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What is the Mission of Jefferson Lab?

e Basic research into the quark nature of the atomic nucleus.

e Map the geography of the transition from proton-neutron picture
of nuclei to one based on quarks and gluons.

e Probe the quark-gluon structure of hadronic matter and how it
evolves within nuclei.

@ Test the theory of the
color force  Quantum
Chromodynamics (QCD)
and the nature of quark
confinement.
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What is the Mission of Jefferson Lab?

e Basic research into the quark nature of the atomic nucleus.

e Map the geography of the transition from proton-neutron picture
of nuclei to one based on quarks and gluons.

e Probe the quark-gluon structure of hadronic matter and how it
evolves within nuclei.

@ Test the theory of the
color force  Quantum
Chromodynamics (QCD)
and the nature of quark
confinement.

One of the seven Millenium Prize Problems from the
Clay Mathematics Institute.
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What Do We Know?

@ The Universe is made of

quarks and leptons and FERMIONS 2 52555, .

! Leptons spin =1/2 Quarks  spin =1/2
the force carriers. Cver Mass  |Electic]| per | LD | Electic

GeV/c? charge Gevie2 | charge

BOSONS &in=5"% , o
Unified Electroweak spin Strong [color) spin = 1 Y lightest . (0-2)x10 o Juuw 0.002 23
€ electron 0.000511 -1 | d down 0005  -1/3
Yo middle - 0009-2)x10° 0 | € charm 13 213
M muon 0.106 -1 S strange 0.1 =13
w+ 80.39 g6 N
W bosons . Yy heaviest, (0.05-2)x10~° 0 t top 173 213
Z% | or1ss
Zboson os T tau 1.777 -1 | bobotom 22 -3

@ The atomic nucleus is made of pro-
tons and neutrons bound by the
strong force.

@ The quarks are confined inside the
protons and neutrons.
@ Protons and neutrons are NOT confined.

g
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What Do We Know?

@ The Universe is made of I
quarks and |ept0n5 and FERMIONS spin = 1/2, 3/2, 5/2, ...

! Leptons spin =1/2 Quarks  spin =1/2
the force carriers.

BOSONS &in-55.

: 9
Unified Eleciroweak spin Strong (color) _spin = 1 Vijghtest.  (0-2)x10 0

Approx
Flavor Mass
GeV/c?

Mass Electric
GeVi/c2 charge

Electric

Flavor charge

u 0002 23
€ clecton  0.000511 -1 Jddown 0005 -3
Yo pidde . 0000-2x10° 0 fCocham 13 23
e M muon 0.106 = S strange 0.1 =113
w+ 80.39 c
Wbosons
Bz - . Notes Used in Symphony #5

@ The atomic nucleus is made of pro
tons and neutrons bound by thg |
strong force. 1

@ The quarks are confined inside thg | =
protons and neutrons. A Bo B C Ci D Eb E F R G Ab

@ Protons and neutrons are NOT cobrrree-

"R
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What is the Force?

@ Quantum chromodynamics (QCD) 2 —
looks like the right way to get the
force at high energy.

151 7
1+ 4

05 b
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r (fm)

V,(GeV)
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What is the Force?

@ Quantum chromodynamics (QCD) PYE— ——
looks like the right way to get the 5L 3tons 1
force at high energy.

V,(GeV)

L L L 1
02 04 06 08 1 12 14 16

r (fm)
@ The hadronic model uses a phe-
nomenological force fitted to data gl
at low energy. This ‘strong’ force is g i
the residual force between quarks. gl

n-p Separation
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How Well Do We Know It?

@ We have a working theory of strong
interactions: quantum chromody-
namics or QCD (B.Abbott, et al.,
Phys. Rev. Lett., 86, 1707 (2001)).

® 0.0<|<05
o 05<n<10
A 10<|<15
O 15<n[<20
v 20<n[<30

— QCD-JETRAD

d3oj{dBydn) (fb/GeV)

T T I
100 150 200 250 300 350 400 450 500
Er (GeV)

@ The coherent hadronic model (the LT
standard model of nuclear physics) Y, @) cmena

works too (L.C.Alexa, et al., Phys. e
Rev. Lett., 82, 1374 (1999)). g e 3

Hummel & Tjon

10-7 - RIA+MEC
Van Orden et al. “x

RIA PR
1078 Hummel & Tjon -
RIA - e ]
10-9 Van Orden el al .

Q* [(GeV/c)’]
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How Well Do We Know It7?

