, h;, and then rises a height, hy, on the rewind, the loss in its potential energy between the two
positions is equal to the work done by the frictional force. Using this, find an expression for f in terms of m, g,
hl, and h2.

(g) Combine the equations above, to get the following expression for the moment of inertia of the rotator (with

or without the disk):
I = md2 —a— hl - h2
T da g ghl + ho

where d is the diameter of the drum of the rotator.
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Activity 2: Determining the Moment of Inertia

(a) Use the vernier caliper to measure the diameter of the drum of the rotator. Each member of the group should
make an independent measurement and record the average value as d. If you have questions about how to read
the vernier, consult your instructor.

(b) Launch the Atwood’s Machine application from the Apple menu.

(c) Remove the disk from the rotator and construct a data table below with the column headings m, sg, s1, s2,
hy, hs, a, and I. Don’t forget to include appropriate units in the column headings.

(d) Hang 50 grams on the string and lower the mass slowly until all the string is unwound from the drum. Measure
and record the distance from the bottom of the mass to the floor as sg.

(e) Rewind the string on the drum until the mass is a few centimeters from the upper pulley. Measure and record
the distance, sy, from the floor to the mass.

(f) Release the mass, start recording data, and stop it at its highest position on the rewind. Measure and record
the distance, s, from the floor to this position of the mass.

(g) The computer will display a graph of the velocity versus time for the fall of the mass. Fit the data to determine
the acceleration and record this value in your data table.

(h) Repeat steps (d)-(g) two more times for a total of three trials.
(i) Replace the 50 gram mass with a 70 gram mass and repeat steps (d)-(h).
(j) Place the disk on the rotator, construct a new data table, and repeat steps (d)-(i)-
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(k) Calculate and record the moment of inertia for each trial. Show a sample calculation for one trial in the space
below.

(1) Determine the average value for the moment of inertia of the rotator without the disk and record his value as
Ig below.

(m) Determine the average value for the moment of inertia of the rotator with the disk and record this value as
IR+ D-

(n) Calculate and record the experimental value for the moment of inertia of the disk, I.,p, = Iryp - Ig.

(o) Calculate the theoretical moment of inertia of the disk, I;;, assuming that it is uniform, and determine the %
difference between I.;, and I;p.

(p) Does the experimental value for the moment of inertia of the disk agree with the theoretical value within
experimental uncertainties? Do the results verify Newton’s second law of motion for rotating bodies?
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47 Angular Momentum and Torque as Vectors®

Name Section Date

Objectives

To understand the definitions of torque and angular momentum as vector quantities and to understand the
mathematical properties and some applications of the vector cross product. We will also learn the relationship
between torque and angular momentum.

Apparatus

e A horizontal pivot

e Two identical spring scales

e A ruler

e A protractor

e Rods and connectors (Styrofoam ball and bamboo skewers)
e Two small masses (100g & 200g)

¢ A Rotating Disk System

e String

Overview

This unit presents us with a consolidation and extension of the concepts in rotational motion that you have studied
so far. You studied the analogy and relationships between rotational and linear quantities (i.e., position and angle,
linear velocity and angular velocity, linear acceleration and angular acceleration, and force and torque) without
taking into account, in any formal way, the fact that these quantities actually behave like the mathematical
entities we call vectors. We will discuss the vector nature of rotational quantities and, in addition, define a new
vector quantity called angular momentum that is the rotational analog of linear momentum.

Angular momentum and torque are special vectors because they are the product of two other vectors a position
vector and a force or linear momentum vector. To describe them we need to introduce a new type of vector
product known as the vector cross product. We will explore the definition and unique nature of the vector cross
product used to define torque and angular momentum. We will study the relationship between torque and angular
momentum as well as the theoretical basis of the Law of Conservation of Angular Momentum.

Observation of Torque when F and 7 are not Perpendicular

Recently, you "discovered" that if we define torque as the product of a lever arm and perpendicular force, an
object does not rotate when the sum of the torques acting on it add up to zero. However, we didn’t consider
cases where F' and 7 are not perpendicular, and we didn’t figure out a way to tell the direction of the rotation
resulting from a torque. Let’s consider these complications by generating torques with spring balances and a lever
arm once more.

Activity 1: Torque as a Function of Angle

(a) Suppose you were to hold one of the scales at an angle of 90° with respect to the lever arm, rj, and pull on
it with a steady force. Meanwhile you can pull on the other scale at several angles other than 90° from its lever
arm, Iopp, as shown below. Would the magnitude of the balancing force be less than, greater than, or equal to
the force needed at 90°? What do you predict? Explain.

351990-93 Dept. of Physics and Astronomy, Dickinson College. Supported by FIPSE (U.S. Dept. of Ed.) and NSF. Portions of
this material may have been modified locally and may not have been classroom tested at Dickinson College.
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(b) You should determine exactly how the forces compare to that needed at a 90° angle. Determine this force for
at least four different angles and figure out a mathematical relationship between F, r, and 6. Set up a spreadsheet
to do the calculations shown in the table below. Hint: Should you multiply the product of the measured values

|

app

of r and F by sin 4 or by cos 8 to get a torque that is equal in magnitude to the holding torque?

Tp

(m)

Fp
(N)

Th
(N-m)

Tapp

(m)

FGPP
(N)

9
(deg)

6
(rad)

cos 6

sin 6

LoppFapp COSO
(N-m)

TappFapp sin 0
(N-m)

(c) Within the limits of uncertainty, what is the most plausible mathematical relationship between 7 and r, F,

and 67

The activity you just completed should give you a sense of what happens to the magnitude of the torque when
, is not perpendicular to the vector, 7, from the axis of rotation. But how do we define

the pulling force,

the direction of the rotation that results when the torque is applied to an object that is initially at rest and not
balanced by another torque? Let’s consider the directions we might associate with angular velocity and torque

in this situation.

Activity 2: Angular Rotation, Torque, and Direction

(a) Suppose a particle is moving around in a circle with an angular velocity that has a magnitude of w associated
with it. According to observer #1, does the particle appear to be moving clockwise or counter clockwise? How

about the direction of the particle’s motion according to observer #27

£
\

<

(b) Is the clockwise vs. counterclockwise designation a good way to determine the direction associated with w in

¥

D

an unambiguous way? Why or why not?
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(c) Can you devise a better way to assign a minus or plus sign to an angular velocity?

(d) Similar consideration needs to be given to torque as a vector. Can you devise a rule to assign a minus or plus
sign to a torque? Describe the rule.

