Future Measurements of the Nucleon Elastic Electromagnetic Form Factors at Jefferson Lab

G.P. Gilfoyle
University of Richmond, Richmond, VA 23173

Outline

1. Scientific Motivation
2. Necessary Background
3. What We Hope to Learn.
4. The Measurements
5. Summary and Conclusions

Tlaxcala City
Scientific Motivation - What We Hope to Learn.

- Nucleon elastic electromagnetic form factors (EEFFs) describe the distribution of charge and magnetization in the nucleon.
- Reveal the internal landscape of the nucleon and nuclei.
- Rigorously test QCD in the non-perturbative regime.
 - Nuclear models, constituent quarks,…
 - Lattice QCD.
- Map the transition from the hadronic picture to QCD.
Scientific Motivation - What We Hope to Learn.

- Nucleon elastic electromagnetic form factors (EEFFs) describe the distribution of charge and magnetization in the nucleon.
- Reveal the internal landscape of the nucleon and nuclei.
- Rigorously test QCD in the non-perturbative regime.
 - Nuclear models, constituent quarks, ...
 - lattice QCD.
- Map the transition from the hadronic picture to QCD.

EEFFs have played an essential role in nuclear and nucleon structure for more than a half century.
Some Necessary Background

- EEFFs cross section described with Dirac (F_1) and Pauli (F_2) form factors

\[
\frac{d\sigma}{d\Omega} = \sigma_{Mott} \left[(F_1^2 + \kappa^2 \tau F_2^2) + 2\tau (F_1 + \kappa F_2)^2 \tan^2 \left(\frac{\theta}{2}\right) \right]
\]

where

\[
\sigma_{Mott} = \frac{\alpha^2 E' \cos^2 \left(\frac{\theta}{2}\right)}{4E^3 \sin^4 \left(\frac{\theta}{2}\right)}
\]

and κ is the anomalous magnetic moment, E (E') is the incoming (outgoing) electron energy, θ is the scattered electron angle and $\tau = Q^2 / 4M^2$.

- For convenience use the Sachs form factors.

\[
\frac{d\sigma}{d\Omega} = \frac{\sigma_{Mott}}{\epsilon (1 + \tau)} \left(\epsilon G_E^2 + \tau G_M^2 \right)
\]

where

\[
G_E = F_1 - \tau F_2 \quad \text{and} \quad G_M = F_1 + F_2 \quad \text{and} \quad \epsilon = \left[1 + 2(1 + \tau) \tan^2 \frac{\theta}{2} \right]^{-1}
\]
Where We Are Now.

- G_M^P reasonably well known over large Q^2 range.
- The ratio G_E^P / G_M^P from recoil polarization measurements diverged from previous Rosenbluth separations.
 - Two-photon exchange (TPE).
 - Effect of radiative corrections.
- Neutron magnetic FF G_M^n still follows dipole.
- High-Q^2 G_E^n opens up flavor decomposition.
Where We Are Now.

- G_M^P reasonably well known over large Q^2 range.
- The ratio G_E^P/G_M^P from recoil polarization measurements diverged from previous Rosenbluth separations.
- Two-photon exchange (TPE).
- Effect of radiative corrections.
- Neutron magnetic FF G_n^E still follows dipole.
- High-Q^2 G_n^E opens up flavor decomposition.

Advances driven by:

- high luminosity beams
- large acceptance detectors
- polarized beams, targets, detectors
Where We Are Now.

- Vector Meson Dominance and dispersion analyses fit all four EEFFs, but use many parameters.
- Constituent Quark Models highlight relativity, but don’t capture all of QCD.
- EEFFs are the first moments of the GPDs.
- EEFFs are an early test of lattice QCD because isovector form does not have disconnected diagrams.
Where We Are Now.

- Vector Meson Dominance and dispersion analyses fit all four EEFFs, but use many parameters.
- Constituent Quark Models highlight relativity, but don’t capture all of QCD.
- EEFFs are the first moments of the GPDs.
- EEFFs are an early test of lattice QCD because isovector form does not have disconnected diagrams.
Where We Are Now.

- Vector Meson Dominance and dispersion analyses fit all four EEFFs, but use many parameters.
- Constituent Quark Models highlight relativity, but don’t capture all of QCD.
- EEFFs are the first moments of the GPDs.
- EEFFs are an early test of lattice QCD because isovector form does not have disconnected diagrams.
Where We Are Now.

- Vector Meson Dominance and dispersion analyses fit all four EEFFs, but use many parameters.
- Constituent Quark Models highlight relativity, but don’t capture all of QCD.
- EEFFs are the first moments of the GPDs.
- EEFFs are an early test of lattice QCD because isovector form does not have disconnected diagrams.

