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What is the Mission of Jefferson Lab?

® Pursue basic research into the quark nature of the atomic
nucleus.

® Map the geography of the transition from proton-neutron
picture of nuclei to one based on quarks and gluons.

® Provide a testing ground for the theory of the color force
Quantum Chromodynamics (QCD) and the nature of quark
confinement. '"

® Probe the gquark-gluon struc-
ture of hadronic matter and
how it evolves within nuclei.
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What Do We Know?

® The Universe is made of FERMIONS Z“p?if‘irff’z”sé',?e;‘,?
Leptons pn =112

Mass
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#® The atomic nucleus is made
The 7 ""“'.'...ZI
of protons and neutrons Nucleus

bound by the strong force. -
® The quarks are confined in- e @ q.,fi“
side the protons and neu-
trons.
# Protons and neutrons are NOT confined.
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What Do We Know?

® The Universe is made of
guarks and leptons and
the force carriers.

force carriers
BOSONS spin-=0, 1, 2, ...
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Strong (color) spin =1
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® The atomic nucleus is ma
of protons and neutrg
bound by the strong force.

# The gquarks are confined
side the protons and ne
trons.
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What is the Force?

#® Quantum chromodynamics ;|
(QCD) looks like the right
way to get the force at high
energy.
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What is the Force?

#® Quantum chromodynamics
(QCD) looks like the right
way to get the force at high
energy.

# The hadronic model uses a o2 o4 o8 08 112 14 e
phenomenological force fit-
ted to data at low en-
ergy. This ‘strong’ force is
the residual force between
quarks.

Potential Energy

n-p Separation
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How Well Do We Know It?

® We have a working theory
of strong interactions: guan-
tum chromodynamics or QCD
(B.Abbott, et al., Phys. Reuv.
Lett., 86, 1707 (2001)).

d?c/(dErdm) (fb/GeV)
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e
® The coherent hadronic model A
(the standard model of nu- :"@ A@%) et :
clear physics) works too
-ett, 2, 1374 (1999) o F
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How Well Do We Know It?

pp — Jets

® We have a working theory

® 0.0<|n<0.5
O 05<n|<1.0

of strong interactions: quan- 2 S
9 i ¥ 20<n<3.0
tum chromodynamics or QCD =
E§.10”-
(B.Abbott, et al., Phys. Revw. o

Lett., 86, 1707 (2001)).

effective target area < S

® The coherent hadronic model

(the standard model of nu- e, Q) osucmo
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clear physics) works too N,
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What Don’t We Know?

® Matter comes in pairs of FERMIONS mom oo ars ars. .
quarks or triplets. Leptons spin =1/2

Approx. .
Flavor GM?/S/S : e Mass ELectrlc
eVic Gey/c2 | charge

® We are made mostly of the [ S = =aes oo > 23
triplets (prOtonS and neu_ \ej electron 0.000511 -1 @ down m -1/3
Yy midde . 10.009-0.13)x109 0 [l (@) cham B 23
tronS). M) muon 0.106 B @) srange | 0.1 -1/3
0 Vil neairinox | (0.04-0.14)x10-°| 0 &) e 173 2/3
.. More than 99 A) Of Our L{/ tau 1.777 -1 @ bottom 4.2 _1/3J

mass is in nucleons.
® The protonis 2 ups + 1 down; the neutron is 1 up + 2 downs.

® How much does the proton weigh?
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What Don’t We Know?

® Matter comes in pairs of FERMIONS ;";;“iff;;“sg',;*e;;;
quarks or triplets. Leptons spin =1/2

. Approx.
Flavor GM?/S/Sz e Mass ELectrlc
eVic GeV/ , | charge

® We are made mostly of the 5 &

J neutrino® (0 -0. 13)X10_9 0

triplets (protons and neu- | & 00005t

middle 4 ‘
\w neutrino* [(0-009-0.13)x10-9 0 1.3 2/3
tronS) - ‘l}/ muon 0.106 0.1 -1/3
heaviest k
\_B’ neutrino* 173 2/3
® More than 99% of our t
k-/ tau 4.2 —1/3J

mass is in nucleons.
® The protonis 2 ups + 1 down; the‘neutron is 1 up + 2 downs.

