Hunting for Quarks and Gluons

Jerry Gilfoyle University of Richmond

- What we know about the sub-atomic world and its forces background.
- We're about to learn more at the upgraded Jefferson Lab (JLab) physics motivation.
- How we measure things technical details.
- Summary and Conclusions.

• The structure of matter.

 \rightarrow Table of Elements (TOE)

H	ĺ.			PER	IODI	ст/	BLE	E OF	THE	ELE	MEN	ITS					He
Ľ.	Be										1	B	Ċ	N	0	F	Ne
Na	Mg											AI	Si	• P	S	CI	Ar
K	Ca	Sc	" Ti		Cr	Mn	Fe	Co	Ni	* Cu	Zn En	Ga	Ge	As	Se interest	Br	"Kr
Rb	Sr	Y	Zr	Nb	Mo	"Tc	Ru	Rh	- Pd	Âg	Cd	In	sn Sn	Sb	Te	• 	Xe
Cs	Ba	La-Lu	Hf	Ta	W	Re	NOS Maria	r العقر	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
Fr	Ra	Ac · Lr	Rf	Db N	Sg	u Bh ∄aa	Hs Hs	Mt	Uun		Uub	Uut	Uuq	Üup	Uuh	Uus	Üuo
Lanthor	ide series	La	Ce	Pr	Nd	Pm	Sm	Eu Eu	Gd	"Tb	Dy	Ho	Er	"Tm	°Yb ∵	Lu	
Actini	de señes	Ac	Th	Pa	U 1900	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr	

• The structure of matter. \rightarrow Table of Elements (TOE)

The current TOE!

 \rightarrow quarks and leptons.

	FERMIONS matter constituents spin = 1/2, 3/2, 5/2,									
Lep	otons spin =1/2		Quar	ks spin	=1/2					
Flavor	Mass GeV/c ²	Electric charge	Flavor	Approx. Mass GeV/c ²	Electric charge					
\mathcal{V}_{L} lightest neutrino* \mathbf{e} electron	(0−2)×10 ^{−9} 0.000511	0 -1	u _{up} d _{down}	0.002 0.005	2/3 -1/3					
$\mathcal{V}_{\mathbf{M}} \stackrel{\mathrm{middle}}{_{\mathrm{neutrino}^*}} \mu$ muon	(0.009–2)×10 ^{–9} 0.106	0 -1	C charm S strange	1.3 0.1	2/3 1/3					
\mathcal{V}_{H} heaviest neutrino* au tau	(0.05–2)×10 ^{–9} 1.777	0 -1	t _{top} b _{bottom}	173 4.2	2/3 1/3					

- The structure of matter.
 - \rightarrow Table of Elements (TOE)
- The current TOE!
 - \rightarrow quarks and leptons.
- We are made mostly of triplets of quarks.
 - \rightarrow protons and neutrons
 - ightarrow the nucleons

	FERMIONS matter constituents spin = 1/2, 3/2, 5/2,									
Lep	otons spin =1/2	:	Quar	ks spin	=1/2					
Flavor	Mass GeV/c ²	Electric charge	Flavor	Approx. Mass GeV/c ²	Electric charge					
V _L lightest neutrino* e electron	(0−2)×10 ^{−9} 0.000511	0 -1	u _{up} d _{down}	0.002 0.005	2/3 1/3					
$\mathcal{V}_{M} \stackrel{ ext{middle}}{ ext{neutrino}^{*}} \mu ext{muon}$	(0.009–2)×10 ^{–9} 0.106	0 -1	C charm S strange	1.3 0.1	2/3 -1/3					
$rac{\mathcal{V}_{H}}{neutrino^*}$ heaviest $ au$ tau	(0.05–2)×10 ^{–9} 1.777	0 -1	t _{top} b _{bottom}	173 4.2	2/3 1/3					

- The structure of matter.
 - \rightarrow Table of Elements (TOE)
- The current TOE!
 - \rightarrow quarks and leptons.
- We are made mostly of triplets of quarks.
 - \rightarrow protons and neutrons
 - ightarrow the nucleons
- The bosons are the force carriers. —