Discussion of the Vector Cross Product

An alternative to describing positive and negative changes in angle is to associate a positive or negative vector
with the axis of rotation using an arbitrary but well accepted rule called the right hand rule. By using vectors
we can describe separate rotations of many body systems all rotating in different planes about different axes.

By using this vector assignment for direction, angular velocity and torque can be described mathematically as
"vector cross products." The vector cross product is a very strange type of vector multiplication worked out many
years ago by mathematicians who had never even heard of angular velocity or torque. The peculiar properties
of the vector cross product and its relationship to angular velocity and torque is explained in most introductory
physics textbooks. The key properties of the vector that is the cross product of two vectors 7 and T are that:

1. The magnitude of the cross product is rFsinf where 6 is the angle between the two vectors;
‘? X ?‘ = 7| ‘?‘ sin 6.

The term sin @ represents the component of F along a line perpendicular to 7.

2. The cross product of two vectors 7 and 7 is a vector that lies in a direction perpendicular to both 7 and
and is up if F' causes a counter-clockwise rotation, and is down if F' causes a clockwise rotation. These
properties of the cross product are pictured below.

perpendicular to T

an extension of r

The spatial relationships between 7, ?, and 7 are very difficult to visualize. In the next activity you can
connect some thin rods of various sizes to each other at angles of your own choosing and make some "vector cross
products."

Activity 3: Making Models of Vector Cross Products

(a) Pick out rods of two different lengths and connect them at some angle you choose. Consider one of the rods
to be the 7 vector and the other to be the F' vector. Measure the angle @ and the lengths of 7 and F in meters.
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Then compute the magnitude of the cross product as rFsin in newton meters (N m). Show your units! Note:
You should assume that the magnitude of the force in newtons is represented by the length of the rod in meters.

(b) Attach a "cross product" rod perpendicular to the plane determined by 7 and F with a length of rFsing.
Sketch the location of F relative to 7 in the space below. Show the direction and magnitude of the resultant
torque 7. Finally, show your cross product model to an instructor or fellow student for confirmation of its
validity.

T — Skewer

gl

perpendicular to

styrofoaim
. I-skewer

connector

F-skewer

an extension of r

Figure 2: A Model of the Vector Cross Product

(c) In the diagrams below the vectors 7 and 7 lie in the plane of the paper. Calculate the torques for the
following two sets of 7 and F vectors. In each case measure the length of the 7 vector in meters and assume
that the length of the F vector in cm represents the force in newtons. Use a protractor to measure the angle,
6, between the extension of the 7-vector and the F-vector. Calculate the magnitude of the torques. Place the
appropriate symbol to indicate the direction of the torque in the circle as follows: a circle with an x in it indicates
a vector into the page, while a circle with a dot in it indicates a vector out of the page.

_:|.
r
)
r = m F = N 0= T = N-m
r — m F = N g — T = N-m

Momentum and its Rotational Analog

Once we have defined the properties of the vector cross product, another important rotational vector is easily
obtained, that of angular momentum relative to an axis of rotation.

Activity 4: Angular and Linear Momentum
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(a) Write the rotational analogs of the linear quantities shown. Note: Include the formal definition (which is
different than the analog) in spaces marked with an asterisk (*). For example the rotational analog for velocity
is angular velocity w and the definition of its magnitude is |w| = df/dt rather than v/r.

| Linear Quantity | Rotational Quantity | Definition |
*

x (position)

v (velocity)

a (acceleration)

F (Force)

m (mass)

F =ma

(b) What do you think will be the rotational definition of angular momentum in terms of the vectors 7 and 7'?
Hint: This is similar mathematically to the definition of torque and also involves a vector cross product. Note
that torque is to angular momentum as force is to momentum.

(c) What is the rotational analog in terms of the quantities I and w? Do you expect the angular momentum to
be a vector? Explain.

(d) Summarize your guesses in the table below.

| Linear Equation | Rotational Equation
P = m7 [definition in terms of 7 & ] T =
T =m7 [definition in terms of I & W] T =

Torque and Change of Angular Momentum

Earlier in this course you applied a very brief force along a line through the center of mass of a rolling cart. Do
you remember how it moved? What happened when you applied a gentle but steady force along a line through
the center of mass of the cart? Let’s do analogous things to a disk that is free to rotate on a relatively frictionless
bearing, with the idea of formulating laws for rotational motion that are analogous to Newton’s laws for linear
motion.

Figure out how to use a system like that shown in the figure below to observe the motion of the disk under the
influence of a brief torque and a steady torque. In describing the Laws of Rotational Motion be sure to consider
vector properties and take both the magnitudes and directions of the relevant quantities into account in your
wordings.
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Mefal Disk

————————————
Pulley S pool
Weight for Applying, /’f X

Activity 5: Applied Torques and Resultant Motion

(a) What happens to the angular velocity and hence the angular momentum of the disk before, during, and after
the application of a brief torque? State a First Law of Rotational Motion (named after yourself, of course) in
terms of torques and angular momenta. Hint: Newton’s first law states that the center-of-mass of a system of
particles or a rigid object that experiences no net external force will continue to move at constant velocity.

The Rotational First Law in words:

The Rotational First Law as a mathematical expression:

(b) What happens to the magnitude and direction of the angular velocity (and hence the angular momentum) of
the disk during the application of a steady torque? How do they change relative to the magnitude and direction
of the torque? If possible, give a precise statement of a Second Law of Rotational Motion relating the net torque
on an object to its change in angular momentum. Note: Take both magnitudes and directions of the relevant
vectors into account in your statement. Hint: Newton’s second law of motion states that the center-of-mass of
a system of particles or rigid object that experiences a net external force will undergo an acceleration inversely
proportional to its mass.

The Rotational Second Law in Words:

The Rotational Second Law as a Vector Equation:

Angular Momentum Conservation

Now you can use the vector expression for Newton’s second law of Rotational Motion to show that, in theory, we
expect angular momentum on a system to be conserved if the net torque on that system is zero.
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48 Conservation of Angular Momentum

Name Section Date
Objectives

To test the Law of Conservation of Angular Momentum and to explore the applicability of angular momentum
conservation among objects that experience no external torques.

Apparatus

A Rotating Disk System

A mass of 1 kg

A meter stick and a ruler

A video analysis system (Adobe Premier and VideoPoint)

Overview

As a consequence of Newton’s laws, angular momentum like linear momentum is believed to be conserved in
isolated systems. This means that, no matter how many internal interactions occur, the total angular momentum
of any system should remain constant. When one of the objects gains some angular momentum another part of
the system must lose the same amount. If angular momentum isn’t conserved, then we believe that there is some
outside torque acting on the system. By expanding the boundary of the system to include the source of that
torque we can always preserve the Law of Angular Momentum Conservation.