® How much does the proton wergh?

My = 2Mup + Maown = 2(0.002 GeV/c?) + 0.005 GeV/c?
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What Don’t We Know?

® Matter comes in pairs of FERMIONS ;";;“iff;;“sg',;*e;;;
quarks or triplets. Leptons spin =1/2

. Approx.
Flavor GM?/S/Sz e Mass ELectrlc
eVic GeV/ , | charge

® We are made mostly of the 5 &

J neutrino® (0 -0. 13)X10_9 0

triplets (protons and neu- | & 00005t

middle 4 ‘
\w neutrino* [(0-009-0.13)x10-9 0 1.3 2/3
tronS) - ‘l}/ muon 0.106 0.1 -1/3
heaviest k
\_B’ neutrino* 173 2/3
® More than 99% of our t
k-/ tau 4.2 —1/3J

mass is in nucleons.
® The protonis 2 ups + 1 down; the‘neutron is 1 up + 2 downs.

® How much does the proton wergh?

My = 2Mup + Maown = 2(0.002 GeV/c?) + 0.005 GeV/c?

= 0.939 GeV/c* OOOQOPS!I????
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What Don’'t We Know?

1. We can’t get QCD and the
hadronic model to line up - 0 | | |
D. Abbott, et al., Phys. Rev & Mo 5550 ’%,T;;:
Lett. 84, 5053 (2000). " I 1

2. NEED TO FIGURE OUT | %1 P
QCD AT THE ENERGIES ™ & ? il

OF NUCLEI! aob By od — o/d -

0 05 10 15 2.0
Q%[(GeV/c)]
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The Magnetic Form Factor of the Neutron ( G7))

® Fundamental quantity related to the distribution of
magnetization/currents in the neutron.

® Needed to extract the distribution of quarks in the neutron.

® Elastic form factors (G%,, G%, G, and G'.) provide key
constraints on theory and the structure of hadrons.

® Part of a broad effort to understand how nucleons are
‘constructed from the quarks and gluons of QCD’.*

* ‘The Frontiers of Nuclear Science: A Long-Range Plan’,
NSF/DOE Nuclear Science Advisory Committee, April, 2007.
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What is a Form Factor?

» Start with the cross section.

do __ scattered flux/solid angle
d? — incident flux/surface area

scattering
center

For elastic scattering use the Rutherford cross section.
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What is a Form Factor?

» Start with the cross section.

do __ scattered flux/solid angle
d? — incident flux/surface area

scattering
center

For elastic scattering use the Rutherford cross section.

® Getthe cross section for elastic scattering by point particles with spin.

202 (he)? . .
d — = Singze)ﬂ) (1 —B%sin® %) (Mott cross section)
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What is a Form Factor?

» Start with the cross section.

do __ scattered flux/solid angle
d? — incident flux/surface area

scattering
center

For elastic scattering use the Rutherford cross section.

® Getthe cross section for elastic scattering by point particles with spin.

202 (he)? . .
d — = Singze)ﬂ) (1 —B%sin® %) (Mott cross section)

® What happens when the beam is electrons and the target is not a
point?

o Z2 a2 (he)? .
7 = e sin(4(9)/2) (1 - 3%sin® §) |[F(Q*)P

where 2 is the 4-momentum transfer.
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What is a Form Factor?

» Start with the cross section.

do __ scattered flux/solid angle
d? — incident flux/surface area

scattering
center

For elastic scattering use the Rutherford cross section.

® Getthe cross section for elastic scattering by point particles with spin.

202 (he)? . .
d — = Singze)ﬂ) (1 —B%sin® %) (Mott cross section)

® What happens when the beam is electrons and the target is not a

point?
o Z2a?(he)? .
7 = e sin(4(9)/2) (1 - 3%sin® §) |[F(Q*)P
where Q? is the 4-momentum transfer. \

THE FORM FACTOR!

Research Introduction — p.



Why Should You Care?

® The chain of reason.
QCD,

ccll_?l - ‘F<Q2)’2 -~ F<Q2) % '0(77) <_ @b(f’) <_Constituentquarks

Experiment Comparison Theory

The form factors are the meeting ground between theory and
experiment.

® The Fourier transform of the form factors are related to the
charge and current distributions within the neutron.
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Why Should You Care Even More?