	FERMIONS matter constituents spin = 1/2, 3/2, 5/2,									
Lep	otons spin =1/2	:	Quar	ks spin	=1/2					
Flavor	Mass GeV/c ²	Electric charge	Flavor	Approx. Mass GeV/c ²	Electric charge					
V _L lightest neutrino* e electron	(0−2)×10 ^{−9} 0.000511	0 -1	u _{up} d _{down}	0.002 0.005	2/3 1/3					
$\mathcal{V}_{M} \stackrel{ ext{middle}}{ ext{neutrino}^{*}} \mu ext{muon}$	(0.009-2)×10 ⁻⁹ 0.106	0 -1	C charm S strange	1.3 0.1	2/3 1/3					
$rac{\mathcal{V}_{H}}{neutrino^*}$ heaviest $ au$ tau	(0.05–2)×10 ^{–9} 1.777	0 -1	t _{top} b _{bottom}	173 4.2	2/3 1/3					

	BC	SONS	force carrie spin = 0, 1,		
Unified El	ectroweal	spin = 1	Strong (o	:olor) s	pin = 1
Name	Mass GeV/c ²	Electric charge	Name	Mass GeV/c ²	Electric charge
γ photon	0	0	g gluon	0	0
w-		-1	Higgs Bo	son s	pin = 0
W+ W bosons		+1	Name	Mass GeV/c ²	Electric charge
Z ⁰ Z boson		0	H Higgs		

- The structure of matter.
 - \rightarrow Table of Elements (TOE)
- The current TOE!
 - \rightarrow quarks and leptons.
- We are made mostly of triplets of quarks.
 - \rightarrow protons and neutrons
 - ightarrow the nucleons
- The bosons are the force carriers.

More than 99% of our mass is in quark triplets.

FERMIONS matter constituents spin = 1/2, 3/2, 5/2,									
Lep	otons spin =1/2		Quar	ks spin	=1/2				
Flavor	Mass GeV/c ²	Electric charge	Flavor	Approx. Mass GeV/c ²	Electric charge				
\mathcal{V}_{L} lightest neutrino* \mathbf{e} electron	(0−2)×10 ^{−9} 0.000511	0 -1	u _{up} d _{down}	0.002 0.005	2/3 1/3				
$\mathcal{V}_{\mathbf{M}} \stackrel{\mathrm{middle}}{}_{\mathrm{neutrino}^*}$ μ muon	(0.009–2)×10 ^{–9} 0.106	0 -1	C charm S strange	1.3 0.1	2/3 1/3				
$rac{\mathcal{V}_{H}}{neutrino^*}$ heaviest $ au$ tau	(0.05–2)×10 ^{–9} 1.777	0 -1	t _{top} b _{bottom}	173 4.2	2/3 1/3				

	BC	SONS	force carrie spin = 0, 1,		
Unified El	ectroweal	spin = 1	Strong (color) s	pin = 1
Name	Mass GeV/c ²	Electric charge	Name	Mass GeV/c ²	Electric charge
γ photon	0	0	g gluon	0	0
w-		-1	Higgs Bo	son s	pin = 0
W ⁺		+1	Name	Mass GeV/c ²	Electric charge
Z ⁰ Z boson		0	H Higgs		


- The color force binds quarks together via gluon exchange.
- The quarks are never alone.
 - $\rightarrow \text{ confinement}$
- At high energy the force is weak.
 - \rightarrow asymptotic freedom

- The color force binds quarks together via gluon exchange.
- The quarks are never alone.
 - $\rightarrow \text{ confinement}$
- At high energy the force is weak.
 → asymptotic freedom
- Quantum Chromodynamics QCD nails it.
 - \rightarrow 2005 Nobel to Gross, Wilczek, and Politzer.
 - \rightarrow QCD applies only at high energy where the color force is weak.