@ We have a working theory of strong
interactions: quantum chromody-

pp — jets

® 0.0<|<05
o 05<n<10
A 10<|<15

namics or QCD (B.Abbott, et al., 5 b
Phys. Rev. Lett., 86, 1707 (2001)). < ~ e o
g transverse

. energy
/

@ The coherent hadronic model (the
standard model of nuclear physics)

effective target area

T T I
100 150 200 250 300 350 400 450 500
Er (GeV)

2 ® JLab Hall A
AQ%) 4 sl pto1

s
works too (L.C.Alexa, et al., Phys. e ed —€'d
6 | N ,
Rev. Lett., 82, 1374 (1999)). * i
10-7 L RIA+MEC = . / _

RIA - e ]
109 | “/an Orde‘n el al | ’ T
4-momentum transfer squared > BT H S S

Q* [(GeV/c)’]
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What Don’'t We Know?

e Matter comes in pairs of

matter constituents
FERMIONS spin = 1/2, 3/2, 5/2, ...

quarks or triplets. Leptons spin =1/2 Quarks spin =12
Mass Electric Approx. Electric
o We are made mostly of the e I R I v
triplets (protons and neu- wigles.  o2x0° o Juw ooz 28
€ electron 0.000511 -1 | d down 0005  -1/3
trons). T p— .
neufrino* (0.009-2)x10 0 charm 1.3 213
") More than 99% of our M muon 0.106 -1 S strange 0.1 -1/3
mass is in nucleons. Vopgaes ©os-2¢10° o ftw s 2
T tau 1.777 -1 b bottom 42 -1/3

@ The proton is 2 ups + 1
down; the neutron is 1 up
+ 2 downs.
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What Don’'t We Know?

e Matter comes in pairs of
quarks or triplets.

e We are made mostly of the
triplets (protons and neu-
trons).

e More than 99% of our
mass is in nucleons.

@ The proton is 2 ups + 1
down; the neutron is 1 up
+ 2 downs.

matter constituents
FERMIONS spin = 1/2, 3/2, 5/2, ...

Leptons spin =1/2

Quarks  spin =1/2

e A quiz: How much does the proton weigh?

mp = 2mup + Mdown

Approx. .

Flavor GM?/S/SZ ELecInc Flavor Mass EL\eacr‘r:
eV/c: charge GeV/c? g

W lightest . (9_g)«10~° o Juw 0.002 213
€ electron 0.000511 -1 | d down 0005  -1/3
Yo middle . (0.009-2)x10~° 0 C charm 13 2/3
M muon 0.106 -1 S strange 0.1 -1/3
"V, heaviest -9 t to 17 2/
W heaviest  (0.05-2)x10 0 p 3 3
T tau 1.777 -1 b bottom 42 -1/3
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What Don’'t We Know?

e Matter comes in pairs of

matter constituents
FERMIONS spin = 1/2, 3/2, 5/2, ...

quarks or triplets. Leptons spin =1/2 Quarks spin =1/2
o We are made mostly of the o | J S v | Vo | S
triplets (protons and neu- Wi 0207 o
€ electron 0.000511 -1
tI’OﬂS). Yy middle - (0.000-2)x10"° 0
e More than 99% of our . mon 0.106
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T tau

@ The proton is 2 ups + 1
down; the neutron is 1 up
+ 2 downs.

e A quiz: How much does the pyoton weigh?

Mp = 2Myp + Maown= 2(0.002 GeV'/c?) + 0.005 GeV//c?
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What Don’'t We Know?

e Matter comes in pairs of

matter constituents
FERMIONS spin = 1/2, 3/2, 5/2, ...

quarks or triplets. Leptons spin =1/2 Quarks spin =1/2
o We are made mostly of the o | J S v | Vo | S
triplets (protons and neu- Wi 0207 o
€ electron 0.000511 -1
tI’OﬂS). Yy middle - (0.000-2)x10"° 0
e More than 99% of our . mon 0.106
mass is in nucleons. Vo hedviest  (0.05-2)s

T tau

@ The proton is 2 ups + 1
down; the neutron is 1 up
+ 2 downs.

e A quiz: How much does the pyoton weigh?
Mp = 2Myp + Maown= 2(0.002 GeV'/c?) + 0.005 GeV//c?
=0.939 GeV/c> OOOPS!!17?7?
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What Don’'t We Know?

Q@ We can't get QCD and
the hadronic model to line O —
up - D. Abbott, et al, /11 Novosibirsk 3570 ,,r,f%if‘;':“:‘
Phys. Rev Lett. 84, 5053 T e 4
(2000). I e, |

@ NEED TO FIGURE OUT i /
QCD AT THE ENERGIES R A
OF NUCLEI! Bt

|
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What Do We Measure?
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What Do We Measure?