Charge distribution

® The old picture of the neutron
(and proton).

&
i; - scalar cloud
q- .-\-v: “““““ -::‘:‘3“‘-.
0 . 1
® What we know now - analy- <

sis of form factor data by G. 00 05 10 15 20

r(fm
Miller(Phys. Rev. Lett. 99, "
112001 (2007)).
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0 T 21.1\\
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Why Should You Care Even More?

Charge distribution

® The old picture of the neutron
(and proton).

&
i_:_ scalar cloud
<+ -'\'f: """"" — =
Y] S 1
® What we know now - analy- % |
sis of form factor data by G. 00 05 10 15 20
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Miller(Phys. Rev. Lett. 99,
112001 (2007)).
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How Do We Measure G, on a Neutron? (Step 1)

® Start at your local mile-long,
high-precision, 6-GeV elec-
tron accelerator.

® The Continuous Electron
Beam Accelerator Facility
(CEBAF) produces beams of
unrivaled quality.

® Electrons do up to five laps,
are extracted, and sent to one
of three experimental halls.

® All three halls can run simulta-
neously.
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How Do We Measure G, on a Neutron? (Step 2)

® Add one 45-ton, $50-million
radiation detector. the CE-
BAF Large Acceptance Spec-
trometer (CLAS).

® CLAS covers a large fraction
of the total solid angle.

® Has about 35,000 detecting
elements in about 40 layers.
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How Do We Measure G, on a Neutron? (Step 2a)

® Drift chambers map the tra-
] ] _ ] The CEBAF
jectories. A toroidal magnetic CLAS Large Soosprane.Spectmeter
field bends the trajectory to [ '

i, LT Superconducting
Chambers 2 i, Toroidal Magnet
35,000 wires P i
measure momentum. or=350m

® Other layers measure en-
ergy, time-of-flight, and parti-
cle identification.

® Each collision is recon-
structed and the intensity
pattern reveals the forces

" Electromagnetic Shower

and structure of the colliding |k, e |

500+ channels, 145 ps resolution 0.c
o/E = 10%/E™

particles.
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A CLAS Event

‘yntillators e

\
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How Do We Measure G, on a Neutron? (Step 3)

® \Where's my tal‘get? e5 Primary Target

Use a dual target cell with lig-
uid hydrogen and deuterium.

® How bad do the protons mess
things up? They help!

Gn2_|_7_Gn 2 9 9 0

o 8PEdn) oo “Er e + 276 tan’(5)
d T p 2 p 2

a5 (D(e, e'p)) “e T 4 97GR % tan2(9)

® The ratio is less vulnerable to corrections like acceptance,
efficiencies, etc.

® Use the dual target to perform in situ detection calibrations.
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How Do We Measure G7, on a Neutron? (Step 4)

® Quasi-elastic event selec- “F
l . 1 30000? all ep events
tion: Apply a maximum ok "

0,, cut to eliminate inelas- 2o
tic events plus a cut on W2 =
(J.Lachniet thesis). 10000F

B,q < 3 degrees

5000

® Use the ep — /7 n reaction

gost ¥ 42 GeV data ﬁ" o
from the hydrogen target as a  gos * **% %™ +
source of tagged neutrons in ~ ‘,o'x NE
the TOF and calorimeter. o it |
I

3 4 5
neutron momentum (GeV/c)
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Results - Overlaps and Final Average

Overlapping measurements of G}, scaled by the dipole are
consistent.

1.6
14 Gy
[ HnGD
- toaat *
R KR LEE YT LI TISSY ST
: oy
0.8 1
- 2.5 GeV, SC neutrons
0.6—
_ V¥ 4.2 GeV, SC neutrons
0.4—
N A 2.5 GeV, EC neutrons
0.2—
— A 4.2 GeV, EC neutrons
_IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
00 0.5 1 1.5 2 2.5 3 3.5 4.5 5

4
Q? (GeV/c)’
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Results - Comparison with Existing Data

D _I T 1 | T 1T 1 | 1T 1T 1 | T 1T 1 | T 1T 1 | 1T 1T 1 | T T 1 | T T 1 | 1T T 1 | | L I_
O F ]
E-E 1-3__ m CLAS O Kubon ¢ Arnold Green band - Diehl ]
b - e Lung O Bartel Solid - Miller ]

1.2 — v Anderson A Anklin Dashed - Guidal o
1.1 —
1_ \:
0.9 -
0.8 -
0.7 | | | | | | | | | E
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Q*(GeV?)
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Results - Comparison with Existing Data
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Nuclear Structure - Flavor Decomposition

o

By measuring all four EEFFs we
have an opportunity to unravel the
contributions of the « and d quarks.