P.E. Shanahan et al.
PRD 90, 034502 (2014)

CSM, QCDSF/UKQCD Collaborations

Blue - lQCD result
Red - data parameterization
Green - dipole fit to calculation

Jerry Gilfoyle, Hadron2014
Where We Are Going - Dyson-Schwinger Eqs

- Equations of motion of quantum field theory.
 - Infinite set of coupled integral equations.
 - Inherently relativistic, non-perturbative, connected to QCD.
 - Deep connection to confinement, dynamical chiral symmetry breaking.
 - Infinitely many equations, gauge dependent \rightarrow Choose well!

- Recent results (Cloët et al).
 - Model the nucleon dressed quark propagator as a quark-diquark.
 - Damp the shape of the mass function $M(p)$.

![Graph showing $M(p)$ vs p for different values of α.](PRL 111, 101803 (2013))
Equations of motion of quantum field theory.

- Infinite set of coupled integral equations.
- Inherently relativistic, non-perturbative, connected to QCD.
- Deep connection to confinement, dynamical chiral symmetry breaking.
- Infinitely many equations, gauge dependent \rightarrow Choose well!

Recent results (Cloët et al).

- Model the nucleon dressed quark propagator as a quark-diquark.
- Damp the shape of the mass function $M(p)$.
Equations of motion of quantum field theory.

- Infinite set of coupled integral equations.
- Inherently relativistic, non-perturbative, connected to QCD.
- Deep connection to confinement, dynamical chiral symmetry breaking.
- Infinitely many equations, gauge dependent \rightarrow Choose well!

Recent results (Cloët et al).

- Model the nucleon dressed quark propagator as a quark-diquark.
- Damp the shape of the mass function $M(p)$.
Where We Are Going - Dyson-Schwinger Eqs

- Equations of motion of quantum field theory.
 - Infinite set of coupled integral equations.
 - Inherently relativistic, non-perturbative, connected to QCD.
 - Deep connection to confinement, dynamical chiral symmetry breaking.
 - Infinitely many equations, gauge dependent → Choose well!

- Recent results (Cloët et al).
 - Model the nucleon dressed quark propagator as a quark-diquark.
 - Damp the shape of the mass function $M(p)$.

Position of zero in $\mu_p G_E^p / G_M^p$ and $\mu_n G_E^n / G_M^n$ sensitive to shape of $M(p)$!
Where We Are Going - Flavor Decomposition

- With all four EEFFs we can unravel the contributions of the \(u \) and \(d \) quarks.
- Assume charge symmetry, no \(s \) quarks and use (Miller et al. Phys. Rep. 194, 1 (1990))
 \[
 F_{1(2)}^u = 2F_{1(2)}^p + F_{1(2)}^n \\
 F_{1(2)}^d = 2F_{1(2)}^n + F_{1(2)}^p
 \]

Evidence of di-quarks?
\(d \)-quark scattering probes the diquark.
Cloet et al. PRC, 90 045202 (2014)
Agreement with Nambu-Jona-Lasinio model encouraging.
The JLab program will double our reach in \(Q^2 \) to \(\approx 8 \) GeV\(^2\).
With all four EEFFs we can unravel the contributions of the u and d quarks.

$$F_{u,d}^{1(2)} = 2F_{p}^{1(2)} + F_{n}^{1(2)}$$

Evidence of di-quarks? d-quark scattering probes the diquark.
Where We Are Going - Flavor Decomposition

- With all four EEFFs we can unravel the contributions of the u and d quarks.

$$ F_{1(2)}^u = 2F_{1(2)}^p + F_{1(2)}^n \quad F_{1(2)}^d = 2F_{1(2)}^n + F_{1(2)}^p $$

- Evidence of di-quarks? d-quark scattering probes the diquark.

Agreement with Nambu-Jona-Lasinio model encouraging.

Evidence of di-quarks? d-quark scattering probes the diquark.

Agreement with Nambu-Jona-Lasinio model encouraging.
Where We Are Going - Flavor Decomposition

- With all four EEFFs we can unravel the contributions of the u and d quarks.

\[F_{1(2)}^u = 2F_{1(2)}^p + F_{1(2)}^n \quad F_{1(2)}^d = 2F_{1(2)}^n + F_{1(2)}^p \]

- Evidence of di-quarks? d-quark scattering probes the diquark.