The Magnetic Form Factor of the Neutron (Gj))

Jerry Gilfoyle Hunting for Quarks 8 /33



What Do We Measure?

The Magnetic Form Factor of the Neutron (Gj))
@ Fundamental quantity related to the distribution of
magnetization/currents in the neutron.
@ Needed to extract the distribution of quarks in the neutron.

o Elastic form factors (Gy;, G2, Gl;, and GE) provide key constraints
on theory and the structure of hadrons.

@ Part of a broad effort to understand how nucleons are ‘constructed
from the quarks and gluons of QCD’.*

* *The Frontiers of Nuclear Science: A Long-Range Plan’, NSF/DOE Nuclear Science
Advisory Committee, April, 2007.
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What is a Form Factor?

@ Start with the cross section.

do __ scattered flux/solid angle
dQ? 7 incident flux/surface area

For elastic scattering use the Rutherford cross section.
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What is a Form Factor?

@ Start with the cross section.

do __ scattered flux/solid angle
dQ? 7 incident flux/surface area

For elastic scattering use the Rutherford cross section.

@ Get the cross section for elastic scattering by point particles with spin.

do _  Z%a?(hc)? 2n2 0 ;
@ = A0 (1—32sin*%)  (Mott cross section)
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What is a Form Factor?

@ Start with the cross section.

do __ scattered flux/solid angle
dQ? 7 incident flux/surface area

For elastic scattering use the Rutherford cross section.

@ Get the cross section for elastic scattering by point particles with spin.

do _  Z%a?(hc)? 2n2 0 ;
@ = A0 (1—32sin*%)  (Mott cross section)

@ What happens when the beam is electrons and the target is not a
point?

o Z%02(hc)? .
98 = s (1~ Bsin® §) [F(Q)?

where Q2 is the 4-momentum transfer.
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What is a Form Factor?

@ Start with the cross section.

do __ scattered flux/solid angle
dQ? 7 incident flux/surface area

For elastic scattering use the Rutherford cross section.

@ Get the cross section for elastic scattering by point particles with spin.

do _  Z%a?(hc)? 2n2 0 ;
@ = A0 (1—32sin*%)  (Mott cross section)

@ What happens when the beam is electrons and the target is not a
point?

o Z%02(hc)? .
9 = s (1~ B2sin® §) [F(QY)

where Q2 is the 4-momentum transfer.
THE FORM FACTORI!
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Why Should You Care?

e The chain of reason.

% - |F(Q2)’2 ~ F(Q2) — p(F) — '1/}(?) <_8§n21’:ituent quarks

Experiment Comparison Theory

The form factors are the meeting ground between
theory and experiment.

e The Fourier transform of the form factors are related
to the charge and current distributions within the
neutron.
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Why Should You Care Even More?

o The old picture of the
neutron (and proton)_ | Charge distribution

4T r2pe

o What we know now -
analysis of form factor
data by G. Miller(Phys.
Rev. Lett. 99,6 112001

(2007)).
o.a 2_5\<\i
~0.1 21\
o(b) [fm2] _0.2 o[fm?]1.5
-0.3 neutron 1
-0.4 0.5
0 05 1 15 2 %05 1 1.5 2
b[fm] b[£m]
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Why Should You Care Even More?

o The old picture of the
neutron (and proton)_ Charge distribution

4T r2pe

o What we know now -
analysis of form factor
data by G. Miller(Phys.
Rev. Lett. 99,6 112001
(2007)).

o(b) [(fm2] _o,
neutron

oooo o
ABWON=O=
(o]

0 05 1 15 2 2
b[fm] DI
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How Do We Measure Gf, on a Neutron? (Step 1)

@ Start at your local mile-long,
high-precision, 12-GeV electron N
accelerator.

@ The Continuous Electron Beam
Accelerator Facility (CEBAF) Electron
produces beams of unrivaled
quality.

Superconducting
Linacs

Beam switchyard

©J Experimental Halls

@ Electrons do up to five laps, are
extracted, and sent to one of
three experimental halls.

@ Three of four halls can run si-
multaneously.
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How Do We Measure Gf, on a Neutron? (Step 2)

o Add one 45-ton, $80-million
radiation detector: the
CEBAF Large Acceptance
Spectrometer (CLAS12).

Overview

@ CLAS covers a large fraction
of the total solid angle at for-
ward angles.