In this unit you will test the notion of the conservation of angular momentum. Like the test of the conservation
of linear momentum we will investigate what happens when two bodies undergo a "rotational" collision. You will
drop a large weight onto a rotating disk and determine the moment of inertia, the angular speed, and finally, the
angular momentum of the rotator-disk-weight system before and after this perfectly inelastic collision.

Activity 1: The Moment of Inertia Before and After the Collision

(a) Calculate the theoretical value of the rotational inertia of the metal disk using basic measurements of its
radius and mass. Be sure to state units and show the expression you used!

rq = Md:

Iy =

(b)The rotating fixture that holds the disk has a complex shape. We have determined its moment of inertia
without the disk and recorded the result. Record that value here. Be sure to state units.

I, =

(c) After dropping the weight on the rotating disk, the system will have a new moment of inertia. Derive a
formula for the moment of inertia of a disk-shaped weight of mass m,, and radius r,, revolving about the origin
at a distance, r,.. Measure the mass of the weight and use a vernier caliper to measure its diameter.

I, =
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(d) Come up with a formula for the rotational inertia, I, of the whole system before and after the collision and
calculate the moment of inertia before the collision. Don’t forget to include the units.

Ibefore -

Iafter -

Activity 2: Measurement of Angular Acceleration

(a) Place the video camera about 1 m above the rotator, align the camera with the center of the rotator using
the pendulum, and center the rotator in the field-of-view of the camera by viewing it with the Adobe Premier
software. Place a ruler of known length in the field-of- view of the camera and parallel to one side of the frame.
Check that the rotator is flat with the small water-bubble level.

(b) Give the rotator a push and begin recording its motion with the video camera. See Appendix D: Video
Analysis for details. While the rotator is moving hold the 1 kg weight near the rim of the metal disk and close
to, but not quite touching, the surface of the moving metal disk. After at least one revolution of the metal disk
drop the 1-kg mass onto the disk and record the motion of the disk for at least one revolution afterward. When
you save the movie give it the name Angular.

(c) Measure the distance of the center of the weight you dropped from the center of the rotator r.. To do this,
measure the distance from the center of the rotator to the edge of the weight and use the result from Activity 1
part (c) for the diameter of the weight. Calculate the distance from the origin to the center of the weight. Use
these results and those from Activity 1 part (d) to calculate the final moment of inertia.

Tedge — Ty = Iy, =

Iafter -

(d) Determine the angular speed before and after the collision. To do this task see the instructions in Appendix
D: Video Analysis for creating and analyzing a movie file.

1. Find the last frame before you dropped the weight on the rotator and click on the position of the white
marker on the metal disk. Under the Edit menu highlight Leave /Hide Trails. Now go backward through
the film until the rotator has gone through one full rotation. Estimate to the nearest fraction of a frame
how many frames there are in one revolution. You also need to know the time between frames At which
you can get from the data table in VideoPoint.

NbefOTe = At =
Calculate the time for one revolution before the collision and the angular speed.
tbefOTe = Whefore =

2. We now follow a similar procedure to determine the angular speed after the collision. Under the Edit Menu
highlight Clear All... to get rid of your previous results. Find the first frame after you dropped the weight
on the rotator and click on the position of the white marker. Now click forward and estimate to the nearest
fraction of a frame the number of frames in one full revolution.

Nafter = At =
Calculate the time for one revolution and the angular speed after the collision.

tafteT = Wa fter =
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(e) Calculate the angular momentum before and after the collision. Calculate the percent difference between the
two results. Is momentum conserved within the experimental uncertainty? What is the value of the experimental
uncertainty? What is your evidence?

Lbefore -

Lafter -

(f) Would the procedure you followed above change if the weight was moving horizontally at a constant velocity
when you dropped it? If it changed, what would be different?
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49 Hooke’s Law

Name Section Date

Objectives:
e The nature of elastic deformation and restoring forces

Introduction There is no such thing as a perfectly rigid body. The stiffest of metal bars can be twisted, bent,
stretched, and compressed. Delicate measurements show that even small forces cause these distortions. Under
certain circumstances (typically, when the forces are not too large), a body deformed by forces acting upon it
will return to its original size and shape when the forces are removed, a capacity known as elasticity. Permanent
distortion from large forces is referred to as plastic deformation. In this lab, you will stay within the elastic limit.

Apparatus:

e two springs and supports
e collection of masses
e 2-meter stick

Activity:
1. Record the mass of the two springs.
my = mo =

2. Suspend one of the springs from the support. Using the meter stick, observe the position of the lower end
of the spring and record the value in the table below.
3. Hang 100 grams from the lower end of the spring and again record the position of this end.

4. Repeat iii.) with loads of 200, 300, 400, and 500 grams hung from the spring.

5. Repeat iii.) and iv.) with the second spring.

Mass suspended | Position | Elongation || Mass suspended | Position | Elongation
from spring 1 reading from spring 2 reading
(8) (m) (m) (8) (m) (m)
0 0 0 0
100 100
200 200
300 300
400 400
500 500

6. Determine the elongation produced by each load.

7. Plot a curve using the values of the elongation as the ordinates and the forces due to the corresponding
loads as abscissas for each spring. Make sure you use compatible units.
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Questions:

1. What does your curve show about the dependence of each spring’s elongation upon the applied force?

2. What are the units of the proportionality constant?

3. The slope of the lines is known as the force constant, $k$. Which spring has the larger force constant?
Express in your own words the physical implications different size force constants.
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50 Periodic Motion

Name Section Date

Objectives

e To learn directly about some of the characteristics of periodic motion period, frequency, and amplitude.
e To investigate the relationships between position, velocity, acceleration, and force in simple harmonic motion.

e To investigate energy in simple harmonic motion.

Introduction

Periodic motion is motion that repeats itself. You can see the repetition in the position-, velocity-, or acceleration-
time graphs. The length of time to go through one cycle and begin to repeat the motion is called the period.
The number of cycles in each second is called the frequency. The unit of frequency, cycles per second is given a
special name—Hertz.

Motion of a Mass Hanging from a Spring
In this unit you will investigate the motion of a mass hanging from a spring.