- Agreement with Nambu-Jona-Lasinio model encouraging.

\[F_{1(2)}^u \neq F_{1(2)}^d \]

The JLab program will double our reach in Q^2 to $\approx 8 \text{ GeV}^2$.

\[\frac{Q^4 F_{2u}^u}{\kappa_u} \quad \frac{Q^4 F_{2d}^d}{\kappa_d} \]

Cloet et al.
PRC, 90 045202 (2014)
Based on connections between light-front dynamic, it’s holographic mapping to anti-de Sitter space, and conformal quantum mechanics.

Recent paper by Sufian et al. (Phys. Rev. D95, 01411 (2017)) included calculations of the electromagnetic form factors that include higher order Fock components $|qqqqq\rangle$.

Obtain good agreement with all the form factor data with only three parameters, e.g. $\mu_n G^n_E / G^n_M$.
Based on connections between light-front dynamic, it’s holographic mapping to anti-de Sitter space, and conformal quantum mechanics.

Recent paper by Sufian et al. (Phys. Rev. D95, 01411 (2017)) included calculations of the electromagnetic form factors that include higher order Fock components $|qqqq\rangle$.

Obtain good agreement with all the form factor data with only three parameters, e.g. $\mu_n G_E^n / G_M^n$.

Major difference with DSE approach!
Where We Are Going - New Experiments

The JLab Lineup

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Method</th>
<th>Target</th>
<th>$Q^2 (\text{GeV}^2)$</th>
<th>Hall</th>
<th>Beam Days</th>
</tr>
</thead>
<tbody>
<tr>
<td>G_M^p</td>
<td>Elastic scattering</td>
<td>LH_2</td>
<td>7 – 15.5</td>
<td>A</td>
<td>24</td>
</tr>
<tr>
<td>G_E^p/G_M^p</td>
<td>Polarization transfer</td>
<td>LH_2</td>
<td>5 – 12</td>
<td>A</td>
<td>45</td>
</tr>
<tr>
<td>G_M^n</td>
<td>$E - p/e - n$ ratio</td>
<td>$LD_2 - LH_2$</td>
<td>3.5 – 13.0</td>
<td>B</td>
<td>30</td>
</tr>
<tr>
<td>G_M^n</td>
<td>$E - p/e - n$ ratio</td>
<td>LD_2, LH_2</td>
<td>3.5 – 13.5</td>
<td>A</td>
<td>25</td>
</tr>
<tr>
<td>G_E^n/G_M^n</td>
<td>Double polarization asymmetry</td>
<td>polarization ^3He</td>
<td>5 – 8</td>
<td>A</td>
<td>50</td>
</tr>
<tr>
<td>G_E^n/G_M^n</td>
<td>Polarization transfer</td>
<td>LD_2</td>
<td>4 – 7</td>
<td>C</td>
<td>50</td>
</tr>
<tr>
<td>G_E^n/G_M^n</td>
<td>Polarization transfer</td>
<td>LD_2</td>
<td>4.5</td>
<td>A</td>
<td>5</td>
</tr>
</tbody>
</table>

* Data collection is complete.

PAC approval for 229 days of running in the first five years.

All experiments build on successful ones from the 6-GeV era.
How We Will Get There: Jefferson Lab

Continuous Electron Beam Accelerator Facility (CEBAF)

- Superconducting Electron Accelerator (currently 338 cavities), 100% duty cycle.
- $E_{max} = 11$ GeV (Halls A, B, and C) and 12 GeV (Hall D), $\Delta E/E \approx 2 \times 10^{-4}$, $I_{summed} \approx 90 \mu A$, $P_e \geq 80\%$.

Jerry Gilfoyle, Hadron2014
The Experiments - New Detectors

Hall A - High Resolution Spectrometer (HRS) pair, SuperBigBite (SBS), neutron detector, and specialized installation experiments.

Hall C - New Super High Momentum Spectrometer to paired with the existing High Momentum Spectrometer.

Hall B - CLAS12 large acceptance spectrometer operating at high luminosity with toroid (forward detector) and solenoid (central detector).

Hall D - A new large acceptance detector based on a solenoid magnet for photon beams is under construction.
Proton Magnetic Form Factor - G_M^p

- Precise measurement of ep elastic cross section and extract G_M^p.
- Both HRSs in electron mode.
- Beamtime: 24 days.
- $Q^2 = 7.0 - 15.5 \text{ GeV}^2 (1.0, 1.5 \text{ GeV}^2 \text{ steps})$.
- Significant reduction in uncertainties:

<table>
<thead>
<tr>
<th></th>
<th>$d\sigma/d\Omega$</th>
<th>G_M^p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Point-to-Point</td>
<td>1.0-1.3</td>
<td>0.5-0.6</td>
</tr>
<tr>
<td>Normalization</td>
<td>1.0-1.3</td>
<td>0.5-0.6</td>
</tr>
<tr>
<td>Theory</td>
<td>1.0-2.0</td>
<td>0.5-1.0</td>
</tr>
</tbody>
</table>

- Two-Photon Exchange is a major source of uncertainty \rightarrow vary ϵ to constrain.
- Sets the scale of other EEFFs.
- Completed data collection this year.