- The color force binds quarks together via gluon exchange.
- The quarks are never alone.
 - $\rightarrow \text{ confinement}$
- At high energy the force is weak.
 → asymptotic freedom
- Quantum Chromodynamics QCD nails it.
 - \rightarrow 2005 Nobel to Gross, Wilczek, and Politzer.
 - \rightarrow QCD applies only at high energy where the color force is weak.

QCD can't be solved at nucleon energies where we live.

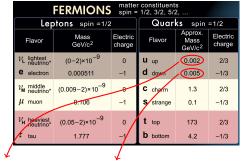
- The color force binds quarks together via gluon exchange.
- The quarks are never alone.
 - $\rightarrow \text{ confinement}$
- At high energy the force is weak.
 → asymptotic freedom
- Quantum Chromodynamics QCD nails it.
 - \rightarrow 2005 Nobel to Gross, Wilczek, and Politzer.
 - \rightarrow QCD applies only at high energy where the color force is weak.

QCD can't be solved at nucleon energies where we live. Yet!

• The proton is 2 ups + 1 down; the neutron is 1 up + 2 downs.

	FERMIONS matter constituents spin = 1/2, 3/2, 5/2,									
Lep	otons spin =1/2	:	Quar	ks spin	=1/2					
Flavor	Mass GeV/c ²	Electric charge	Flavor	Approx. Mass GeV/c ²	Electric charge					
V _L lightest neutrino* e electron	(0−2)×10 ^{−9} 0.000511	0 -1	u _{up} d _{down}	0.002 0.005	2/3 -1/3					
$\mathcal{V}_{M} \stackrel{ ext{middle}}{ ext{neutrino}^{*}} \mu ext{muon}$	(0.009-2)×10 ⁻⁹ 0.106	0 -1	C charm S strange	1.3 0.1	2/3 1/3					
\mathcal{V}_{H} heaviest neutrino* au tau	(0.05–2)×10 ^{–9} 1.777	0 -1	t _{top} b _{bottom}	173 4.2	2/3 1/3					

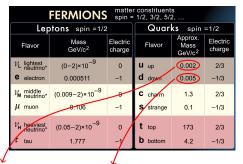
- The proton is 2 ups + 1 down; the neutron is 1 up + 2 downs.
- A quiz: How much does the proton weigh?


	FERMIONS matter constituents spin = 1/2, 3/2, 5/2,									
Lep	otons spin =1/2	:	Quar	ks spin	=1/2					
Flavor	Mass GeV/c ²	Electric charge	Flavor	Approx. Mass GeV/c ²	Electric charge					
V _L lightest neutrino* e electron	(0−2)×10 ^{−9} 0.000511	0 -1	u _{up} d _{down}	0.002 0.005	2/3 1/3					
$\mathcal{V}_{\mathbf{M}} \stackrel{\mathrm{middle}}{_{\mathrm{neutrino}^{*}}}$ μ muon	(0.009–2)×10 ^{–9} 0.106	0 -1	C charm S strange	1.3 0.1	2/3 1/3					
$rac{\mathcal{V}_{H}}{neutrino^*}$ heaviest $ au$ tau	(0.05–2)×10 ^{–9} 1.777	0 -1	t _{top} b _{bottom}	173 4.2	2/3 1/3					

- The proton is 2 ups + 1 down; the neutron is 1 up + 2 downs.
- A quiz: How much does the proton weigh?

	FERMIONS matter constituents spin = 1/2, 3/2, 5/2,								
Lep	otons spin =1/2	:	Quar	ks spin	=1/2				
Flavor	Mass GeV/c ²	Electric charge	Flavor	Approx. Mass GeV/c ²	Electric charge				
V _L lightest neutrino* e electron	(0−2)×10 ^{−9} 0.000511	0 -1	u _{up} d _{down}	0.002 0.005	2/3 1/3				
$\mathcal{V}_{\mathbf{M}} \stackrel{\mathrm{middle}}{_{\mathrm{neutrino}^*}}$ μ muon	(0.009-2)×10 ⁻⁹ 0.106	0 -1	C charm S strange	1.3 0.1	2/3 1/3				
$rac{\mathcal{V}_{H}}{neutrino^*}$ heaviest $ au$ tau	(0.05–2)×10 ^{–9} 1.777	0 -1	t _{top} b _{bottom}	173 4.2	2/3 -1/3				

$$m_p = 2m_{up} + m_{down}$$

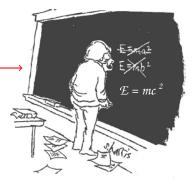

- The proton is 2 ups + 1 down; the neutron is 1 up + 2 downs.
- A quiz: How much does the proton weigh?