@ Has about 62,000 detecting
elements in about 40 layers.
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CEBAF Large Acceptance
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How Do We Measure Gf, on a Neutron? (Step 2a)

@ Drift chambers map the tra-
jectories. A toroidal magnetic
field bends the particles to
measure momentum.

e Other layers measure energy,
time-of-flight, and particle
identification.

e Each collision is reconstructed
and the intensity pattern re-
veals the forces and structure
of the colliding particles.

o Scatter electrons off pro-
tons and deuterons (pro-
ton-+neutron).

Solenoid

Jerry Gilfoyle Hunting for Quarks
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A Simulated CLAS12 Event
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A Simulated CLAS12 Event
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How Do We Measure Gy, on a Neutron? (Step 3)

Omair's Target

aluminum —am

e Where's my target?
LH, cell

Use a dual target cell with lig-
uid hydrogen and deuterium.

e How bad do the protons mess
things up? They help!

LD, cell

vacuum

Scattering chamber

- GP24+7G 2
P ZQ(D( — Q) B +27G? tanz(g)
T do - p2
ZQ(D(G e’p Ge :G’V’ +27GF? tan? (%)

o The ratio is less vulnerable to corrections like acceptance,
efficiencies, etc.

e Use the dual target to perform in situ detector calibrations.

Jerry Gilfoyle Hunting for Quarks
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o Quasi-elastic event selec-
tion:  Apply a maximum
0,q cut to eliminate inelas-
tic events plus a cut on W2
(J.Lachniet thesis).

e Use the ep — €'7" n reaction
from the hydrogen target as a
source of tagged neutrons in
the TOF and calorimeter.

Jerry Gilfoyle

neutron efficiency

o

e

o

e

e

e

35000~

mon; 6 GeV res

25000 —
20000/

150001

5000

15

epq < 3 degrees

2
W2 (GeV?)

all ep events

F v 4.2 GeV data

° i
£ Yy oy
E A 2.5GeVdata xﬁ +
sF 4
F I P 4 e
4 ‘o' ¥ 25 cov ana
[ * | | }
3 + St
£ * Lt
£ x a l
2 * (ol
r +
E *
1= X
= * Poutron momentum (GeVic)
C X
ol ea® o | L N I ST S [ S T S |
0 1 2

Hunting for Quarks

3 4 5
neutron momentum (GeV/c)
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How Do We Measure Gy, on a Ne

Analyzing the data - CLAS12 computing requirements.

Cores | Disk(TBytes) | Tape (TByte/year)

DAQ 1,270
Calibration 173

Reconstruction 1,387 508 5,080
Simulation 8,139 318 1,558
Reconstruction Studies 1,214 508

Physics Analysis 607 889

Sum 11,520 2,223 7,938

We'll collect 5-10 TByte/day!

Intel Many-Integrated
CoProcessor computer \
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Anticipated Results

a - T T T [
('30_: 1'25 Anticipated E
cs 1.1 --. Statistical uncertainties only —
15 ﬁqhﬁv’ﬁ%& =
L e ]
; N h."{. Iy . =
0.9 {2}\ G — ¥ ¥ -
E webp——_ " % =
0.8F- 0 R A
EC — T, . 4
0.7 §~ Guidal et al. -
= I 3
0.6 Red -J.Lachniet et al. T =
"“E Green - Previous World Data Tt =
0.5 Black - CLAS12 anticipated Cloet et al. 7
£ Blue ; Hall A a‘nticipate?d (with s‘ystematic uncert‘a\inties) 3
04 2 4 6 8 10 12 14
Q*(GeV?)
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Nuclear Structure - Flavor Decomposition

@ By measuring all four EEFFs we
have an opportunity to unravel

L T R

r — Kelly fit (2004)
the contributions of the v and d 2 0al ——RCQM - Miler (2005) ]
quarks. oo

@ Assume charge symmetry, no s 03
quarks and use (Miller et al. P
Phys. Rep. 194, 1 (1990)) w I

i2) = 2Fp) T Fll)

Fio) = 2Flo) + Filz)
@ u and d are different.
o AND different from the proton

and neutron form factors. 00 05 10 15 20 25 30 85 40
. . i Q? [GeV?]
o EVIdence Of dl_quarksv S quark n- Gordon Cates, Sean Riordan et al., PRL
106, 252003 (2011).
fluence, ...7 06, 252003 (2011)
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Concluding Remarks

o JLab is a laboratory to test and expand our
understanding of quark and nuclear matter, QCD, and
the Standard Model.

o We continue the quest to unravel the nature of matter
at greater and greater depths.

o Lots of new and exciting results are coming out.

o A bright future lies ahead in the 12 GeV Era.