E. Christy, Hall A Summer Meeting 2017
Proton Form Factor Ratio G_P^E / G_P^M

- E12-07-109 (GEp(5)) in Hall A (Brash, Jones, Perdrisat, Pentchev, Cisbani, Punjabi, Khandaker, Wojtsekhowski).
- Polarization transfer using $H(\vec{e}, e'\vec{p})$:

$$\frac{G_P^E}{G_P^M} = -\frac{P_t}{P_l} \frac{E + E'}{2M} \tan\left(\frac{\theta_e}{2}\right)$$

- Electron arm: EM calorimeter (BigCal).
- Proton arm: new, large-acceptance magnetic spectrometer (SBS) with double polarimeter, and hadron calorimeter.
- Beamtime: 45 days.
- Kinematics and Uncertainties:

<table>
<thead>
<tr>
<th>Q^2 (GeV2)</th>
<th>5.0</th>
<th>8.0</th>
<th>12.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Delta[\mu G_E/G_m]$</td>
<td>0.025</td>
<td>0.031</td>
<td>0.069</td>
</tr>
</tbody>
</table>

- Combined with GEp(4).
- Rated high impact by JLab PAC.
- Running expected in 3-4 years.
Proton Form Factor Ratio G_E^p / G_M^p

- E12-07-109 (GEp(5)) in Hall A (Brash, Jones, Perdrisat, Pentchev, Cisbani, Punjabi, Khandaker, Wojtsekhowski).
- Polarization transfer using $H(\vec{e}, e'\vec{p})$:

$$\frac{G_E^p}{G_M^p} = -\frac{P_t}{P_i} \frac{E + E'}{2M} \tan\left(\frac{\theta_e}{2}\right)$$

- Electron arm: EM calorimeter (BigCal).
- Proton arm: new, large-acceptance magnetic spectrometer (SBS) with double polarimeter, and hadron calorimeter.
- Beamtime: 45 days.
- Kinematics and Uncertainties:

<table>
<thead>
<tr>
<th>Q^2 (GeV2)</th>
<th>5.0</th>
<th>8.0</th>
<th>12.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Delta[\mu G_E/G_m]$</td>
<td>0.025</td>
<td>0.031</td>
<td>0.069</td>
</tr>
</tbody>
</table>

- Combined with GEp(4).
- Rated high impact by JLab PAC.
- Running expected in 3-4 years.
Neutron Magnetic Form Factor $G^n_M - 1$

- E12-07-104 in Hall B (Gilfoyle, Hafidi, Brooks).

- Ratio Method on Deuterium:

$$R = \frac{\frac{d\sigma}{d\Omega} [^2H(e,e' n)_{QE}]}{\frac{d\sigma}{d\Omega} [^2H(e,e' p)_{QE}]}$$

$$= a \times \frac{\sigma_{Mott} \left(\frac{(G_E^n)^2 + \tau (G_M^n)^2}{1+\tau} + 2\tau \tan^2 \frac{\theta_e}{2} (G_M^n)^2 \right)}{\frac{d\sigma}{d\Omega} [^1H(e,e' p)]}$$

where a is nuclear correction.

- Precise neutron detection efficiency needed to keep systematics low.

- tagged neutrons from $p(e, e' \pi^+ n)$.

- Dual $LD_2 - LH_2$ target.

- Kinematics: $Q^2 = 3.5 - 13.0 \ (GeV/c)^2$.

- Beamtime: 30 days.

- Systematic uncertainties $< 2.5\%$ across full Q^2 range.

- Running expected in 2019.
E12-07-104 in Hall B (Gilfoyle, Hafidi, Brooks).

Ratio Method on Deuterium:

\[
R = \frac{\frac{d\sigma}{d\Omega}[^2\text{H}(e,e'n)_{QE}]}{\frac{d\sigma}{d\Omega}[^2\text{H}(e,e'p)_{QE}]} = a \times \frac{\sigma_{\text{Mott}} \left(\frac{(G_E^n)^2 + \tau(G_M^n)^2}{1+\tau} + 2\tau \tan^2 \frac{\theta_e}{2} (G_M^n)^2 \right)}{\frac{d\sigma}{d\Omega}[^1\text{H}(e,e')p]}
\]

where \(a \) is nuclear correction.

Precise neutron detection efficiency needed to keep systematics low.