Apparatus

e Large spring

Force probe

Motion detector

Variety of masses

Science Workshop 750 Interface

e DataStudio software (Position & Velocity Graphs application and SHM application)

Activity 1: Periodic Motion of a Mass-Spring System

(a) Open the Position & Velocity Graphs application in the 131 Workshop submenu of the Apple menu. Hang
the large spring from the force probe hook with the large diameter coils down and hang a 200-g mass from the
spring. Place the motion detector facing up directly below the spring. Push the mass straight upward 15 cm, and
let go. Adjust the height of the support so that the mass comes no closer than 0.15 m to the detector. Record
data for a few seconds to display position-time and velocity-time graphs of the motion. Sketch the graphs on the
axes below.
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Comment: Note that when an object returns to the same position, it does not necessarily mean that a cycle is
ending. It must return to the same position, and the velocity and acceleration must also return to the same values
in both magnitude and direction for this to be the start of a new cycle.

(b) Label the graphs above with: "B" at the Beginning of a cycle and "E" at the End of the same complete cycle.
"A" on each spot where the mass is moving Away from the detector fastest. "T" on each spot where the mass is
moving Toward the detector fastest. "S" on each spot where the mass is standing Still. "F" where the mass is
Farthest from the motion detector. "C" where the mass is Closest to the motion detector.

(c) Do the position and velocity graphs appear to have the same period? Do their peaks occur at the same times?
If not, how are the peaks related in time?

(d) Use the Smart Tool to measure the period and frequency of the motion. (For better accuracy, measure the
total time over as many cycles as possible and divide by the number of cycles.

(e) Using the Smart Tool, determine and record the maximum displacement. Then record data with the mass
at rest to find the equilibrium position. Draw a straight line on your position graph indicating the equilibrium
position in terms of the distance from the motion detector. Calculate and record the amplitude of the motion
(the difference between the maximum displacement and the equilibrium position).

Simple Harmonic Motion
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The motion of a mass hanging from a spring that you looked at in Activity 1 is a close approximation to a kind
of periodic motion called simple harmonic motion (sometimes abbreviated SHM).

Activity 2: What Factors Determine the Period of the Mass-Spring System?

What can you do to change the period of the SHM of the mass-spring system? What will happen to the period
if you increase the amplitude? Increase the mass? Increase the spring constant (use a stiffer spring)?

Activity 3: The Period of SHM and the Amplitude

(a) Repeat the procedure of Activity 1, but with a different starting position (other than 15 cm). (Warning: Do
not make the amplitude so large that the mass comes closer than 0.15 m from the motion detector.) When you
have good graphs, find and record the period and the amplitude using the methods described in Activity 1.

(b) Take ratios of the period and the amplitude of Activity 1 to those determined here.

(c) Is there evidence that the period depends on amplitude? (Did the change in amplitude result in a comparable
change in period?) Explain. How does this compare with your prediction?

Activity 4: The Dependence of the Period of a SHM on the Mass

(a) Carefully measure the period for two other masses. Record the masses and the measured periods in a table
the space below along with the mass and period from Activity 1.

(b) Does the period depend on the mass? Does it increase or decrease as mass is increased?
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(c) Determine the mathematical relationship between the period T and the mass m by finding a function that
fits the data. Write the equation that provides the best fit to the data in the space below.

Comment: You should have found that T is independent of amplitude and proportional to /m. The actual
expression for the period is

m
T =2m/—

V&
Velocity, Acceleration, Force and Energy

In this investigation you will look more carefully at the distance, velocity and acceleration graphs for simple
harmonic motion. You will also look at the force graph, and will examine the energy associated with simple
harmonic motion.

Activity 5: Determination of the Spring Constant

Measure the distance the spring stretches for four different masses and use this data to determine the spring
constant, k. Record your data and the result for k in the space below.

Activity 6: Velocity, Acceleration, and Force for SHM

(a) Consider the motion you looked at in Activity 1 when the mass was 200 g and the initial position was 15 cm.
Sketch the position and velocity graphs that you observed on the axes below using dashed lines.

Distarce [m]
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(b) Based on what you know about the relationships between velocity, acceleration, and force, use dashed lines
to sketch your predictions for the acceleration and force graphs.

(c) Suspend the 200-g mass from the spring and open the SHM application. Start the mass oscillating with an
amplitude of 15 cm and record data for a few seconds. When you have obtained good graphs, sketch the results
on the above axes using solid lines.

(d) When the mass is at its maximum distance from the detector, is the velocity maximum, minimum or some other
value according to your graphs? Does this agree with your predictions? Does this agree with your observations
of the oscillating mass? Explain.

(e) When the mass has its maximum positive velocity, is its distance from the detector maximum, minimum, the
equilibrium value or some other value according to your graphs? What about when it reaches maximum negative
velocity? Does this agree with your predictions? Does this agree with your observations of the oscillating mass?
Explain.
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(f) According to your graphs, for what distances from the detector is the acceleration maximum? For what
distances is the acceleration zero? What is the velocity in each of these cases?

(g) Compare the force and acceleration-time graphs. Describe any similarities. Does the force graph agree with
your prediction?

(h) From your graphs, what would you say is the relationship between force and acceleration?

(i) Compare the force and distance(position)-time graphs. What would you say is the relationship between force
and position?

Activity 7: Energy of a Mass Undergoing SHM
Now use the graphs from the last activity to examine the energy relationships in simple harmonic motion.

(a) At what points is the kinetic energy of the mass zero? Label these points on your distance and velocity graphs
above with a K.

(b) Calculate the elastic potential energy due to the spring at one of these points. Label the point you use on your
velocity and distance graphs with a 1. Use U = (1/2)kx? where x is the distance from the equilibrium position
and k is the force constant of the spring which you have already measured. Use the Smart Tool to measure x.
Show your data and calculations in the space below.

(c) At what points is the potential energy zero? Label these points with a P on your distance and velocity graphs.

(d) If you measured the kinetic energy at one of these points, what would you expect its value to be? Explain.

(e) Check your prediction. Calculate the kinetic energy at one of these points. Label the point you use on your
velocity graph with a 2. Use K = (1/2) mv?. Use the Smart Tool to determine v. Show your data and calculations
in the space below.

254



(f) Did your calculated kinetic energy agree with your prediction?

(g) If you calculated the potential and kinetic energies at a point where neither of these was zero, what would
you expect the total energy to be? Explain.

(h) Check your prediction. Pick a point where the mass has both kinetic and potential energy and calculate them
both. Label this point on your distance and velocity graphs with a 3. Show your calculations.