Assume charge symmetry, no s
quarks and use (Miller et al. Phys.
Rep. 194, 1 (1990))

d n
Fla) = 2F {9y + Fi ()
u and d are different.

AND different from the proton and
neutron form factors.

Evidence of di-quarks, s quark influ-
ence, ...?

0.5

—— Kelly fit (2004)
— RCQM - Miller (2005)

0.0

05 10 15 20 25 30 35 40
Q? [GeV?
Gordon Cates, Sean Riordan

etal., PRL 106, 252003 (2011).
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JLab 12 GeV Upgrade - Better Accelerator

® The electron beam energy at JLab (CEBAF) will be doubled from 6 GeV to 12 GeV.

® Halls A, B and C will be upgraded to accommodate the new physics opportunities.

® A new hall (Hall D) will house a large-acceptance detector built around a solenoidal

magnet for photon beam experiments.

Add new hall
CEBAF at 12 GeV . &

Upgrade magnets
and power
supplies

Add 5

cryﬂmodules %’% J

2 Enhance equipment in
U existing halls

Mv = (E-E’)M [GeV’]
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JLab 12 GeV Upgrade - New Detectors

The CEBAF
Large Acceptance Spectrometer
CLAS at Jefferson Lab

Superconducting
Toroidal Magnet

Drift
Chambers

35,000 wires
Gg=350pm

electron
beam
direction

Electromagnetic Shower
Time of Flight Counters Calorimeters
500+ channels, 145 ps resolution 1700+ chanm?]ss
o/F = 10%/E"
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JLab 12 GeV Upgrade - New Toys

Cores | Disk(TBytes) | Tape (TBytelyear)

DAQ 1,270
Calibration 173

Reconstruction 1,387 508 5,080
Simulation 8,139 318 1,558
Reconstruction Studies | 1,214 508

Physics Analysis 607 889

Sum 11,520 2,223 7,938

Intel Many-Integrated
Processors computer

_—

CLAS12 computing
requirements
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JLab 12 GeV Upgrade - New Experiments

D [ ! ! ! ! ! ! ! ! ! ! ! ! | ! ! ! | ! ! ! ! ! ! ! ]
g_c 1'25 Anticipated -
~ 1.1 --_ @ Statistical uncertainties only 3
O L s .

15 Oy Boler O 1 -
it ¥ ]
) k Heme s 5 4 .
0.9 Tl %\\\JLab%\\i iM'IIiI '} =
o R —~ iller .
0.8 3 f:’\[l § S = . [IJ ]
- e— “““\%'\"L’ -------------- . -
0.7 BT Guidal et al. —
- o ———— .
0.6 Red-J.Lachniet et al. Tee S
""E Green - Previous World Data Tt el =
0.5 Black - CLAS12 anticipated Cloetetal. -
— Blue - Hall A anticipated (with systematic uncertali nties) ]
0.4 IR ST N N T T NN T SO SN AN AN S SN NN SN NN N AN SR TR S N SR SN N
2 4 6 8 10 12 14
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Life on the Frontiers of Knowledge

H

e Fith Structure Puncti
i Mattew Jocan, Garay Gl Trotverty f Rtmnd and the

Systematic Uncertainy
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Life on the Frontiers of Knowledge
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Concluding Remark

# JlLab is a laboratory to test and expand our
understanding of quark and nuclear matter, QCD, and
the Standard Model.

# We continue the guest to unravel the nature of matter at
greater and greater depths.

# Lots of new and exciting results are coming out.

# A bright future lies ahead with the JLab 12-GeV
Upgrade.

ersonlah

. = Etpf:ﬁﬁﬁ't‘ﬁ?ﬂﬂtumﬁqfﬁhﬂe;
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