- Tagged neutrons from \(p(e,e'\pi^+n) \).
- Dual \(LD_2 - LH_2 \) target.

Kinematics: \(Q^2 = 3.5 - 13.0 \) (GeV/c\(^2\)).

Beamtime: 30 days.

Systematic uncertainties < 2.5% across full \(Q^2 \) range.

Running expected in 2019.
Neutron Magnetic Form Factor $G_M^n - 2$

- E12-09-019 in Hall A (Quinn, Wojtsekhowski, Gilman).
- Ratio Method on Deuterium as in Hall B:
 $$R = \frac{d\sigma}{d\Omega}[^2\text{H}(e, e'n)_{QE}]/\frac{d\sigma}{d\Omega}[^2\text{H}(e, e'p)_{QE}]$$
- Electron arm: SuperBigBite spectrometer.
- Hadron arm: hadron calorimeter (HCal).
- Neutron detection efficiency:
 - Use $p(\gamma, \pi^+)n$ for tagged neutrons.
 - End-point method.
- Kinematics: $Q^2 = 3.5 - 13.5 \text{ (GeV/c)}^2$.
- Beamtime: 25 days.
- Systematic uncertainties < 2.1%.
- Two G_M^n measurements ‘allow a better control for the systematic error’ (PAC34).
- Expected in next 2-3 years.
Neutron Magnetic Form Factor G^n_M - 2

- E12-09-019 in Hall A (Quinn, Wojtsekhowski, Gilman).
- Ratio Method on Deuterium as in Hall B:
 \[R = \frac{\frac{d\sigma}{d\Omega}[^2\text{H}(e, e'n)_{\text{QE}}]}{\frac{d\sigma}{d\Omega}[^2\text{H}(e, e'p)_{\text{QE}}]} \]
- Electron arm: SuperBigBite spectrometer.
- Hadron arm: hadron calorimeter (HCal).
- Neutron detection efficiency:
 - Use $p(\gamma, \pi^+)n$ for tagged neutrons.
 - End-point method.
- Kinematics: $Q^2 = 3.5 - 13.5$ (GeV/c)2.
- Beamtime: 25 days.
- Systematic uncertainties < 2.1%.
- Two G^n_M measurements ‘allow a better control for the systematic error’ (PAC34).
- Expected in next 2-3 years.
Neutron Form Factor Ratio $G_E^n/G_M^n - 1$

- E12-09-016 in Hall A (Cates, Wojtsekhowski, Riordan).
- Double Polarization Asymmetry: Get A_{en}^V from $^3\text{He}(\vec{e}, e'n)pp$.
- Longitudinally polarized electron beam.
- ^3He target polarized perpendicular to the momentum transfer.
- Electron arm: Super BigBite spectrometer.
- Neutron arm: hadron calorimeter HCal (overlap with GEp(5) and Hall A G_M^n).
- Beamtime: 50 days.
- Kinematics and Uncertainties:

<table>
<thead>
<tr>
<th>Q^2 (GeV2)</th>
<th>5.0</th>
<th>6.8</th>
<th>8.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Delta \left[\frac{\mu G_E}{G_M} \right]_{\text{stat}}$</td>
<td>0.027</td>
<td>0.022</td>
<td>0.032</td>
</tr>
<tr>
<td>$\Delta \left[\frac{\mu G_E}{G_M} \right]_{\text{syst}}$</td>
<td>0.018</td>
<td>0.021</td>
<td>0.013</td>
</tr>
</tbody>
</table>

$$A_{en}^V = \frac{-2\sqrt{\tau(\tau + 1)\tan(\theta_e/2)\cos\phi^* \sin \theta^* G_E^n/G_M^n}}{(G_E^n/G_M^n)^2 + \tau/\epsilon} + \frac{-2\tau\sqrt{1 + \tau + (\tau + 1)^2 \tan^2(\theta_e/2)\tan(\theta_e/2)\cos\phi^*}}{(G_E^n/G_M^n)^2 + \tau/\epsilon}$$

where $\epsilon = 1/\left(1 + 2(1 + \tau)\tan^2\left(\frac{\theta_e}{2}\right)\right)$

- Expected in next 3-4 years.
Neutron Form Factor Ratio $G^n_E/G^n_M - 1$

- E12-09-016 in Hall A (Cates, Wojtsekhowski, Riordan).
- Double Polarization Asymmetry: Get A_{en}^V from $^3\text{He}(\vec{e}, e'\vec{n})pp$.
- Longitudinally polarized electron beam.
- ^3He target polarized perpendicular to the momentum transfer.
- Electron arm: Super BigBite spectrometer.
- Neutron arm: hadron calorimeter HCal (overlap with GEp(5) and Hall A G^n_M).
- Beamtime: 50 days.
- Kinematics and Uncertainties:

<table>
<thead>
<tr>
<th>Q^2 (GeV2)</th>
<th>5.0</th>
<th>6.8</th>
<th>8.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Delta \left[\frac{\mu G_E}{G_M} \right]_{\text{stat}}$</td>
<td>0.027</td>
<td>0.022</td>
<td>0.032</td>
</tr>
<tr>
<td>$\Delta \left[\frac{\mu G_E}{G_M} \right]_{\text{syst}}$</td>
<td>0.018</td>
<td>0.021</td>
<td>0.013</td>
</tr>
</tbody>
</table>

- Expected in next 3-4 years.

Jerry Gilfoyle, Hadron2014

Future Form Factor Measurements at JLab
Neutron Form Factor Ratio $G_E^n/G_M^n - 1$

- E12-09-016 in Hall A (Cates, Wojtsekhowski, Riordan).
- Double Polarization Asymmetry: Get A_{en}^V from $^3\text{He}(\vec{e}, e'n)pp$.
- Longitudinally polarized electron beam.
- ^3He target polarized perpendicular to the momentum transfer.
- Electron arm: Super BigBite spectrometer.
- Neutron arm: hadron calorimeter HCal (overlap with GEp(5) and Hall A G_M^n).
- Beamtime: 50 days.
- Kinematics and Uncertainties:

<table>
<thead>
<tr>
<th>Q^2 (GeV2)</th>
<th>5.0</th>
<th>6.8</th>
<th>8.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Delta \left[\frac{\mu G_E}{G_M} \right]$ stat</td>
<td>0.027</td>
<td>0.022</td>
<td>0.032</td>
</tr>
<tr>
<td>$\Delta \left[\frac{\mu G_E}{G_M} \right]$ syst</td>
<td>0.018</td>
<td>0.021</td>
<td>0.013</td>
</tr>
</tbody>
</table>

- Expected in next 3-4 years.
Neutron Form Factor Ratio $G_E^n/G_M^n - 2$

- E12-11-009 in Hall C (Sawatzky, Arrington, Kohl, Semenov).
- Polarization transfer using $^2\text{H}(\vec{e}, e'\vec{n})p$:
 \[
 \frac{G_E^n}{G_M^n} = -\frac{P_t}{P_l} \frac{E + E'}{2M} \tan \left(\frac{\theta_e}{2} \right)
 \]
- Electron arm: Super High Momentum Spectrometer (SHMS).
- Neutron arm: neutron polarimeter with tapered-gap neutron-spin-precession magnet and proton recoil detection.
- Kinematics: $Q^2 = 3.95, 6.88 \ (\text{GeV/c})^2$.
- Beamtime: 50 days.
- Systematic uncertainties about 2-3%.
- Statistical uncertainties about 10-16%.
- Complementary to the ^3He experiment.
- Expected after 2020.
Neutron Form Factor Ratio $G_E^n / G_M^n - 2$

- E12-11-009 in Hall C (Sawatzky, Arrington, Kohl, Semenov).
- Polarization transfer using $^2\text{H}(\vec{e}, e'\vec{n})p$:
 \[
 \frac{G_E^n}{G_M^n} = -\frac{P_t}{P_l} \frac{E + E'}{2M} \tan \left(\frac{\theta_e}{2} \right)
 \]
- Electron arm: Super High Momentum Spectrometer (SHMS).
- Neutron arm: neutron polarimeter with tapered-gap neutron-spin-precession magnet and proton recoil detection.
- Kinematics: $Q^2 = 3.95, 6.88$ (GeV/c)2.
- Beamtime: 50 days.
- Systematic uncertainties about 2-3%.
- Statistical uncertainties about 10-16%.
- Complementary to the ^3He experiment.
- Expected after 2020.
Neutron Form Factor Ratio $G^n_E / G^n_M - 3$

- E12-17-004 in Hall C (Annand, Bellini, Kohl, Psikunov, Sawatzky, Wojtsekowsk).
- Polarization transfer using $^2\text{H}(\vec{e}, e' \vec{n})p$:
 \[
 \frac{G^n_E}{G^n_M} = -\frac{P_t}{P_l} \frac{E + E'}{2M} \tan \left(\frac{\theta_e}{2} \right)
 \]
- Electron arm: Super Big Bite Spectrometer.
- Neutron arm: HCal, neutron polarimeter, CDet coordinate detector, scintillation counter.
- Kinematics: $Q^2 = 4.5 \ (\text{GeV/c})^2$.
- Beamtime: 5 days.
- Systematic uncertainties about 3%.
- Statistical uncertainties about 8%.
- Complementary to the ^3He experiment.
- Expected in the next 2-3 years.
Neutron Form Factor Ratio $G^n_E/G^n_M - 3$