(i) Does your result agree with your prediction? Does it appear that energy is conserved? Explain.
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51 The Period of a Pendulum

Name Section Date

Objectives:

e Study the influences on the motion of a simple pendulum
e Calculate the proportionality constant relating the period of oscillation to its determinants

Introduction:

Using dimensional analysis alone, one can predict that the period of a simple pendulum would depend not on its
mass but on its length and the acceleration due to gravity according to the relationship:

L
T~ \/;. (4)

T is the period, L is the length, and g is the gravitational acceleration. Let’s check this prediction experimentally.

Apparatus:

string attached to stand
collection of masses
stop watch

meter stick

Activity:

1. With L = 1.0 m, place a 1 kg mass at the end of your pendulum. Time twenty-five (25) oscillations of
amplitude not greater than 10 degrees. The period is the total time divided by the number of oscillations.
Calculate the period and period squared, and enter the relevant data into the table below.

2. Repeat i. for masses of 500 g, 200 g, 100 g, 50 g, and 20 g.

3. With the 200 g mass, fix the length L to be 1.5 m. Time twenty-five (25) oscillations of amplitude not more
than 10 degrees. Calculate the period and period squared, and enter the relevant data into the table below.

4. Repeat iii. for pendulum lengths of 1.0, 0.7, 0.4, 0.25, and 0.15 meters.

Trial No. | Mass | Length[L] No. of Total Time | Period|T] | T?
(kg) (m) Oscillations (s) (s) (s?)

|t |t
Do S|~ oo k|| o=
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5. Plot T versus mass and T2 versus L on separate graphs. Fit the data and determine the slopes of the lines
of each graph.

slope: period versus mass

slope: period? versus length

Questions:

1. Interpret the slope of the period versus mass line: What is the relationship between mass and period? How
does the period depend on the mass?

2. Interpret the slope of the period? versus length line: What is the relationship between length and period?
How does period depend on pendulum length?

3. If the length of the pendulum were 11—6 its original length, by how much would its period change?

4. Using the relationship between length and period (equation 1), the slope you measured, and the known
value of the gravitational acceleration [9.8 T3], determine the constant of proportionality. What are its
units?
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52 Air Column Resonance?®

Objectives:

e Measure the wavelengths in air of sound waves of different frequencies.
e Determine the velocity of sound in air.

Introduction The velocity of a wave is directly proportional to both the frequency of vibration and the length
of the wave,

v=Af (5)

A tuning fork held over the open end of a tube will send air disturbances (compressions and rarefactions) down
the length of the tube. As the medium changes at the other end of the tube, the disturbances will be reflected.
Should these reflections be in phase with the waves generated by the tuning fork, resonance occurs, that is, the
disturbances reinforce one another and produce a louder sound.

In order that the tube resonate, the frequency of the vibrating air must coincide with the natural frequency of
the tube (which may be its fundamental or one of its overtones). For a tube like the one used in this experiment,
which is closed at the opposite end, this requirement is met if the tube length is an odd number of quarter
wavelengths of the sound waves produced by the fork (I = \/4,3)\/4,5X/4, etc., where [ is the length of the tube
and ) is the wave length of the sound). Note that if the length of the tube is gradually increased while the fork
is vibrating, the distance between successive resonance positions is A/2.

Note: Due to edge effects at the open end of a tube, the length of the wave depends on the radius of the opening. Thus,
leps =14 0.6r, where losf is the ef fective length, I is the length measured, and r is the tube radius.

By raising and lowering a brass tube inserted vertically into a larger plastic tube filled with water, column length
may be varied. The (effective) length at resonance gives the wavelength; the tuning fork frequency gives the
sound frequency. Formula 1 then gives the velocity.

Apparatus:

resonance tube setup

2 tuning forks of different pitches
meter stick

rubber hammer

thermometer

Activity:

1. Determine the shortest tube length for resonance. Start the tuning fork vibrating by striking it gently with
the rubber hammer. Be sure the brass tube is in its lowest position and the fork extends over the open end
in such a manner that the prongs vibrate vertically.

2. Slowly raise the brass tube until the first position of resonance is reached.
3. Measure and record the distance from the open end of the tube to the water level in the plastic tube.
4. Raise the tube until the next position of resonance is reached and measure and record the distance as before.

5. Continue with a third position of resonance.

36 Adapted from Experiments in Physics, 6th ed., B. Cioffari, D. Edmonds, Jr. D. C. Heath and Co., 1978.

258



6. Repeat 1- 5 with the same fork to twice more for a total of three independent measurements of resonance
positions.

7. Repeat 1- 6 with a second tuning fork of a different frequency.

DATA

Room Temperature (°C) Tube radius (m)

Tuning Fork | First Position of | Second Position | Third Position of | Wave- | Velocity of
Frequency, Resonance, m | of Resonance, m Resonance, m length, | Sound in
Hz 1]2]3[Ave. [1]2][3 ] Ave. [1]2]3] Ave m air, m/s

Average Velocity of Sound in Air (m/s)

Analysis:

1. For each (effective) length of resonating air column, calculate the average of the three readings.

2. For each tuning fork, determine the value of the wavelength of its sound wave in air from the average lengths
of the resonating column.

3. Using the tuning fork frequency and the calculated wavelength, determine the velocity of sound in air.

4. The velocity of sound in air at 0°C is 331.4 m/s. Determine the dependence of the velocity of sound in air
on the temperature [how many m/s does the velocity change for each degree C7?].

5. The temperature dependence of sound velocity in air is given by v(T") = 331.4 4+ 0.67, where T is in °C and
v is in m/s. Within what percent error is your experimental result?

Questions:

1. Suppose that, in this experiment, room temperature had been lower. How would the length of the resonating
air column have changed? Explain.

2. How would an atmosphere of hydrogen affect the pitch of a tuning fork? Explain.
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3. A tuning fork rated at 128 vibrations per second is held over a resonance tube. What are the two shortest
distances at which resonance will occur at a temperature of 20°C?

4. The first resonance of a tube is found to occur when the position of the water line below a vibrating tuning
fork is at 10 cm. A second resonance is found at 26 cm. What is the frequency of the tuning fork? (Take
the air temperature to be 20°C.)
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A Treatment of Experimental Data

Recording Data

When performing an experiment, record all required original observations as soon as they are made. By "original
observations" is meant what you actually see, not quantities found by calculation. For example, suppose you
want to know the stretch of a coiled spring as caused by an added weight. You must read a scale both before
and after the weight is added and then subtract one reading from the other to get the desired result. The proper
scientific procedure is to record both readings as seen. Errors in calculations can be checked only if the original
readings are on record.