$$m_p = 2m_{up} + m_{down} = 2(0.002 \ GeV/c^2) + 0.005 \ GeV/c^2$$

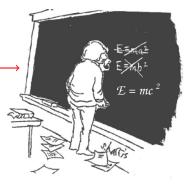
= 0.009 GeV/c^2

Where does mass come from? - UH-OH!

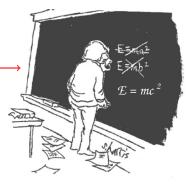
- The proton is 2 ups + 1 down; the neutron is 1 up + 2 downs.
- A quiz: How much does the proton weigh?

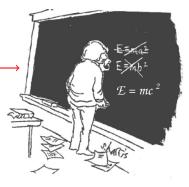

 $m_p = 2m_{up} + m_{down} = 2(0.002 \ GeV/c^2) + 0.005 \ GeV/c^2$ = 0.009 GeV/c^2

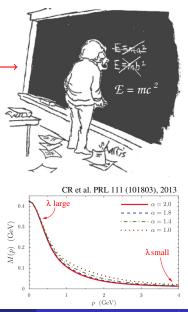
 $= 0.939 \ GeV/c^2 \quad OOOPS!!!????$

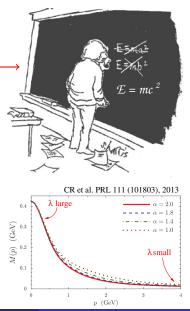

• The color charge of a quark produces a strong field, *e.g.* a charged particle.

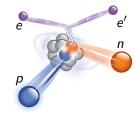
- The color charge of a quark produces a strong field, *e.g.* a charged particle.
- Between and around bound quarks the energy density is high.

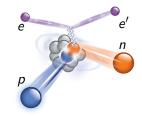

- The color charge of a quark produces a strong field, *e.g.* a charged particle.
- Between and around bound quarks the energy density is high.

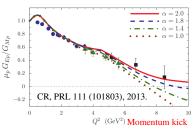

- The color charge of a quark produces a strong field, *e.g.* a charged particle.
- Between and around bound quarks the energy density is high.
- Most of the mass we see comes from the quark color fields → gluon cloud!


- The color charge of a quark produces a strong field, *e.g.* a charged particle.
- Between and around bound quarks the energy density is high.
- Most of the mass we see comes from the quark color fields → gluon cloud!

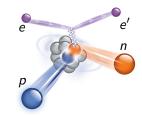

- The color charge of a quark produces a strong field, *e.g.* a charged particle.
- Between and around bound quarks the energy density is high.
- Most of the mass we see comes from the quark color fields → gluon cloud!
- At JLab we probe the nucleon interior with high-momentum electrons.
- The momentum/wavelength (λ) of the electrons sample different sizes.

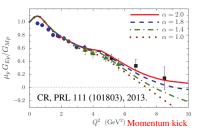

- The color charge of a quark produces a strong field, *e.g.* a charged particle.
- Between and around bound quarks the energy density is high.
- Most of the mass we see comes from the quark color fields → gluon cloud!
- At JLab we probe the nucleon interior with high-momentum electrons.
- The momentum/wavelength (λ) of the electrons sample different sizes.
- At high momentum you probe close to the quarks → bare quark mass.