- E12-17-004 in Hall C (Annand, Bellini, Kohl, Psikunov, Sawatzky, Wojtsekhowski).
- Polarization transfer using $^2\text{H}(\bar{e}, e'\bar{n})p$:
 \[
 \frac{G^n_E}{G^n_M} = -\frac{P_t E + E'}{P_I 2M} \tan \left(\frac{\theta_e}{2}\right)
 \]
- Electron arm: Super Big Bite Spectrometer.
- Neutron arm: HCal, neutron polarimeter, CDet coordinate detector, scintillation counter.
- Kinematics: $Q^2 = 4.5 \text{ (GeV/c)}^2$.
- Beamtime: 5 days.
- Systematic uncertainties about 3%.
- Statistical uncertainties about 8%.
- Complementary to the ^3He experiment.
- Expected in the next 2-3 years.
Summary and Conclusions

- Large gains over the last decade in physics understanding of the EEFFs built on new technologies and capabilities.
- Major changes in our understanding of nucleon structure.
- At JLab we have begun a broad assault on the EEFFs and will significantly expand the physics reach of our understanding.
- Discovery potential in mapping out nucleon structure and understanding QCD.
Additional Slides
Additional form factor studies after the 12 GeV Upgrade.

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Spokesperson</th>
<th>Title</th>
<th>Hall</th>
<th>Beamtime</th>
</tr>
</thead>
<tbody>
<tr>
<td>PR12-06-101</td>
<td>G. Huber</td>
<td>Measurement of the charged pion form factor to high Q^2</td>
<td>C</td>
<td>52 days</td>
</tr>
<tr>
<td>PR12-09-003</td>
<td>R. Gothe</td>
<td>Nucleon resonance studies with CLAS12</td>
<td>B</td>
<td>40 days</td>
</tr>
</tbody>
</table>
High-Impact Experiments from JLab PAC

PAC Days
- Boldface = days designated High Impact
- Parentheses = days not counting toward High Impact total