All data should be recorded with units. If several measurements are made of the same physical quantity, the data
should be recorded in a table with the units reported in the column heading.

Significant Figures

A laboratory worker must learn to determine how many figures in any measurement or calculation are reliable,
or "significant" (that is, have physical meaning), and should avoid making long calculations using figures which
he/she could not possibly claim to know. All sure figures plus one estimated figure are considered significant.

The measured diameter of a circle, for example, might be recorded to four significant figures, the fourth figure
being in doubt, since it is an estimated fraction of the smallest division on the measuring apparatus. How this
doubtful fourth figure affects the accuracy of the computed area can be seen from the following example.

Assume for example that the diameter of the circle has been measured as .5264 cm, with the last digit being in
doubt as indicated by the line under it. When this number is squared the result will contain eight digits, of which
the last five are doubtful. Only one of the five doubtful digits should be retained, yielding a four-digit number as
the final result.

In the sample calculation shown below, each doubtful figure has a short line under it. Of course, each figure
obtained from the use of a doubtful figure will itself be doubtful. The result of this calculation should be recorded
as 0.2771 ¢cm?, including the doubtful fourth figure. (The zero to the left of the decimal point is often used to
emphasize that no significant figures precede the decimal point. This zero is not itself a significant figure.)

(.5264 cm)? = 27709696 cm? = 0.2771 cm?

In multiplication and division, the rule is that a calculated result should contain the same number of significant
figures as the least that were used in the calculation.

In addition and subtraction, do not carry a result beyond the first column that contains a doubtful figure.
Statistical Analysis

Any measurement is an intelligent estimation of the true value of the quantity being measured. To arrive at a
"best value" we usually make several measurements of the same quantity and then analyze these measurements
statistically. The results of such an analysis can be represented in several ways. Those in which we are most
interested in this course are the following:

Mean - The mean is the sum of a number of measurements of a quantity divided by the number of such measure-
ments, which is just the arithmetic mean or the so-called average. It represents the most probable value of the
measurement.

Standard Deviation - The standard deviation (o) is a measure of the range on either side of the mean within which
approximately two-thirds of the measured values fall. For example, if the mean is 9.75 m/s? and the standard
deviation is 0.10 m/s?, then approximately two-thirds of the measured values lie within the range 9.65 m/s? to
9.85 m/s?. A customary way of expressing an experimentally determined value is: Mean+o, or (9.75% 0.10)
m/s?. Thus, the standard deviation is an indicator of the spread in the individual measurements, and a small
o implies high precision. Also, it means that the probability of any future measurement falling in this range is
approximately two to one. The equation for calculating the standard deviation is

L (#; — (2))’
N -1
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where z; are the individual measurements, (x) is the mean, and N is the total number of measurements.

% Difference - Often one wishes to compare the value of a quantity determined in the laboratory with the best
known or "accepted value" of the quantity obtained through repeated determinations by a number of investigators.
The % difference is calculated by subtracting the accepted value from your value, dividing by the accepted value,
and multiplying by 100. If your value is greater than the accepted value, the % difference will be positive. If your
value is less than the accepted value, the % difference will be negative. The % difference between two values in a
case where neither is an accepted value can be calculated by choosing one as the accepted value.
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B Introduction to DataStudio

Quick Reference Guide

Shown below is the quick reference guide fo

r DataStudio.

What You Want To Do

How You Do It

Button

Start recording data

Click the 'Start' button or select 'Start Data' on
the Experiment menu (or on the keyboard
press CTRL - R (Windows) or Command - R
{Mac})

B~ Start

Stop recording {or monitoring) data

Click the 'Stop’ button or select 'Stop Data' on
the Experiment menu {or on the keyboard
press CTRL - . (period | (Win) or Command - .
{Mac))

B Stop

Start monitoring data Select '"Monitor Data'on the Experiment menu none
{oron the keyboamrd press CTRL - M (Win) or
Command - M {Mac]]
On_the Graph Display In_the Graph Toolbar Button

Re-zcale the data =o it fills the Graph
display window

Click the 'Scale to Fit' button.

Pinpoirt the x- and y-coomdinate
values onthe Graph display

Click the '"Smart Tool' button. The coordinates
appear next to the 'Smart Tool'.

‘Zoom In' or 'Zoom Cut'

Click the 'Zoom In' or 'Zoom Out' buttons.

Magnify a selected portion of the
plotted data

Click the 'Zoom Select’ button and drag across
the data section be to magnified.

Creats g Calculation

Click the 'Calculate’ button

Add a text note to the Graph

Click the 'Note' button.

Selectfromthe Statistics menu

Click the Statistics menu button

Add or remove 8 data run

Click the 'Add/RBemove Data' menu button

Delete something

Click the 'Delete’ button

Select Graph settings

Click the 'Settings' menu button

Selecting a Section of Data

1. To select a data section, hold the mouse button down and move the cursor to draw a rectangle around the

data of interest. The data in the region of interest will be highlighted.

2. To unselect the data, click anywhere in the graph window.

Fitting a Section of Data

1. Select the section of data to be fitted.
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2. Click on the Fit button on the Graph Toolbar and select a mathematical model. The results of the fit will
be displayed on the graph.

3. To remove the fit, click the Fit button and select the checked function type.
Finding the Area Under a Curve
1. Use the Zoom Select button on the Graph Toolbar to zoom in around the region of interest in the graph.
See the quick reference guide above for instructions.

2. Select the section of data that you want to integrate under.

3. Click the Statistics button on the Graph Toolbar and select Area. The results of the integration will be
displayed on the graph.

4. To undo the integration, click on the Statistics button and select Area.
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C Introduction to Cricket Graph

CA-Cricket Graph III is a powerful and easy-to-use application for graphing, fitting, and manipulating data. In
this appendix, we will briefly describe how to start Cricket Graph and how to use the on-line help to obtain
information about commands and features.

Starting Cricket Graph

To start the application, select the CA-Cricket Graph III icon from the Apple menu. A new, untitled data
window appears where you can enter data. Other new data windows can be created by choosing New from the
File menu. New data windows appear as Data #1, Data #2, and so on until you save and name them.

Using On-Line Help
On-line help provides immediate information about using key tools, commands, and features without exiting
Graph III. To use on-line help:

1. Choose CA-Cricket Graph III Help... from the Apple menu. The Help window appears. On the left

side of the window is a list of topics.

2. To view the information for a particular topic, click the topic’s name. The help information is displayed on
the right side of the window.