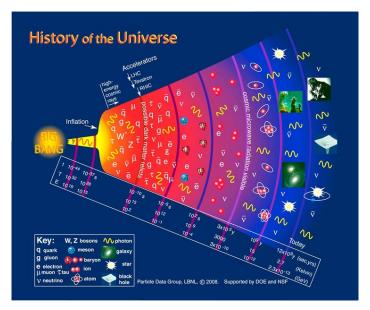

- The color charge of a quark produces a strong field, *e.g.* a charged particle.
- Between and around bound quarks the energy density is high.
- Most of the mass we see comes from the quark color fields → gluon cloud!
- At JLab we probe the nucleon interior with high-momentum electrons.
- The momentum/wavelength (λ) of the electrons sample different sizes.
- At high momentum you probe close to the quarks \rightarrow bare quark mass.
- At low momentum you probe the whole cloud.



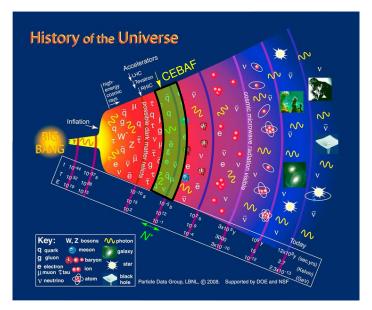
- The cross section reflects the effective size of the target in a scattering experiment.
- The form factors *G_E* and *G_M* are two components of the cross sections we measure.


- The cross section reflects the effective size of the target in a scattering experiment.
- The form factors *G_E* and *G_M* are two components of the cross sections we measure.
- The ratio of the form factors G_E/G_M for the proton is sensitive to the shape of the mass function.




- The cross section reflects the effective size of the target in a scattering experiment.
- The form factors *G_E* and *G_M* are two components of the cross sections we measure.
- The ratio of the form factors G_E/G_M for the proton is sensitive to the shape of the mass function.

We are probing how mass emerges from QCD color fields.

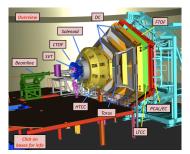


A Connection With Ted

A Connection With Ted

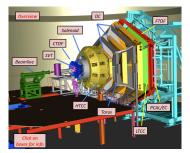
Jerry Gilfoyle

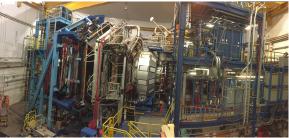
- Build the newest US national lab Jefferson Lab (JLab) in Newport News, VA
- The accelerator CEBAF is a mile-long, racetrack-shaped, superconducting linear accelerator.
- Rapidly varying electric fields push electrons to 12 GeV.
- Electron beam distributed to four halls.
- Just completing a \$330M Upgrade.




- Build the newest US national lab Jefferson Lab (JLab) in Newport News, VA
- The accelerator CEBAF is a mile-long, racetrack-shaped, superconducting linear accelerator.
- Rapidly varying electric fields push electrons to 12 GeV.
- Electron beam distributed to four halls.
- Just completing a \$330M Upgrade.

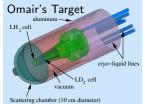
It's a QCD laboratory!

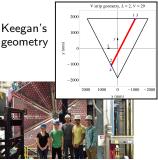

- Build a large (3-story, 45-ton) particle detector called CLAS12 in Hall B.
- Many layers measure the debris from electron-target collisions.
- Over 100,000 readouts in pprox 40 layers.
- Large magnet bends charged particles to measure 4-momenta of the debris.
- Will write 5-10 TByte to disk each day.



- Build a large (3-story, 45-ton) particle detector called CLAS12 in Hall B.
- Many layers measure the debris from electron-target collisions.
- Over 100,000 readouts in pprox 40 layers.
- Large magnet bends charged particles to measure 4-momenta of the debris.
- Will write 5-10 TByte to disk each day.

First production data spring, 2018!