Row Color
- Yellow = High Impact
- Green = backup experiment

<table>
<thead>
<tr>
<th>Exp#</th>
<th>Exp name</th>
<th>Hall</th>
<th>Run Group/ Days</th>
<th>PAC Days</th>
<th>PAC grade</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOPIC 1 : SPECTROSCOPY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F2-12-09</td>
<td>BlueX : Mapping the Spectrum of Light Quark Mesons and Gluonic Excitations with Linearly Polarized Photons</td>
<td>D</td>
<td>(120) approved</td>
<td>+90</td>
<td>A</td>
<td>GlueX - expected half commissioning/half physics +30 (commissioning days)</td>
</tr>
<tr>
<td>TOPIC 2 : FORM FACTORS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F2-12-12</td>
<td>Measurement of the Charged Pion Form Factor to High Q2</td>
<td>C</td>
<td>52</td>
<td>A</td>
<td>Requires fully commissioned SM8S</td>
<td></td>
</tr>
<tr>
<td>F2-01-11</td>
<td>QEep/Gep - Large Acceptance Proton Form Factor Ratio Measurements at 13 and 15 GeV/2 Using Recoil Polarization Method</td>
<td>A</td>
<td>45</td>
<td>A</td>
<td>Requires SBS and high-power cryo target</td>
<td></td>
</tr>
<tr>
<td>F2-11-10</td>
<td>High Precision Measurement of the Proton Charge Radius</td>
<td>B</td>
<td>15</td>
<td>A</td>
<td>Non-CLA12 experiment, Pad</td>
<td></td>
</tr>
<tr>
<td>TOPIC 3 : PDFs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F2-06-11</td>
<td>BONuS : The Structure of the Free Neutron at Large 4-Bjorken X</td>
<td>B</td>
<td>F48</td>
<td>(48) approved</td>
<td>+21</td>
<td>A</td>
</tr>
<tr>
<td>F2-10-10</td>
<td>MARATHON : Measurement of the F2H/F2p, d/u Ratios and A=3 NMC-B in DS of the Tritium and Helium Mirror Nucleus</td>
<td>A</td>
<td>Tritium target group/hh</td>
<td>1</td>
<td>+21</td>
<td>A</td>
</tr>
<tr>
<td>F2-08-11</td>
<td>A1n Hall-C-3He : Meas. of Neutron Spin Asymmetry A/n in the Velocity/Quantum Region Using an 11 GeV Beam and a Polarized 9He Target in Hall C</td>
<td>C</td>
<td>36</td>
<td>A</td>
<td>Requires high luminosity 9He</td>
<td></td>
</tr>
<tr>
<td>TOPIC 4 : TMDs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C2-11-11</td>
<td>TMD CLAS-HDice : SIDS on Transversely polarized target</td>
<td>B</td>
<td>Q/15</td>
<td>110</td>
<td>A</td>
<td>Requires transversely polarized HDice with electron beam</td>
</tr>
<tr>
<td>F2-09-11</td>
<td>Dilhadron CLAS-HDice : Measurement of transversity with dilution production in SIDS with transversely polarized target</td>
<td>B</td>
<td>Q/15</td>
<td>(110) concurrent</td>
<td>A</td>
<td>Requires transversely polarized HDice with electron beam C1 Proposal</td>
</tr>
<tr>
<td>F2-09-11</td>
<td>TMD CLAS-H(Umpol) : Probing the Proton’s Quantum Dynamics in Semi-Inclusive Production at 12 GeV</td>
<td>B</td>
<td>A/38</td>
<td>(60) approved</td>
<td>+10</td>
<td>A</td>
</tr>
<tr>
<td>TOPIC 5 : NUCLEAR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C2-09-11</td>
<td>DVCS Hall-A(H,uu,uu) : Measurements of Electron-Helicity Dependent Cross Sections of DVCS with CEBAF at 35 GeV</td>
<td>A</td>
<td>Early</td>
<td>DVCS & CLAS/62</td>
<td>(10) approved</td>
<td>A</td>
</tr>
<tr>
<td>F2-10-05</td>
<td>DVCS CLAS-HDice : DVCS at 11 GeV with transversely polarized target using the CLAS12 Detector</td>
<td>B</td>
<td>Q/15</td>
<td>(110) concurrent</td>
<td>A</td>
<td>Requires transversely polarized HDice with electron beam C1 Proposal</td>
</tr>
<tr>
<td>F2-11-12</td>
<td>DVCS CLAS-D(U,uu,uu) : DVCS on the Neutron with CLAS12 at 11 GeV</td>
<td>B</td>
<td>B/60</td>
<td>(90) approved</td>
<td>A</td>
<td>Requires D target, central neutron detector ready in 2018 + Backup GD-P-E meas if HDice delayed</td>
</tr>
<tr>
<td>TOPIC 6 : FUNDAMENTAL SYMMETRIES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F2-11-06</td>
<td>HPS : Status of the Heavy-Photon Search Experiment at Jefferson Laboratory (Update on PR12_11_06)</td>
<td>B</td>
<td>H/185</td>
<td>(155) approved</td>
<td>+39</td>
<td>A</td>
</tr>
<tr>
<td>F2-10-02</td>
<td>APEX : Search for new Vector Boson A1 Decaying to e+e-</td>
<td>B</td>
<td>A/34</td>
<td>(34) approved</td>
<td>A</td>
<td>Requires new septum and target system</td>
</tr>
</tbody>
</table>
Additional Theory Results

- Cloët, Bentz, and Thomas calculate the EEFFs using a covariant and confining Nambu-Jona-Lasinio model (arXiv:1405.5542v1 [nucl-th]).
- Bound state amplitude from solution of relativistic Faddeev equation.
- Get diquark degrees of freedom.
- Pion cloud added as a perturbation of the quark core.
- No model parameters.
Lattice gauge theory is the only means of *ab initio* QCD calculations in the non-perturbative regime.

Computationally challenging.

EEFFs are an early test of IQCD.

The isovector form of the EEFFs is

\[
F_{1,2}^V = \frac{F_{1,2}^p - F_{1,2}^n}{2}
\]

where

\[
F_1 = \frac{\tau G_M + G_E}{1 + \tau}, \quad F_2 = \frac{G_M - G_E}{1 + \tau}
\]

and \(\tau = Q^2/4M^2\).

This form does not have computationally demanding disconnected diagrams.

Expect EEFF calculation in the next decade.
Other EEFF Measurements - Electron-Positron Colliders

- **BEPC II/BES III** - Continued running for next 7-9 years at higher energies to extend the reach of spectroscopic studies, search for exotics, ... See talks by Xiaobin Ji, Rong-Gang Ping, and Yinghui Guan.
- **SuperKEKB/Belle II** - Will also probe the precision frontier, flavor physics, CP violation, exotics, 4 and 7 GeV. Commissioning starts in early 2015.
- **Novosibirsk** - Super Charm/Tau Factory is planned to probe the precision frontier, exotics, 3-5 GeV, now in CDR phase.