3. To view another topic, click the topic’s name.
4. To see additional topics in the list, use the scroll bar.
5. To see the previous topic in the list, click the topic’s name, or click the Previous button (up arrow).

6. To see the next topic, click the topic’s name, or the Next button (down arrow).
If you can’t locate a particular topic, you can look for a key word or phrase using the Search feature as follows:

1. Click the Search button (magnifying glass) in the Help window. The Search For dialog box appears.
2. Enter the word or string you want to search for in the space provided.

3. If you want the search to be case-sensitive (upper- or lower-case only, or a combination), click the Match
Case check box.

4. Click the OK button to begin the search. When the first occurrence of the word or string is found, it is
highlighted.

5. To find the next occurrence of the word or string, hold down the Option key and click the Search button
(the Search For dialog box doesn’t appear). The next occurrence of the word or string is highlighted in the
Help window.

6. When you'’re finished, click the close box.
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D Video Analysis

Making a Movie To make a movie, perform the following steps:

1. Start up Adobe Premier by going to the Apple Menu in the upper left corner of the screen and click and
drag down to highlight Adobe Premier alias.

2. After Premier starts highlight the File menu and drag down to highlight Capture and drag over to highlight
Movie Capture.

3. As the film capture starts Premier will ask you if you want to deactivate AppleTalk. Deactivate it so the
film capture will be smoother. If the video camera is hooked up, then live video will start playing in the
window. If not, consult your instructor.

4. You should always have the camera about 1 m from the object you will be viewing. This constraint is
required to reduce the effect of perspective for objects viewed near the edge of the field-of-view. Point the
camera so that its field-of-view is centered on the expected region where you will perform the experiment.

5. During the analysis of the movie (see next section) we need to determine the size and position of objects in
the movie. Place a ruler or some object of known size in the field-of-view where it won’t interfere with the
experiment. The object should be the same distance away from the camera as the motion so the horizontal
and vertical scales will be accurately determined. It should also be parallel to one of the sides of the movie
frame as viewed with Premier.

6. One member of your group should perform the computer tasks while the others do the experiment. To
record the experiment click the record button in the video window. Wait a few of seconds and perform the
experiment.

7. After the experiment is complete click the mouse anywhere to stop the recording. You will see a new window
with your recorded movie. Use the controls along the bottom of the frame to view the film to make sure it
is satisfactory.

8. Choose Save As... from the File menu to save the movie to disk. A dialog box will appear. Select the
131 Workshop folder from the Macintosh HD window and click Open. Type a name for the movie file and
click Save.

9. Choose Quit from the File menu.

Analyzing the Movie

To determine the position of an object at different times during the motion, perform the following steps:

1. Start up VideoPoint by going to the Apple Menu in the upper left corner of the screen and click and drag
down to highlight VideoPoint alias. Click the mouse in the window titled About VideoPoint".

2. Click on Open Movie and select the desired file.

3. VideoPoint will request the number of objects you want to track in the movie. Carefully read the instructions
for the unit you are working on to find this number. Enter it in the space provided. You will now see several
windows. One contains the movie and has control buttons and a slider along the bottom of the frame to
control the motion of the film. Experiment with these controls to learn their function. Another window
below the movie frame contains position and time data and a third window to the right of the frame describes
the coordinate system in use.

4. This is a good time to calibrate the scale. Go to a frame where an object of known size is clearly visible
(see item 5 in the previous section). Under the Movie menu highlight Scale Movie. A dialog box will
appear. Enter the length of the object and set Scale Type to Fixed. Click Continue. Move the cursor
over the frame and click on the ends of scaling object.
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5. You are now ready to record the position and time data. Go to the first frame of interest. Move the cursor
over the frame and it will change into a small circle with an attached label. Place the circle over the object
of interest in the frame and click. The x and y positions will be stored and the film advanced one frame.
Move the circle over the position of the object in the frame and repeat. Continue this process until you
have mapped out the motion of the object. If you entered more than one object to keep track of when you
opened the movie, then you will click on all those objects in each frame before the film advances.

6. When you have entered all the points you want, click on the Data Table window below the movie frame.
Scroll down through the data table to find your data. Click and drag across all the rows and columns of
the entries to highlight all of your data. Under the Edit menu highlight Copy.

7. Start up Cricket Graph by going to the Apple Menu in the upper left corner of the screen and click and
drag down to highlight Cricket Graph alias. You will see a window with a set of blank rows and columns.
Click the mouse in the upper left box and under the Edit menu highlight Paste. The data your just copied
from VideoPoint should now fill the table and you can analyze it with the methods described in Appendix
C: Introduction to Cricket Graph.

Changing the Origin

To change the position of the origin take the following steps.

1. Click on the arrow icon near the top of the menu bar to the left. The cursor will be shaped like an arrow
when you place it on the movie frame.

2. Click at the origin (where the axes cross) and drag the origin to the desired location.

3. Click on the circle at the top of the menu bar to the left to return to the standard cursor for marking points
on the film.

Using a Moving Coordinate System

To record the position of an object and to change the coordinate system from frame to frame take the following
steps.

1. Open the movie as usual and enter one object to record. First we have to select the existing origin and
change it from a fixed one to a moving one. Click on the arrow near the top of the menu bar to the left.
The cursor will have the shape of an arrow when you place it on the movie frame. Click on the existing
origin (where the axes cross) and it will be highlighted.

2. Under the Edit menu drag down and highlight Edit Selected Series. A dialog box will appear. Click on
the box labelled Data Type and highlight the selection Frame-by-Frame. Click OK.

3. Click on the circle at the top of the menu bar to the left to change the cursor back to the usual one for
marking points. Go to the first frame of interest. When the cursor is placed in the movie frame it will be
labelled with Point S1". Click on the object of interest. The film will NOT advance and the label on the
cursor will change to Origin 1". Click on the desired location of the origin in that frame. The film will
advance as usual. Repeat the procedure to accumulate the x- and y-positions relative to the origin you've
defined in each frame.
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E Instrumentation

Introduction

Being both quantitative and experimental, physics is basically a science of measurement. A great deal of effort
has been expended over the centuries improving the accuracy with which the fundamental quantities of length,
mass, time, and charge can be measured.

It is important that the appropriate instrument be used when measuring. Ordinarily, a rough comparison with a
numerical scale, taken at a glance and given in round numbers, is adequate. Increasing precision, though, requires
a more accurate scale read to a fraction of its smallest division. The “least count” of an instrument is the smallest
division that is marked on the scale. This is the smallest quantity that can be read directly without estimating
fractions of a division.