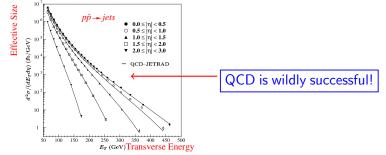


Some of the Nuclear Physics at the University of Richmond

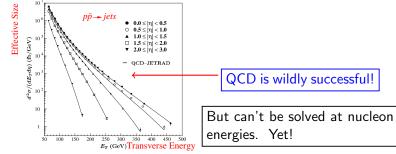
- The usual suspects: Keegan Sherman, Omair Alam, Alexander Balsamo, David Brakman, Peter Davies, old gray-haired guy.
 Omair's Target
- Software is important! We are writing code for:
 - methods to align the 33,792 elements of the silicon vertex tracker to within 40 50 μm .
 - extracting the magnetic form factor G_M^n from the $eD \rightarrow e'p(n)$ and $eD \rightarrow e'n(p)$ reactions.
 - measuring the neutron detection efficiency needed for $eD \rightarrow e'n(p)$ with $ep \rightarrow e'\pi^+n$.
 - \bullet monitoring and operating a cryogenic LD_2-LH_2 target.
- Rely now on simulation of CLAS12 and cosmic ray data until 2017.
- Four student posters in Vancouver in October.

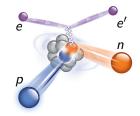
- JLab is at the frontier of our understanding of the basic properties of matter including most of the known mass.
- First measurement of the nucleon mass curve?
- CLAS12 is a large, complex particle detector about to see first beam.
- Our group is preparing feverishly to understand the deluge of data that is coming first beams in April!

- The color force binds quarks together via gluon exchange.
- The quarks are never alone.
 - $\rightarrow \text{ confinement}$
- At high energy the force is weak.
 - \rightarrow asymptotic freedom

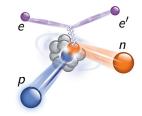


- The color force binds quarks together via gluon exchange.
- The quarks are never alone.
 - $\rightarrow \text{ confinement}$
- At high energy the force is weak.
 - ightarrow asymptotic freedom
- Quantum Chromodynamics QCD nails it.
 - \rightarrow 2005 Nobel to Gross, Wilczek, and Politzer.
 - \rightarrow Only at high energy where the color force is weak.

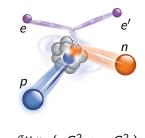

- The color force binds quarks together via gluon exchange.
- The quarks are never alone.
 - $\rightarrow \text{ confinement}$
- At high energy the force is weak.
 - \rightarrow asymptotic freedom
- Quantum Chromodynamics QCD nails it.
 - \rightarrow 2005 Nobel to Gross, Wilczek, and Politzer.
 - \rightarrow Only at high energy where the color force is weak.

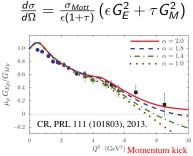


- The color force binds quarks together via gluon exchange.
- The quarks are never alone.
 - $\rightarrow \text{ confinement}$
- At high energy the force is weak.
 - \rightarrow asymptotic freedom
- Quantum Chromodynamics QCD nails it.
 - \rightarrow 2005 Nobel to Gross, Wilczek, and Politzer.
 - \rightarrow Only at high energy where the color force is weak.

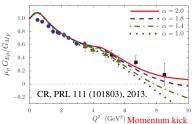


• The cross section reflects the effective size of the target in a scattering experiment.




- The cross section reflects the effective size of the target in a scattering experiment.
- This cross section can be expressed here in electric and magnetic form factors G_E and G_M .

$$rac{d\sigma}{d\Omega} = rac{\sigma_{Mott}}{\epsilon(1+\tau)} \left(\epsilon G_E^2 + \tau G_M^2 \right)$$


- The cross section reflects the effective size of the target in a scattering experiment.
- This cross section can be expressed here in electric and magnetic form factors G_E and G_M .
- The ratio G_E/G_M for the proton has a zero crossing sensitive to the shape of the mass function.

- The cross section reflects the effective size of the target in a scattering experiment.
- This cross section can be expressed here in electric and magnetic form factors G_E and G_M .
- The ratio G_E/G_M for the proton has a zero crossing sensitive to the shape of the mass function.
- So does G_E/G_M for the neutron.