U. S. Department of Energy's

(YN

= CgW Falb

THOMAS JEFFERSON NATIONAL ACCELERATOR FACILITY
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Concluding Remarks

Additional Slides
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Life on the Frontiers of Knowledge
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Life on the Frontiers of Knowledge
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@ Start at your local mile-long,
high-precision, 12-GeV electron
accelerator.

@ The Continuous Electron Beam §
Accelerator Facility (CEBAF) &
produces beams of unrivaled |
quality.

@ Electrons do up to five laps, are
extracted, and sent to one of
three experimental halls.

@ All three halls can run simulta-
neously.

Jerry Gilfoyle Hunting for Quarks
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How Do We Measure Gf, on a Neutron? (Step 2)

o Add one 45-ton, $50-
million radiation detec-
tor: the CEBAF Large
Acceptance Spectrome-

ter (CLAS).

o CLAS covers a large frac-
tion of the total solid an-

gle.

e Has about 35,000 de-
tecting elements in
about 40 layers.
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How Do We Measure Gf, on a Neutron? (Step 2a)

@ Drift chambers map the tra- The CEBAR
jectories. A toroidal magnetic Laten Acceptamoe Spestmometes
field bends the particles to ——
measure momentum. s
e Other layers measure energy,
time-of-flight, and particle
identification.

e Each collision is reconstructed
and the intensity pattern re- -
veals the forces and structure / diveon
of the colliding particles. n

Electromagnetic Shower
Time of Flight Counters Calorimeters

500+ channels, 145 ps resolution 1700+ channels
ofE = 10%/E"S

Jerry Gilfoyle Hunting for Quarks 27 /33



A CLAS Event

Gilfoyle

Electromagnetic
Calorimeters
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How Do We Measure Gy, on a Neutron? (Step 3)

o Where's my target?

e5 Primary Target

Use a dual target cell with lig-
uid hydrogen and deuterium.

e How bad do the protons mess
things up? They help!

n2 T n?2
P j—g(D(e, e'n)) ( 2)—GE ;;TG"” +27G,\’},2tan2(g)
= do =4 2 2
qa(D(e, €'p)) —GEITTG"F;’ + 217G tan2(2)

@ The ratio is less vulnerable to corrections like acceptance,
efficiencies, etc.
e Use the dual target to perform in situ detector calibrations.

Jerry Gilfoyle Hunting for Quarks
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Results - Overlaps and Final Average

Overlapping measurements of Gy, scaled by the dipole are consistent.

1.6
1.4 Gy
r H-nGD
1.2
3 ' fetegl * |
T l,,v +-*ilti;f *X*t;;iii**+
0.8 ‘
C Vv 2.5 GeV, SC neutrons
0.6—
C ¥ 4.2 GeV, SC neutrons
0.4
C A 2.5 GeV, EC neutrons
02—
C A 4.2 GeV, EC neutrons
o_lllllllllllllI‘IlllllllIIIIIIIIIIIIIIIIIIIIIIII\I
0 05 1 15 2 25

35 ,4 45,
Q" (GeVic)
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Results - Comparison with Existing Data

. :_ m CLAS O Kubon A Anklin Green band - Diehl _:
E e Lung O Bartel ¢ Arnold Solid - Miller E
12 4 xu ¥ Anderson Dashed - Guidal ]
1.1 Qs st e -
C e T . ]

1 —— .I I ]f } - e e :
0.9- T =
0.8 B
0.7 \ \ \ \ \ \ \ \ \ E
0 0.5 1 15 2 2.5 3 3.5 4 4.5 5
Q*(GeV?)
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Results - Comparison with Existing Data

m CLAS O Kubon A Anklin Green band - Diehl
e Lung O Bartel 9 Arnold Solid - Miller
Xu Y Anderson Dashed - Guidal
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JLab 12 GeV Upgrade - Better Accelerator

@ The electron beam energy at JLab (CEBAF) has been doubled from 6
GeV to 12 GeV.

@ Halls A, B and C will be upgraded to accommodate the new physics
opportunities.

@ A new hall (Hall D) will house a large-acceptance detector built
around a solenoidal magnet for photon beam experiments.

Add new hall
CEBAF at 12 GeV e

0 2 4 6 85 10
Enhance equipment in My = (E-E))M [GeV]
l) exising halls
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JLab 12 GeV Upgrade - New Detectors

The CEBAF
~ Large Acceptance Spectrometer
(/LAS at Jefferson Lab

Superconducting
B Toroidal Magnet
35,000 wires )
oR= 350 pm

Electromagnetic
Time of Flight Counters Calorimeters

500+ channels, 145 ps resolution 1700+ channels
OfE = 10%/E"
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