Even at the limit of an instrument’s precision, however, accidental errors— which cannot be eliminated—still
occur. These errors result in a distribution of results when a series of seemingly identical measurements are made.
The best value, known as the most probable value, is the arithmetic mean or average of the measurements.

Other errors, characteristic of all instruments, are known as systematic errors. These can be minimized by
improving the equipment and by taking precautions when using it.

Length Measurement

Three instruments will be available in this class for length measurements: a ruler (one- or two-meter sticks, for
example), the vernier caliper, and the micrometer caliper.

The Meter Stick

A meter stick, by definition, is 1 meter (m) long. Its scaled is divided, and numbered, into 100 centimeters (cm).
Each centimeter, in turn, is divided into 10 millimeters. Thus 1 cm = 1072 m, and 1 mm = 107! ¢cm = 103 m.

When measuring a length with a meter stick, different regions along the scale should be used for the series of mea-
surements resulting in an average value. This way, non-uniformities resulting from the meter stick manufacturing
process will tend to cancel out and so reduce systematic errors. The ends of the stick, too, should be avoided,
because these may be worn down and not give a true reading. Another error which arises in the reading of the
scale is introduced by the positioning of the eyes, an effect known as parallax. Uncertainty due to this effect can
be reduced by arranging the scale on the stick as close to the object being measured as possible.

The Vernier Caliper

A vernier is a small auxiliary scale that slides along the main scale. It allows more accurate estimates of fractional
parts of the smallest division on the main scale.

On a vernier caliper, the main scale, divided into centimeters and millimeters, is engraved on the fixed part of
the instrument. The vernier scale, engraved on the movable jaw, has ten divisions that cover the same spatial
interval as nine divisions on the main scale: each vernier division is % the length of a main scale division. In

the case of a vernier caliper, the vernier division length is 0.9 mm. [See figures below.]

1.23

Examples of vernier caliper readings
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To measure length with a vernier caliper, close the jaws on the object and read the main scale at the position
indicated by the zero-line of the vernier. The fractional part of a main-scale division is obtained from the first
vernier division to coincide with a main scale line. [See examples above.|

If the zero-lines of the main and vernier scales do not coincide when the jaws are closed, all measurements will
be systematically shifted. The magnitude of this shift, called the zero reading or zero correction, should be noted
and recorded, so that length measurements made with the vernier caliper can be corrected, thereby removing the
systematic error.

The Micrometer Caliper

A micrometer caliper is an instrument that allows direct readings to one hundredth of a millimeter and estimations
to one thousandth of a millimeter or one millionth of a meter (and, hence, its name). It is essentially a carefully
machined screw housed in a strong frame. To measure objects, place them between the end of the screw and the
projecting end of the frame (the anvil). The screw is advanced or retracting by rotating a thimble on which is
engraved a circular scale. The thimble thus moves along the barrel of the frame which contains the screw and
on which is engraved a longitudinal scale divided in millimeters. The pitch of the screw is 0.5 mm, so that a
complete revolution of the thimble moves the screw 0.5 mm. The scale on the thimble has 50 divisions, so that a
turn of one division is z5 of 0.5 mm, or 0.01 mm.

Advance the screw until the object is gripped gently. Do not force the screw. A micrometer caliper is a delicate
instrument.

To read a micrometer caliper, note the position of the edge of the thimble along the longitudinal scale and the
position of the axial line on the circular scale. The first scale gives the measurement to the nearest whole division;
the second scale gives the fractional part. It takes two revolutions to advance one full millimeter, so note carefully
whether you are on the first or second half of a millimeter. The result is the sum of the two scales. (See examples
below).

0.307 cm

0.367 cm

As with the vernier caliper, the zero reading may not be exactly zero. A zero error should be checked for and
recorded, and measurements should be appropriately corrected.

Mass Measurement

Three kinds of instruments will be available to determine mass: a digital scale and two types of balances. The
operation of the first instrument is trivial, and so will not be explained here.
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Please understand that with each of these instruments we are really comparing weights, not masses, but the
proportionality of weight and mass allows the instruments to be calibrated for mass.

The Equal-Arm Balance

The equal-arm balance has two trays on opposite sides of a pivot. The total mass placed on one tray required to
balance the object on the other gives the mass of the object. Most equal-arm balances have a slider, as well, that
can move along a scale and allow for greater precision than the smallest calibrated mass available. Typically, this
scale has 0.5 g divisions.

The Triple-Beam Balance

The triple-beam balance, so-called because of its three slider scales, can be read to 0.1 g and estimated to half
that. With an object on the tray, the masses of the different scales are slid to notches until balanced. Get close
with the larger masses first and then fine-adjust with the smallest slider.

Time Measurement

Time measurements in this course will be made either with a computer or with a stop watch. This first is out of
your control.

The Stop Watch

The stop watches you will use in class have a time range of from hours to hundredths of a second. There are two
buttons at the top: a stop/start button and a reset button. The operation of these should be evident, although
once the watch is reset, the reset button also starts the watch (but doesn’t stop it). Please be aware of this
feature.

Charge Measurements

The magnitude of charge is among the most difficult measurements to make. Instead a number of indirect
measurements are undertaken to understand electric phenomena. These measurements are most often carried out
with a digital multimeter

The Digital Multimeter

The digital multimeters available for laboratory exercises have pushbutton control to select five ac and dc voltage
ranges, five ac and dc current ranges, and six resistance ranges. The ranges of accuracy are 100 microvolts to
1200 volts ac and dc, 100 nanoamperes to 1.999 amperes ac and dc, and 100 milliohms to 19.99 megaohms.

To perform a DC voltage measurement, select the DCV function and choose a range maximum from one of 200
millivolts or 2, 20, 200, or 1200 volts. Be sure the input connections used are V-Q and COMMON. The same is
true for AC voltage, regarding range and inputs, but the ACV function button should be selected.

For DC current choose DC MA (for DC milliamperes), while for AC current choose AC MA. Your choices for
largest current are 200 microamperes or 2, 20, 200, or 2000 milliamperes. Check that the input are connected to
MA and COMMON.

There are two choices for resistance measurement: Kilohms (KQ) and Megohms (20M2). The input connectors
are the same as when measuring voltage, namely V-2 and COMMON. The range switches do not function with
the Megohm function, but one of the range buttons must be set. The maximum settings for Kilohm readings are
2002 or 2, 20, 200, or 2000KkS).
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